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ABSTRACT

Chronic pain is one of the most common rea-
sons adults seek medical care and is often
managed with opioid analgesics; however, opi-
oids may cause respiratory depression by sup-
pressing various components of respiration.
Respiration is the physiological process that
facilitates gas exchange and is mediated
through the proper function of and communi-
cation among central neural control (respira-
tory drive), sensory input systems, the lungs,
and the muscles involved in respiration. Nor-
mal respiratory function can be dampened with
the use of central nervous system (CNS)
depressants and/or underlying health condi-
tions. Patients with chronic pain are often
exposed to CNS depressants other than opioids,
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including benzodiazepines, barbiturates, non-
benzodiazepine sedative-hypnotics, and etha-
nol, which can function synergistically with
opioids to increase the risk of respiratory
depression. Some patients may also have
underlying health issues, such as obstructive
sleep apnea, that can be exacerbated with the
use of opioids and other CNS depressants and
further contribute to respiratory depression.
Clinicians should have a thorough under-
standing of respiration, recognize how various
CNS depressants suppress it, and take necessary
steps to mitigate the risk of opioid-induced
respiratory depression by collaborating with a
multidisciplinary team (i.e., sleep and pain
specialists), choosing appropriate medications,
and educating patients on the proper use and
storage of opioids.

Keywords: Breathing; Central nervous system
depressants; Chronic pain; Opioids; Respiratory
depression; Respiratory system; Ventilation
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Key Summary Points

Patients with chronic pain are often
exposed to one or more central nervous
system depressants (e.g., opioids,
benzodiazepines, barbiturates,
nonbenzodiazepine sedative-hypnotics,
and ethanol) and may have underlying
health conditions (e.g., obstructive sleep
apnea) that impact respiration.

Respiration is facilitated by the
communication of central neural control
(respiratory drive), sensory input systems,
respiratory muscles, and the lungs, which
enable gas exchange (O, and CO5)
between the alveoli and the blood.

Central nervous system depressants and
underlying conditions can suppress one or
more steps in respiration, thereby leading
to respiratory depression.

Clinicians should have a thorough
understanding of the physiology behind
respiration, take precautions when
prescribing central nervous system
depressants, collaborate with a
multidisciplinary team (including sleep
and pain specialists), and educate patients
on the proper use and storage of
medications to prevent the occurrence of
respiratory depression.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.13008023.

INTRODUCTION

In the USA, chronic pain is one of the most
frequent reasons adults seek medical attention

[1, 2]. Results from the 2012 National Health
Interview Survey showed that approximately
25.3 million adults in the USA experienced
chronic pain [3]. Chronic pain is often managed
with opioid analgesic medication [2, 4, 5].
Opioid analgesics are frequently diverted and
used improperly, which has contributed to a
national crisis of opioid overdose deaths [5, 6].
Opioids act primarily on mu-opioid receptors in
the central nervous system (CNS), including
receptors located on neuronal centers that play
a key role in regulating respiratory drive, the
ability of neuronal respiratory centers to control
ventilation [7]. Failure in one or more steps of
respiratory drive leads to respiratory depression,
the medical outcome that occurs when inade-
quate ventilation of the lungs decreases the rate
of gas exchange [8]. Opioid-induced respiratory
depression is the leading cause of death in
patients who overdose with or abuse opioids
(4, 5, 9, 10].

Patients with chronic pain may not be trea-
ted only with opioid analgesics but may also be
exposed to other CNS depressants, or a combi-
nation of them, including benzodiazepines,
barbiturates, nonbenzodiazepine sedative-hyp-
notics (also known as Z drugs), and ethanol.
Along with opioids, each of these agents can
cause respiratory depression. Therefore, it is
important that clinicians understand the
mechanisms behind respiration and the impact
of suppressant agents on respiratory drive and
patency.

The purpose of this review is to provide an
overview of the physiology behind respiration,
maintenance of ventilation, and the wvarious
CNS depressant agents that affect normal
physiological responses. The information pre-
sented here can be used as an educational
resource for clinicians to improve decision-
making and medication selection regarding
potential impacts on respiratory function.

