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Abstract

In radiation oncology, the intricate process of delivering radiation to a patient is detailed by the 

patient’s treatment plan, which is data describing the geometry, construction and strength of the 

radiation machine and the radiation beam it emits. The patient’s life depends upon the accuracy 

of the treatment plan, which is left in the hands of the vendor-specific software automatically 

generating the plan after an initial patient consultation and planning with a medical professional. 

However, corrupted and erroneous treatment plan data have previously resulted in severe patient 

harm when errors go undetected and radiation proceeds. The aim of this paper is to develop 

an automatic error-checking system to prevent the accidental delivery of radiation treatment to 

an area of the human body (i.e., the treatment site) that differs from the plan’s documented 

intended site. To this end, we develop a method for structuring treatment plan data in order to feed 

machine-learning (ML) classifiers and predict a plan’s treatment site. In practice, a warning may 

be raised if the prediction disagrees with the documented intended site.

The contribution of this paper is in the strategic structuring of the complex, intricate, and 

nonuniform data of modern treatment planning and from multiple vendors in order to easily train 

ML algorithms. A three-step process utilizing up- and down-sampling and dimension reduction, 

the method we develop in this paper reduces the thousands of parameters comprising a single 

treatment plan to a single two-dimensional heat map that is independent of the specific vendor 

or construction of the machine used for treatment. Our heat-map structure lends itself well 

to feed well-established ML algorithms, and we train-test random forest, softmax, k-nearest 
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neighbors, shallow neural network, and support vector machine using real clinical treatment plans 

from several hospitals in the United States. The paper demonstrates that the proposed method 

characterizes treatment sites so well that ML classifiers may predict head-neck, breast, and 

prostate treatment sites with an accuracy of about 94%. The proposed method is the first step 

towards a thorough, fully automated error-checking system in radiation therapy.
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1. Introduction

1.1. Background

The global use of medical radiation as a treatment for cancer is increasing, with half of all 

cancer patients receiving radiation therapy sometime during the course of their treatments 

(NCI, 2021). Moreover, the average lifetime radiation dose has increased by seven-hundred 

percent over the last four decades. Several factors are contributing to this global trend, 

including increasing human life expectancy and significant technological advancements in 

radiation oncology, for example, in both the equipment and the methodologies used to 

deliver radiation treatment (Ganesh, 2014).

From initial patient consultation to treatment, the radiation therapy process is a complex 

one with many steps. During consultation, the patient discusses treatment options with 

the oncologist. If the patient is to receive radiation therapy, the patient proceeds with a 

simulation process that includes a computerized tomography (CT) scan for designing the 

treatment plan. The oncologist outlines the tumor in the image as well as organs at risk 

that radiation should avoid. A computerized system then designs the treatment plan, which 

is reviewed and approved by the oncologist. After approval, the treatment plan undergoes 

quality and safety checks by the medical physicist. Finally, the radiation therapist delivers 

the treatment using a medical linear accelerator (LINAC), which emits high-energy radiation 

photon or electron beams.

Mounted to a gantry and shaping the beam emitted by the LINAC is an attached multi-leaf 

collimator (MLC), which, when properly configured, restricts the radiation beam to the 

treatment target in order to avoid radiation damage to the surrounding healthy tissues. Fig. 

1 shows a Varian TrueBeam LINAC along with a close-up of its MLC, which features two 

opposing banks of 60 tungsten leaves each. Although new technologies such as modern 

LINACs provide physicians with advanced tools for cancer treatment, their complexity has 

created many sources of errors, such as software flaws, faulty programming, poor safety 

procedures, or inadequate staffing and training (Bogdanich, 2010).

The New York Times reported a fatal accident (Bogdanich, 2010) where a failure to detect a 

computer error caused a lethal dose of radiation to be delivered to the brainstem instead of 

the tumor. Although this accident could be prevented by pre-treatment dose measurements 

or careful treatment monitoring, similar accidents could occur in a clinic with a suboptimal 
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plan-check workflow. No comprehensive study is available for the number of radiation 

errors resulting from death (French, 2002). Providers may fail to report events for many 

reasons, including fear of publicity or punitive actions, lack of knowledge of the event, 

or misunderstandings about the reporting system (Rosenthal & Booth, 2005). In 2011, 

the American Society of Radiation Oncology partnered with the American Association 

of Physicists in Medicine to establish a nationwide voluntary indicent learning system, 

RO-ILS (Hoopes et al., 2015), to collect and analyze radiation oncology incidents. As of the 

second quarter in 2022, 800 participating institutions reported a total of 24,487 incidents, 

with at least 2% categorized as severe (ASTRO, 2022). Thus, it can be expected that 220 

patients experience severe radiation therapy incidents annually in the United States given the 

approximately 3600 radiation therapy institutions that populate the nation.