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.
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Fig. 1 Three primary components that facilitate respira-
tion. Respiration is mediated by central neural control
through the cortex and the respiratory center in the brain
(the medulla and pons); sensory input systems, including
mechanoreceptors, metaboreceptors, and peripheral and
central chemoreceptors located in the CNS, carotid
arteries, and muscles; and respiratory muscles, which

DISCUSSION

Respiration

Respiration encompasses the processes that
facilitate gas exchange on a cellular level, which

Sensory Input Systems
Mechanoreceptors
Metaboreceptors
Peripheral chemoreceptors
Central chemoreceptors

include the upper airway, diaphragm, external and internal
intercostals, and abdominal muscles and the lungs. Each of
these systems coordinates with one another to control the
diffusion of essential chemicals and gases between the
circulatory system and the environment. CNS central
nervous system

involves the intake of O, and the removal of
CO, [11]. Respiration involves the synchro-
nization of various components, including
central neural control (respiratory drive), sen-
sory input systems, respiratory muscles, and
lungs (Fig. 1) [11-13]. Central neural control
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and sensory input systems coordinate the tim-
ing and rate of ventilation and air volume
intake, which is signaled to the respiratory
muscles and lungs for the mechanical exchange
of inspired gases (i.e., air) [11, 14].

Central Neural Control

The respiratory center in the brain is controlled
by the pons and medulla (Fig. 2a) [15]. These
neural control centers work collectively to reg-
ulate inspiration and exhalation [15]. The cere-
bral cortex influences the respiratory centers of
the brain to control conscious (i.e., breath
holding) or unconscious (i.e., speech, singing,
coughing) respiration [16-18].

Medullary Groups

The dorsal medulla is responsible for inhalation
and airway defense, while the ventral medulla is
responsible for exhalation [11, 19, 20]. The
strength of the signal from the dorsal medulla
can influence breathing, whereby increased
impulse frequency results in stronger muscle
contractions and deeper breathing, and
decreased frequency results in passive expira-
tion [21]. The dorsal medulla communicates
with the ventral medulla by integrating input
from central and peripheral receptors prior to
relaying information to respiratory muscles to
generate respiratory rhythm [21]. The pre-Bot-
zinger complex is a group of neurons located
between the ventral respiratory group and the
Botzinger complex in the brainstem that also
functions to control inspiration [7]. The pre-
Botzinger complex interacts with respiratory
centers to ensure a smooth transition between
different breathing phases, while also prevent-
ing the activation of opposing muscle groups
[7]. The principal neurotransmitters involved in
modulating the generation and transmission of
respiratory rhythm are glutamate, gamma-
aminobutyric acid (GABA), and glycine [22].

Pontine Grouping

The pontine grouping allows for modulation of
the intensity and frequency of medullary sig-
nals to control breathing patterns while pro-
moting a smooth transition between inspiration

and expiration [21, 23]. More specifically, the
pneumotaxic center in the upper portion of the
pons coordinates the speed of breathing, sends
inhibitory impulses to the respiratory center,
and is involved in the fine-tuning of respiratory
rate [24]. The apneustic center in the lower
portion of the pons also coordinates the speed
of breathing but can be overridden by the
pneumotaxic center to end inhalation; this
region is mostly responsible for sending stimu-
latory impulses to the inspiratory area (pro-
longing inhalation) [24]. Suprapontine areas
also contribute to respiration by responding to
changes in internal or external environmental
conditions such as exercise, hypoxia, hyper-
capnia, and thermal changes, as well as other
processes like swallowing and coughing
[18, 25]. These neuronal processes are modu-
lated by incoming sensory input systems [26].

Sensory Input Systems

Sensory input systems consist of mechanore-
ceptors, metaboreceptors, and peripheral and
central chemoreceptors that coordinate with
other components of the respiratory response
system to control breathing (Fig. 2b)
[11, 27, 28].

Mechanoreceptors and Metaboreceptors

Mechanoreceptors are located throughout the
respiratory tract in the airways, trachea, lungs,
and pulmonary vessels. They provide sensory
information to the respiratory center of the
brain regarding the mechanical status of the
lungs and chest, including the rate of breath-
ing, lung space, and irritation triggers [11, 27].
Pulmonary stretch receptors can be classified as
slowly or rapidly adapting, where slowly
adapting receptors are activated during infla-
tion of the lungs and play a critical role in the
Hering-Breuer reflex (termination of inspira-
tion and prolongation of expiration), and
rapidly adapting receptors initiate defensive
respiratory reflexes in response to irritants
[27, 29]. Bronchopulmonary C-fiber receptors
also play a role in initiating defensive respira-
tory reflexes in response to inhaled irritants or
rapid changes in lung volume [27]. Other
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Fig. 2 Control of respiration. a The respiratory center in
the brain controls various components of respiratory drive,
including inhalation, airway defense, exhalation, and
breathing patterns. b The sensory input systems are
composed of mechanoreceptors, metaboreceptors, and
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changes and influence various components of respiration,
such as breathing, lung space, and irritation triggers.
¢ Neuronal processes and sensory input systems are
communicated to the respiratory muscles and lungs to
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receptors called metaboreceptors are found in
the skeletal muscle and are activated by meta-
bolic byproducts to stimulate breathing during
exercise [30].

Peripheral Chemoreceptors

Peripheral chemoreceptors consist of fast-acting
carotid and aortic bodies that monitor the par-
tial pressure of arterial O, in the blood and
respond to hypercapnia or acidosis [28, 31].
Carotid body chemoreceptors are located at the
bifurcation of the common carotid arteries and
are responsible for the majority of the periph-
eral control of ventilation [28, 31, 32]. Carotid
bodies are also able to sense arterial gas con-
centrations and pH, which initiates a rapid
response (within 1-3 s) by stimulating ventila-
tion via communication with medullary
response neurons [24, 28]. Aortic bodies are
located near the arch of the aorta and play a
large role in regulating circulation while also
responding to changes in gas concentrations
[24, 28].

Central Chemoreceptors

Central chemoreceptors are located within
the ventral surface of the medulla and retro-
trapezoid nucleus and are responsible for
sensing pH, O, or CO,; concentration
changes in the brain and cerebrospinal fluid
[7, 11, 26, 32, 33]. An acidic environment
(increased hydrogen ions) in the brain triggers
the respiratory center to initiate contraction of
the diaphragm and intercostal muscles [26]. As
a result, the rate and depth of respiration
increase, allowing for more CO; to be expelled
and thereby reducing CO, levels and hydrogen
ions in the blood [26]. Conversely, low levels
of CO, in the blood cause low levels of
hydrogen ions in the brain, ultimately leading
to a decrease in the rate and depth of venti-
lation and the slowing of breathing [26]. Taken
together, these processes function to normalize
pH [31]. Of all the sensory input systems,
central chemoreceptors are thought to have
primary control over respiration, which is
ultimately carried out by respiratory muscles
and the lungs [11, 33].

Respiratory Muscles and Lungs

Information from neuronal and sensory input
systems signals to the diaphragm and other
respiratory muscles to control the mechanical
aspects of respiration (Figs. 2¢, 3) [21, 34-37].
The upper airway is composed of many soft
tissues, muscles, and bony structures that
modulate patency for respiratory functions [38].
The upper airway can be influenced by cortical
states, sensory input, drugs, and passive changes
in lung volume, which ultimately functions to
modulate reflex activity and provide defense/
protection and maintenance of the airway
[32, 38, 39]. The depth of inspiration during
breathing is based on the level of activity of the
respiratory center in the brain and subsequent
stimulation of motor neurons [40]. With more
stimulation, an increased number of motor
units are excited, leading to respiratory muscles
contracting with greater force [21].
Contraction and relaxation of the diaphragm
and external intercostals are responsible for
most of the pressure changes that result in
inspiration [26]. Accessory muscles of inspira-
tion include the scaleni, sternocleidomastoid,
and anterior serrati; however, they do not play a
role in passive breathing [41]. The most impor-
tant muscles for expiration are the abdominal
muscles and internal intercostals, which con-
tract and compress the abdominal organs
pushing them up into the diaphragm, raising
pleural pressure and alveolar pressure, and
driving air out of the lungs [41]. Respiratory
exchange surfaces in the lungs transfer O, and
CO, between the air and the blood [28]. O,
crosses the alveoli in the lungs to the blood and
is transported to tissues, while CO, is removed
from the blood and transferred to the alveoli
prior to exchange back to the environment [42].
The combination of these processes results in an
average resting respiratory rate of approxi-
mately 12 breaths per minute in a healthy adult
[11, 41]. Minute ventilation is the product of
respiratory rate and tidal volume, with a normal
tidal volume being approximately 7 mL/kg of
ideal body weight (approximately 500 mL in an
average healthy adult male and 400 mL in a
healthy adult female) [41, 43]. Assessment of
this and other components of respiration can
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Fig. 3 Respiration is mediated by communication among
central neural control, sensory input systems, respiratory
muscles, and the lungs. Neuronal and sensory input