Clearly, there is a need to develop a classification method to verify whether the treatment 

site associated with the treatment plan is consistent with the treatment prescription. Such a 

system could prevent accidents similar to the one mentioned above because it would alert 

users when the treatment plan is incorrect or erroneous. As a safety check, we propose an 

automated treatment plan alert system to be inserted into the radiation therapy process flow, 

as shown in Fig. 2. Once the treatment plan is reviewed and approved by the oncologist, 

checked by the medical physicist, and uploaded to the local radiation oncology information 

system, our system reviews the plan parameters and predicts the intended treatment site. 

If the predicted treatment site agrees with the documented intended site, treatment may 

proceed as planned. If not, medical professionals can manually review the plan and make 

changes as necessary, ultimately exporting the corrected plan.

1.2. Related and current work

Previous work in this area aims only to detect, rather than classify, anomalies in radiation 

treatment plans. For example, Kalet et al. (2015) applied a Bayesian model to detect 

abnormal treatment plans by learning parameter distributions from a set of historical 

treatment plans. Much of the literature analyzes simple treatment plans which are derived 

from the use of an older, now seldomly used technique in which the radiation beam is 

confined to a rectangular region (so-called “four-field box plans”). For example, Azmandian 

et al. (2007) used a K-means clustering method to detect planning errors of four-field 

box plans, achieving a detection rate of 77% to 100%. Kisling et al. (2020) used a deep 

learning model trained on beam apertures and digitally reconstructed radiographs to verify 

the clinical acceptability of four-field box plans.

Rather than four-field box plans, the treatment plans analyzed in the current paper are more 

relevant for modern technologies and much more intricate and comprehensive. Specifically, 

our study includes Volumetric Modulated Arc Therapy (VMAT) treatment plans, which 

typically involve more than 100 gantry angles in a single plan; whereas only four 

gantry angles comprise the aforementioned four-field box plans. Our plans include MLC 

aperture information, MLC leaf widths, gantry angles, MLC angles, and beam energies—

all of which, except for leaf widths, potentially variable as treatment is being delivered. 

Furthermore, the modern treatment plan data are represented with vendor-specific formats 
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which vary across clinics and LINACs (Boyer et al., 2001, pp. 1–5). This last fact can make 

it impossible to train ML classifiers without a data preprocessing stage.

In fact, before developing the methods in the current paper, the authors experimented with 

many different ways of representing treatment plan data for ML classification, with varying 

results, none rivaling those of the current paper. ith so much raw data contained within 

oncology databases, identifying a convenient and useful set of features to capture salient 

treatment plan information is a difficult task. With only a modest classification accuracy, 

the authors’ previous best results (Bai & Xia, 2021) were obtained by representing each 

treatment plan by the average variation in its gantry angle and in its leaf positions. Clearly 

the data representation (Bai & Xia, 2021) was inadequate, most likely since dose, an 

important factor, was not considered.

1.3. Paper overview

This paper describes an automatic error-checking system for preventing the accidental 

delivery of radiation treatment to an unintended area of the patient’s body. The main 

contribution of this work is the development of the sophisticated, nuanced process of 

extracting only the useful, but low-dimensional information from the expansive, detailed and 

nonuniform plans of modern LINACs and its important role in classifying cancer treatment 

sites. Only using leaf positions and dose information from the many parameters comprising 

a treatment plan, the three-step method we develop is to (1) convert each treatment plan 

to a corresponding heat map, (2) up- or down-sample heat maps to achieve a uniform size 

across all heat maps, and (3) apply dimension reduction to convert each heat map to a 

low-dimensional vector.

Using real treatment plans retrieved from multiple clinics, we test our three-step method by 

training many ML classifiers and observing their ability to classify each plan’s treatment site 

provided the low-dimensional data extracted by our method. The data are so well clustered 

among similar intended uses, the paper shows, that ML classification algorithms can predict 

the intended use with a classification accuracy of about 94%—a result which is difficult 

to place into proper context, since the literature contains no previous results relating to the 

classification of modern treatment plans and from multiple clinics. However, by structuring 

raw radiation oncology data in an ML-friendly format, the paper lays the groundwork for a 

fully autonomous error-checking system in modern radiation therapy.

The rest of the paper is organized as follows: Section 2 describes the data set, the data 

structuring method, and the classifiers employed to test the structuring method. Section 

3 presents the classification results of training/testing the classifiers, and we report the 

performance for many different tunings of each classifier. Section 4 summarizes the paper 

and provides insights towards the practical deployment of the method.

2. Data and methods

2.1. Data curation and description

The n = 697 radiation treatment plans analyzed in this study were head-neck, breast, and 

prostate treatment sites from two separate clinics in the United States. Treatment plans from 
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one clinic were generated from the Pinnacle (Philips Healthcare) treatment planning system, 

those from the other clinic from the Varian Eclipse system. Regardless of the system, data 

were exported for analysis from the MOSAIQ (Elekta AB, Stockholm, Sweden) oncology 

information system using customized SQL (Structured Query Language) queries. The exact 

count of each treatment site in the study is shown in Table 1.

Thousands of parameters characterize the raw unstructured treatment plan data stored in 

oncology databases. For example, the shape of the beam radiated by the LINAC is described 

by the positions of the gantry, MLC and leaves which demand many parameters to describe 

precisely. Further complicating the matter is that these parameters may change throughout 

the delivery of radiation in a single plan. With no universal set of parameters or data 

representation in existence, representing the data in a structured manner is a challenge. In 

our study, two different LINACs each employ its own parameters and conventions. For 

example, Table 2, which lists the subset of raw treatment plan data used in this study, shows 

machines can employ either NL = 60 or NL = 80 leaves in each of two leaf banks. (See Fig. 

1, right.)

Referencing Table 2, the data vectors A_Leaf_Set and B_Leaf_Set describe the exact 

position of each leaf in leaf banks A and B, respectively, relative to an x-y grid centered 

on the MLC. This is illustrated in Fig. 1 (right), where the faint coordinate axes overlay on 

the MLC, with one leaf bank on the bottom, and the other, the top. In units of centi-Gray, 

the Dose data refer to the strength of the beam radiating through the aperture formed by the 

leaves. The Site_Name is the documented intended treatment site, either head-neck, breast, 

or prostate in our data set. Some of the many more parameters comprising an individual 

treatment plan that are not used in this study include the width of each leaf, the MLC angle, 

and the gantry angle. A single treatment plan is essentially a sequential listing of all these 

parameters to describe the dynamic process as treatment is delivered over time.

During treatment, the LINAC’s gantry rotates around the patient, temporarily pausing its 

rotation at points in space to deliver a dose of radiation. We define a control point as the 

state of the LINAC’s parameters (A_Leaf_Set, B_Leaf_Set, and Dose in Table 2) each time 

it pauses to deliver radiation. The number of control points N comprising a treatment plan 

varies by plan, from several to hundreds. The subsequent method described next utilizes the 

dose and leaf positions at each control point to construct a radiation heat map, building upon 

intuition that suggests each of the three cancer treatment sites considered in this study has a 

unique shape.

2.2. Data structure

Our method is to first compute a heat map for each plan by utilizing individual plan 

parameters, namely MLC leaf positions and planning doses. Then, heat maps are adjusted 

to unify their sizes across all plans, a process that involves up- or down-sampling some heat 

maps, depending on characteristics of the LINAC used in the plan. Finally, the algorithm 

flattens each heat map to a high-dimensional vector and then, using a popular dimension-

reduction technique, reduces the dimension to one that is much lower in order to train an ML 

classifier. Each of these three steps is now discussed in detail.
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2.2.1. Heat maps—At each control point, the collective leaf positions describe an 

aperture through which the radiation beam passes. One such aperture is shown in Fig. 3 

as white, unshaded. The dose can be considered as only passing through the aperture, and 

the N apertures in a single plan can be laid over one another in order to accumulate the dose 

passing through the apertures over the entire plan. Doing so creates a kind of heat map for 

the plan that is NL by NP in size, where NP is the number of positions each leaf can take.

Formally, let (i, j) represent a position on a coordinate grid, where i = 1,…, NL is a leaf 

index, and j = 1,…, NP is a positional index; the extended edge of any leaf in either bank 

can be described by such a position. For example, the position (4, 100) in bank A implies 

the 4th leaf in bank A extends to the 100th positional index, which corresponds to a unique 

length in tenths of millimeters. At a single control point k, the set of all leaves and their 

positions forms an outline, and the corresponding kth aperture Ak is defined as the set of all 

(i, j) falling inside of this outline, see Fig. 3. Now suppose dk represents the dosage, in units 

of centigray, at the kth control point, and Ik(i, j) is an indicator function such that

Ik(i, j) =
1, (i, j) ∈ Ak
0, else.

Then a plan’s heat map is computed as

H(i, j) = ∑
k = 1

N
dk Ik(i, j) . (1)

The authors wish to note that such a simple calculation describes the dose distribution as it 
leaves the machine, not as it penetrates the patient.

Several typical heat maps generated by the application of Eq. (1) are shown in Fig. 4, two 

examples of each of the three treatment sites. As can be seen in the figure, heat maps 

for each treatment site share some interesting characteristics. First, heat maps for breast 

treatment have a larger active area than the other two treatment sites. Heat maps of breast 

plans have a very distinctive “blocky” (rectangular) shape, and they do not have the gradient 

shading that the other two treatment sites have. The distinction between maps of prostate 

plans and those of head-neck plans is more subtle—it seems they differ in shape, and the 

head-neck heat maps may be hotter. Consequently, it can be expected that any reasonable 

ML algorithm accepting heat maps as input should easily be able to classify breast plans, 

possibly confusing some prostate plans with head-neck plans, and vice-versa.