provide insight into a patient’s overall respira-
tory health.

In healthy adults, the rise in ventilation as
the partial pressure of CO, (PaCO;) increases
can be observed in a linear fashion (Fig. 4)
[28, 44-46]. In the setting of hypoxia, the body
is more sensitive to changes in PaCO,, as both
central and peripheral chemoreceptors cause an
additive increase in respiratory drive [46]. Dur-
ing sedation, metabolism and minute ventila-
tion are both decreased [28]. CNS depressants

External and internal
intercostals
Abdominal muscles
Lungs

systems coordinate with respiratory muscles and the lungs
to control the mechanical aspects of respiration

that cause respiratory depression, such as opi-
oids, can further dampen the CO, response
curve, causing a right-shift (decreased thresh-
old) [46]. The further the shift to the right, the
more likely respiratory depression is to occur.
Opioids and other CNS depressants can also
relax airway muscles, decrease upper airway
patency, disengage protective arousal mecha-
nisms, and cause obstructed breathing, which
further reduces effective ventilation in the set-
ting of decreased respiratory drive [47-51].

I\ Adis



Pain Ther (2020) 9:467-486

474
Awake,
18 healthy
=
€ Asleep,
4 healthy
= 10
xe] P
k] e
: -
> /
% 5 ///CNS depressants
@ e
2 /
<
0
25 35 45 55

PaCO, (mm Hg)

Fig. 4 CO, response curve during normal respiration,
sedation, and CNS depressant exposure. This figure was
modified from Benner et al. [46] under the terms of the
Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/). The CO,
response curve functions as a graphical depiction of the
linear relationship between increases in PaCO, and alve-
olar ventilation. These response curves vary for each person
within a population, with roughly a 1 to 4 L/min increase
in minute ventilation for each 1 mm Hg increase in
PaCO;. As the CO; response is dampened, a right-shift
occurs. CNS central nervous system, PaCO, partial pres-
sure CO,

Clinical Manifestations of Respiratory
Depression

The clinical manifestations of respiratory
depression and failure exist on a continuum
and may vary depending on the reason(s) for
onset (i.e., disease and/or drug-induced) and the
severity of hypoventilation, onset of hypercap-
nia, and degree of respiratory acidosis [52].
Typically, during the early stages of respiratory
depression, patients are asymptomatic or may
experience anxiousness and dyspnea upon
exertion [52]. As the degree of respiratory
depression progresses, dyspnea at rest, disturbed
sleep, and daytime hypersomnolence can occur.
With continued progression, cyanosis, delir-
ium, somnolence, asterixis, seizures, and papil-
ledema may occur and be followed by
respiratory failure that requires ventilatory
support or death [52]. Progression to respiratory
failure may not follow this continuum for all

patients and can be exacerbated with the use of
CNS depressant agents or from the presence of
underlying conditions that impact one or more
steps in respiration.

Respiratory Depressants

Pharmaceutical and recreational agents classi-
fied as CNS depressants can suppress one or
more steps in respiration and patency. Com-
mon agents that are known as inducers of res-
piratory depression are benzodiazepines,
barbiturates, Z drugs, opioids, and ethanol [53].
These different classes suppress respiration by
affecting various components of the respiratory
system (Table 1; Fig. 5) [18, 47-51, 54-62].