2.2.2. Up/down-sampling—Different LINACs are used in different hospitals, and their 

respective MLCs can differ in their number of leaves NL. In each leaf bank, some machines 

have NL = 60 leaves, others NL = 80 leaves. Recall that the size of all heat maps is NL 

by NP. Therefore, heat maps are either 60 × 4000 or 80 × 4000 in size. In other words, 

some heat maps are comprised of 240,000 pixels, others 320,000. This nonuniformity in 

size presents a problem for any ML algorithm, because they all aim to find the relationship 

between each pixel (and pixel combinations) and the treatment site. An algorithm will not 
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learn a relationship for one number of pixels and another relationship for a different number 

of pixels.

In order to accommodate different number of leaves in different hospitals and various 

LINACs, heat maps may be up- or down-sampled so their sizes are uniform across all 

heat maps. An advantage to down-sampling is that the resultant heat map will have fewer 

pixels, which is preferred for numerical computation. The authors adopt the down-sampling 

approach in this paper.

Heat maps that are 80 × 4000 in size may be down-sampled by a factor of M = 60
80 = 3

4  along 

the leaf index axis, so that its length is reduced from 80 to 60, and, consequently, the number 

of pixels from 320,000 to 240,000. As in Eq. (1), let H80(i, j) denote a heat map of size 80 × 

4000, where the subscript 80 is meant to explicitly show the number of leaves. While there 

are many different down-sampling methods, we apply perhaps the simplest:

H(i, j) = H80( i ∕ M , j), i = 1, …, 60, (2)

where H(i, j) denotes the down-sampled heat map of size 60 × 4000, and ⌊·⌋ denotes the 

floor function. This straightforward scheme is easily computed and samples from the entire 

range of the original leaf index axis.

In general, down-sampling as in Eq. (2) can produce aliasing and necessitate the use of 

an anti-aliasing filter. In the current study, the authors found the effect of aliasing to be 

so small that additional filters make only minimal, almost unnoticeable improvements. For 

comparison, Fig. 5 shows one original 80-leaf heat map of each treatment site and the 

corresponding down-sampled version. It is clear from the figure that the down-sampled 

version is nearly identical to its original. Preserved are the important characteristics such as 

the rectangular shape of the breast plan and the gradient of the prostate and head-neck plans, 

thus any aliasing from the down-sampling process is insignificant. Filters are not used in the 

algorithm, with the goal of keeping the algorithm as simple as possible without sacrificing 

performance.

2.2.3. Dimension reduction—After down-sampling, the size of all heat maps is m 
= 240,000 pixels. In ML applications, this number is referred to as the dimension of the 

data set and, for the current study, will still present a problem to ML algorithms, because 

it is too large as compared to the number of plans, or examples, in the data set (n = 

697). Computationally, such a situation when n < m leads to ill-conditioned optimizations 

or undefined matrix inverses. Even if the problem was well-conditioned, training an ML 

model with such a large dimension m could be computationally expensive and practically 

infeasible. A common issue in ML applications, especially in computer vision problems, the 

solution is almost always to preprocess the data with a dimension-reduction technique, for 

example, principal component analysis (PCA) (Hastie et al., 2008, p. 534). With PCA, the 

idea is to represent the data in an optimal subspace of dimension p < m, circumventing the 

issues of ill-conditioned problems and computational infeasibility.
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In order to apply PCA, we first flatten all n heat maps – which are each essentially a matrix 

of 60 × 40,000 numbers – to vectors of size 1 × m, and concatenate them all in a matrix 

X ∈ ℝn × m. One column of X corresponds to one pixel – the same pixel – in every heat 

map. In accordance with PCA, X is then linearly transformed to a new matrix T ∈ ℝn × m, 

but the columns of T no longer correspond to pixels. Instead, its columns, called “principle 

components” (PCs), are linear combinations of the columns of X such that the first column 

of T captures the axis of maximum variance in the data, the second column the second-most 

variance, et seq. Since the columns are sorted according to variance, it is possible to truncate 

T, only retaining the first p columns, while still retaining much of the data variance. With no 

theoretically optimal way of selecting the new dimension p, one has to rely on heuristics or 

cross-validation to do so.

One such heuristical approach is to make a plot, as in Fig. 6, of cumulative fractional 

variance versus the number of retained PCs. More formally, if λl denotes the variance 

explained by the lth PC, then an expression for the fractional variance explained by this PC 

is λl ∕ ∑r = 1
m λr. Thus the cumulative fractional variance of retaining the first p PCs is given 

by

retained varp = ∑
l = 1

p λl
∑r = 1

m λr
. (3)

With more than 0.99 fractional variance after just 185 PCs, the bar chart in Fig. 6 

demonstrates the retained variance in Eq. (3) quickly approaches 1. This quality is highly 

desirable since it implies the remaining 240,000 – 185 = 239,185 PCs account in total for 

less than 1% of the data variance, and the dimension can be immensely reduced while 

still retaining much of the information. For selecting a specific p, the approach is most 

often to select the number of PCs just after the “elbow” of the curve in Fig. 6. See, for 

example, (Tabachinick & Fidell, 2001, p. 476). With this in mind, the authors chose to 

reduce the dimension to p = 50 for this study, still retaining about 95% of the data variance. 

Retaining more than 50 dimensions can increase the chance that the algorithm will overfit 

the data and drive down the accuracy of the classifier (Hastie et al., 2008, p. 536). With 

the size of the data reduced to 697 × 50 from 697 × 240,000, ML algorithms may be 

trained without numerical or computation issues. Each plan is effectively compressed to a 

50-element vector, and these 50 numbers form the plan’s features.

2.3. Classifiers

The preceding method of extracting salient treatment plan information is evaluated by 

observing the accuracy of well-established ML algorithms in classifying the correct 

treatment site. We consider random forest, softmax, k-nearest neighbors, artificial neural 

network (ANN), and support vector machine (SVM) as the predictive model. For brevity, 

we only broadly describe the theory of the classifiers and their associated tuning parameters

—just enough to understand how and why specific choices of parameters yield the observed 

results. Rather than rehash the mathematical details, references are provided for the reader 
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to investigate these details, if desired. e particularly enjoy (Kuhn & Johnson, 2018) which 

details each of the algorithms considered in this study.

2.3.1. Random forest—One of the most powerful ML algorithms, the random forest 

classifier is an ensemble of many decision trees (Geron, 2018, p. 181). A decision tree, 

on its own, is a classifier that is trained by repeatedly splitting the training data in an 

optimal fashion, maximizing information entropy each time the data is split on a feature. 

Each feature is used exactly once to split the data, and each path of the tree terminates 

with a leaf node, which contains the class. The class predicted by each tree in a random 

forest is a vote in a majority-wins prediction of the forest. During training, each tree is 

only allowed a random subset of features to consider, which encourages a diverse collection 

of trees, in turn reducing overfitting (a problem for the simple decision tree classifier) 

and improving accuracy (Geron, 2018, p. 181). The number of trees comprising the forest 

is a hyperparameter which needs to be chosen. Usually, and at the cost of increasing 

computational effort, the classifier’s accuracy improves as the number of trees increases, but 

with marginal gains that level off asymptotically.

2.3.2. Softmax—Softmax regression estimates the probability of an example belonging 

to each class and selects the class with the highest probability (Geron, 2018, p. 139). The 

probability of each class is learned in an optimal way by training a linear model, the output 

of which is then logit-transformed to a range of numbers between 0 and 1, such that the 

three class probabilities sum to 1. Often it is the case that the softmax classifier overfits 

the training data, so an l − 2 regularization term may be added to the linear function in 

order to reduce error and improve performance (Hastie et al., 2008, p. 119). Too much 

regularization, however, will underfit the training data and hinder the performance at test 

time. Thus, choosing an optimal amount of regularization is key for good performance.

2.3.3. K-nearest neighbors—The k-nearest neighbors algorithm (Hastie et al., 2008, 

p. 14) is the third classifier considered in this study and perhaps the simplest. In this 

algorithm, hyperparameter k is first chosen, and a test data point is classified by assigning 

the class which is most frequent among the k training data points nearest to that test point, 

using Euclidean distance as the distance metric. The choice of k will affect the classifier’s 

accuracy, where a value too small or too large will either overfit or underfit the training data, 

respectively (Hastie et al., 2008, p.15).

2.3.4. Artificial neural network—ANNs, because of their versatility and scalability, 

are currently at the very core of large and complex ML tasks (Geron, 2018, p. 239). 

However, as more of a “black-box” algorithm, ANN models can be difficult to interpret, 

and their architecture and hyperparameters difficult to tune (Geron, 2018, p. 239). Further, 

with many trainable parameters comprising their architecture, they may not perform well 

in smaller applications with small data sets. In these situations, traditional ML algorithms 

may be preferred over ANNs, especially when a traditional algorithm is already known 

to perform well. With only n = 697 treatment plans, deep (i.e., large, complex) ANN 

architectures are not an option for this study, though we still investigate the performance of 

some shallow ANNs with varying architectures.
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2.3.5. Support vector machine—The last classifier considered, the SVM, is a well-

established classifier that finds a separating boundary in feature space in order to maximize 

the width of the gap between two classes (El-Naqa et al., 2002). Though a binary classifier, 

the SVM can be applied to our three-class data set by twice applying a one-versus-all 

strategy (Geron, 2018, p. 475). When classes are overlapping in feature space and not 

linearly separable, the SVM formulation is extended by introducing slack variables into the 

margin optimization and controlling the amount of slack using a hyperparameter called the 

box constraint. When the box constraint is small, a large margin is chosen at the expense of 

a greater number of misclassifications in the training set. A large box constraint, on the other 

hand, encourages accurate classification in the training set, but with a smaller margin.

3. Classification results

Employing the sklearn library on Python 3.8, we test each classifier with several different 

tunings/achitectures, and in its own five-fold cross-validation loop. Accordingly, the data set 

was split into five equally sized partitions, four to train the algorithm (80% of the data), 

and one to test its performance (20% of the data). As opposed to training-only accuracy 

which can be overly optimistic, testing the algorithm on data that was withheld during 

training time provides a more accurate estimate of the algorithm’s performance in real-world 

situations (Hastie et al., 2008, p. 129). With cross-validation, this training-testing process is 

repeated five times so that each of the five partitions serves as the test set exactly once, and, 

correspondingly, five accuracies are observed.

The algorithm was tested on a Microsoft Surface Book running Windows 10 with Intel Core 

i7-6600 CPU @ 2.60 GHz and 16 GB of RAM. With this modest computer, the 697 heat 

maps were generated in about 11.4 s of time, or 16.4 ms per map. Training and testing were 

also very quick, and similar for each algorithm tested; on average, training required about 

7.51 s of time, and testing, 321 ms.

Grid search was employed to determine the optimal tuning of each tested algorithm. 

Through trial and error, we considered a set (grid) of reasonable hyperparameters from 

which to tune each model. The cross-validation process was carried out for each tuning, 

and the mean accuracy and variance across the five folds were recorded. In this way, a 

single, unusual test partition with several outliers will not sabotage the observed accuracy. 

Reporting the performance versus each tuning enables us to identify an optimal tuning and 

any trends that may emerge.

There are several implementation details to describe at this point:

• The test data are withheld when training the ML classifier. In order to truly 

withhold the test data from the whole algorithm, the test data are also withheld 

from PCA when finding the optimal subspace.

• Some pixels have the same value (0, black) across all heat maps in a training set. 

These pixels have zero variance and present a computational problem for PCA. 

Therefore, these pixels are identified and removed from the training set prior to 

the PCA algorithm. They are also removed from the test set. Depending on the 
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training set, this process slightly reduces the dimension of the heat maps to about 

211,800 from 240,000.

• Computationally, PCA requires the normalization of all pixels so they have zero 

mean across all heat maps in the training set (and optionally unit variance). 

Both the mean and variance of the training set are calculated and utilized to 

normalize the training set and also the test set; the latter is to ensure the test set is 

transformed with exactly the same parameters as the training set.

These implementation details are best summarized as a block diagram, see Fig. 7.

3.1. Random forest

Table 3 shows the results of the random forest classifier on the treatment plan data set, 

considering 5, 10, 20, 50, and 100 number of trees. Achieving more than 94% accuracy, 

the random forest performs very well—actually, the best of all those tested. As expected, 

the classification accuracy, which is averaged across the five cross-validation folds, increases 

with the number of trees, and with marginal increase beginning around 50 trees. The 

variance of the accuracy across the five folds is small and does not seem to be affected by 

the number of trees.

3.2. Softmax

The results of the softmax classifier on the treatment plan data are shown in Table 4 for l − 

2 regularization weights of 0.01, 0.1, 1, 10, and 100. From the table, it is observed that the 

optimal regularization is 0.1—more or less regularization results in decreased accuracy. At 

just over 89% averaged over five cross-validation folds, the classifier’s optimal performance 

falls short of the random forest. The variance, like with the random forest, is small and the 

performance seems unaffected by the choice in hyperparameter.

3.3. K-nearest neighbors

For a finite number of data points as in the current study, no theoretical results exist to 

choose the value of k, so several values of k are considered, each one tested in a cross-

validation loop. For example, Table 5 shows the performance of the k-nearest neighbors 

algorithm with k = 1, 3, 5, 7, 11. The best accuracy of 86.17% occurs with k = 3, though 

underwhelming compared to the accuracy of the random forest.

3.4. Artificial neural network

ANN architectures may vary in the number of hidden layers, and the number of non-linear 

activation units (neurons) in each layer. To keep the architecture simple, we choose to stack 

only a few hidden layers, each with its own rectified linear unit (ReLU) activation. The stack 

of hidden layers precedes the output layer consisting of a softmax activation function with 

three neurons in order to yield three probabilities—one for each class. Fig. 8 illustrates the 

architecture with three hidden layers. Each input example, after it is reduced with PCA, 

feeds the network and is assigned the class of highest probability. Limiting the analysis to 

small architectures, we choose combinations of 1, 2, 3 hidden layers and 50,100,500 neurons 

in each layer, and the results are shown in Table 6. According to the table, ANN does not 
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perform well, with a maximum accuracy of 74.29% occurring with an architecture of three 

hidden layers, 500 neurons in each layer.

3.5. Support vector machine

Though the SVM algorithm can be applied to find complex, non-linear decision boundaries 

in feature space using the so-called kernel trick (Hastie et al., 2008, p. 423), only linear 

decision boundaries are considered, but with several choices of the hyperparameter. Table 7 

shows the SVM does not perform well, with a maximum accuracy of 62.40% occurring with 

a box constraint of 100.

3.6. Confusion matrix

Recall it is expected that breast cancer plans are easier to classify since breast heat maps 

appear distinctively different from head-neck and prostate heat maps (Fig. 4). And with 

the data set being imbalanced and favoring breast plans (Table 1), observing only the 

classification accuracy may be misleadingly optimistic. More informative of the algorithm’s 

performance is a tally of predictions by class, like in a confusion matrix. More exactly, a 

confusion matrix is a table in which each row represents the true instances in each class, and 

each column the predicted instances. The entry located at row i, column j of the confusion 

matrix is the number of times the ith class was predicted as the jth class. Obviously, a 

diagonal matrix is ideal.

Of all the classifiers, the random forest is the most accurate, so only its confusion 

is investigated. Placed in a five-fold cross-validation loop, the classifier generates five 

confusion matrices, one for each test set partition, and each matrix is aggregated into a 

single matrix in order to concisely tally the confusion. The resulting confusion matrix is 

shown in Table 8. Correctly classified 301 times out of 305 (98.7%), breast plans were 

indeed the easiest plans for the algorithm to identify, as expected. Head-neck plans were 

correctly classified 170 times out of 186, or 91.4%. Prostate plans were correctly classified 

188 times out of 206, or 91.3%. When a head-neck plan was misclassified (16 times), it 

was more often than not confused as a prostate plan (15 times) rather than a breast plan (1 

time). Similarly, when a prostate plan was misclassified (18 times), it was more often than 

not confused as a head-neck plan (16 times) rather than a breast plan (2 times).

Like the confusion matrix, F-1 scores are preferable when classes are imbalanced. An 

F-1 score is the harmonic mean of precision and recall and is easily calculated from the 

confusion matrix. The scores are shown in Table 9 for each class, along with precision and 

recall. The average F-1 score, weighted by class population, is 0.945.

4. Conclusion

This paper presents a novel algorithm to automatically determine if a given cancer treatment 

plan is consistent with its intended use. Based on dose and collimator aperture information, 

the algorithm first calculates a radiation heat map for the plan, which contains enough 

information, the paper shows, to preserve the unique characteristics of head-neck, breast, 

and prostate treatment sites. Manual visual inspection of the heat map further supports 

this point, as the shape and shading of the heat map are typically excellent indicators 
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of the treatment site. Once the plan’s heat map is calculated, the algorithm may up- or 

down-sample the map to standardize its size, as machines delivering treatment can vary in 

the number of leaves comprising the machine’s mechanical leaf banks. The heat map is then 

reduced, using PCA, to a 50-dimensional vector, which is fed to a random forest model to 

classify the treatment site. A warning can be raised if the classified treatment site and the 

documented intended treatment site do not agree, indicating an additional manual review of 

the plan by a medical professional may be warranted.

Testing the algorithm in a cross-validation loop demonstrates its accuracy to be about 94.6%, 

provided the random forest contains a sufficient number of trees. The small variance in 

accuracy among the five cross-validation folds indicates the robustness of the algorithm. The 

accuracy, however, which is shown to be sensitive to the number of trees comprising the 

forest, steadily declines as the number of trees decreases from 50. Still, the random forest, 

with a sufficient number of trees, outperforms the many other classifiers considered in this 

study which do not perform nearly as well. The algorithm’s confusion matrix demonstrates 

that breast plans are the easiest plans for the algorithm to correctly identify; whereas 

head-neck plans, when they are misclassified, are often confused with prostate plans, and 

vice-versa.

In practice, the parameters describing the optimal PCA subspace can be calculated 

offline – prior to receiving the query treatment plan – from the analysis of hundreds of 

historical treatment plans from various hospitals and clinics. Similarly, the random forest 

model can also be trained offline with the same historical data. With all training done 

offline, classifying the query treatment plan is computationally very quick once the model 

parameters are loaded: Simply calculate the plan’s heat map, perform up- or down-sampling 

if necessary, project the map into the subspace, and ask the random forest for its predicted 

class. It is reasonable to expect the algorithm to be correct 94.6% of the time, only 

misclassifying a plan 5.4% of the time, in accordance with the cross-validation results.

This study uses a radiation heat map as the features to feed a random forest classifier, but 

potentially thousands of other features could be engineered from the raw treatment plan data. 

By manually inspecting the plans that were misclassified during testing, it may be possible 

to learn which characteristics are the most salient, and how features could be engineered to 

improve classification accuracy. It would be interesting to continue to explore other features 

as inputs to the classifier – either instead of or in addition to the heat map – and evaluate the 

performance, using 94.6% accuracy as the benchmark for comparison. Of additional interest 

is the algorithm’s performance in classifying cancer treatment sites not considered in the 

study, for example, in the lungs. Presuming a sufficient amount of data, the algorithm may 

naturally be extended to classify additional treatment sites simply by incorporating the data 

from these new treatment sites into the training of the algorithm.
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Fig. 1. 
(Left) Varian TrueBeam LINAC and (right) its MLC comprised of tungsten leaves to shape 

the radiation beam delivered by the LINAC.
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Fig. 2. 
Flowchart of the radiation therapy process with an added automated treatment plan alert 

system.
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Fig. 3. 
An example of an aperture (white, unshaded) formed by collimator leaves.
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Fig. 4. 
Examples of typical heat maps from six radiation treatment plans in the data set. (Top row:) 

breast, (middle row:) prostate, (bottom row:) head-neck. Radiation is expressed in units of 

centigray.
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Fig. 5. 
Down-sampling of heat maps. On the left is the original heat map of height 80, and on the 

right is the down-sampled version of height 60. (Top row:) breast, (middle row:) prostate, 

(bottom row:) head-neck.
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Fig. 6. 
Principal component analysis of the treatment plan data set showing the cumulative 

fractional variance versus increasing number of retained principal components.
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Fig. 7. 
A block diagram of the entire algorithm, including cross-validation to measure accuracy. 

Solid arrows indicate the movement of data, while dashed arrows indicate the passing of 

parameters.
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Fig. 8. 
Architecture of the shallow networks considered in the study, shown with three hidden layers 

each with rectified linear unit (ReLU) activation. The number of neurons in each layer and 

the number of layers were hyperparameters that were varied and tested.
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Table 1

Number of plans of each treatment site in the data set.

Head-neck Breast Prostate Total

186 305 206 697
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Table 3

Classification accuracy of random forest classifier with varying number of trees (n_trees).

n_trees 5 10 20 50 100

Mean 87.02% 92.94% 93.68% 94.01% 94.55%

Variance (×10−3) 3.17 1.60 2.27 1.33 2.73
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Table 4

Classification accuracy of softmax classifier with varying amount of regularization.

l-2 weight 0.01 0.1 1 10 100

Mean 87.02% 89.56% 80.65% 74.71% 76.84%

Variance (×10−3) 1.83 2.57 1.83 2.40 2.57
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Table 5

Classification accuracy of k-nearest-neighbors classifier with different values of k.

k 1 3 5 7 11

Mean 78.53% 86.17% 78.96% 70.47% 74.71%

Variance (×10−3) 3.17 1.27 3.57 2.23 1.40
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Table 6

Classification accuracy of artificial neural network classifier with different architectures.

Hidden layers, neurons in each layer (1,100) (2,50) (2,100) (3,100) (3,500)

Mean 55.61% 66.64% 73.86% 73.43% 74.29%

Variance (×10−3) 6.90 2.04 3.07 3.27 2.83
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Table 7

Classification accuracy of support vector machine classifier with varying box constraint.

Box constraint 0.01 0.1 1 10 100

Mean 57.73% 60.70% 59.43% 61.55% 62.40%

Variance (×10−3) 3.73 8.60 3.17 3.17 0.93
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Table 8

Random forest confusion matrix.

Head-neck Breast Prostate Total

Head-neck 170 1 15 186

Breast 2 301 2 305

Prostate 16 2 188 206
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Table 9

F-1 scores for the random forest classifier.

Precision Recall F-1

Head-neck 170/188 = 0.904 170/186 = 0.914 0.909

Breast 301/304 = 0.990 301/305 = 0.987 0.988

Prostate 188/205 = 0.917 188/206 = 0.913 0.915

Mach Learn Appl. Author manuscript; available in PMC 2023 January 12.


	Abstract
	Introduction
	Background
	Related and current work
	Paper overview

	Data and methods
	Data curation and description
	Data structure
	Heat maps
	Up/down-sampling
	Dimension reduction

	Classifiers
	Random forest
	Softmax
	K-nearest neighbors
	Artificial neural network
	Support vector machine


	Classification results
	Random forest
	Softmax
	K-nearest neighbors
	Artificial neural network
	Support vector machine
	Confusion matrix

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