Barbiturates

Barbiturates are a class of sedative-hypnotic
drugs used for a variety of purposes [54].
Phenobarbital and primidone are often used in
the treatment of seizures, amobarbital is used as
an investigative agent for the neurological
assessment of cerebral hemispheres, and seco-
barbital is used for insomnia [54, 63]. Barbitu-
rates generally act on GABA, receptors by
increasing the amount of time the chloride ion
channel is opened, which increases GABA
receptor affinity (Table 1) [54]. These drugs can
also act to increase chloride influx in the
absence of GABA, which further depresses the
CNS [54]. Ultimately, these processes can lead
to suppression of upper airway patency and
central neuronal control of ventilation [55].

Benzodiazepines

Benzodiazepines are widely prescribed in general
practice for their anxiolytic, sedative, anticon-
vulsant, and muscle relaxant effects [64]. These
agents bind directly to various GABA, receptor
subtypes and increase the inhibitory effects of
endogenous GABA (Table 1) [18, 56]. Benzodi-
azepines can depress central respiratory drive,
chemoreceptor responsiveness to hypercapnia,
peripheral chemoreceptors, and inspiratory and
expiratory respiratory muscle strength in a dose-
dependent manner, thus reducing respiration
[47, 57, 58]. Benzodiazepines can also cause
upper airway obstruction via relaxation of the
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Table 1 Effects of CNS depressants on respiration

Agent Mechanism of action Effects on respiration
Barbiturates
Amobarbital Agonism at GABA, receptors; inhibition of Suppresses central neural control and central and
Pentobarbital excitatory neurotransmission peripheral mechanisms; obstructs the upper
) airway

Phenobarbital
Primidone
Secobarbital
Methohexital
Benzodiazepines
Alprazolam Agonism at several GABA, receptor subtypes in  Depresses central respiratory drive, chemoreceptor
Clonazepam the peripheral nervous system or in peripheral ~ responsiveness to hypercapnia, peripheral

) tissues chemoreceptors, and inspiratory and expiratory
Diazepam

respiratory muscle strength; obstructs the upper
Lorazepam airway

Nonbenzodiazepine sedative-hypnotics (also known as Z drugs)

Eszopiclone Agonism at one type of GABA receptor Depresses central respiratory drive; decreases
Zolpidem respiratory muscle strength; may depress upper
airway resistance
Zaleplon
Zopiclone
Opioids
Full mu-opioid receptor agonists
Codeine Full agonism at mu-opioid receptors in the CNS Interacts with neurons in the pons and medulla,
Fentanyl and peripheral opioid receptors; agonism at including the pre-Bétzinger complex, and
kappa-opioid receptors suppresses central and peripheral
Hydrocodone
chemoreceptors; blunts the normal responses to
Hydromorphone hypoxemia and hypercapnia; reduces upper
Morphine airway patency
Dihydrocodeine
Heroin
Oxymorphone
Oxycodone
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Table 1 continued

Agent Mechanism of action Effects on respiration
Atypical
Buprenorphine Partial mu-opioid receptor agonist; agonist at Similar to full mu-opioid receptor agonist opioids,
ORL-1; antagonist at the kappa-opioid and but to a lesser extent
delta-opioid receptors
Tapentadol Full mu-opioid receptor agonist; norepinephrine
reuptake inhibitor
Tramadol Full mu-opioid receptor agonist; norepinephrine
and serotonin reuptake inhibitor
Other
Ethanol Binds strongly to GABA receptors to decrease  Suppresses neurotransmission pathways; decreases

excitation

Diphenhydramine H;-receptor antagonist

the response to increased CO, and decreased

oxygenation; impacts airway patency

Augments the interaction between hypoxic and

hypercapnic ventilatory drive

CNS central nervous system, GABA, gamma-aminobutyric acida, ORL-I opioid receptor-like 1

tongue and neck [47]. Dose-dependent effects on
reducing resting ventilation and the ventilatory
response to hypoxia and hypercapnia can occur
[18]. As such, benzodiazepine use has been asso-
ciated with an increased risk of respiratory
depression, especially when used in combination
with opioids and alcohol [58, 635].

Z Drugs

Nonbenzodiazepine hypnotics, such as zolpidem
and zaleplon, are also referred to as Z drugs and
are extremely useful in the treatment of insom-
nia owing to their quick onset and short duration
[56]. Similarly to benzodiazepines, they too act at
the GABA, receptor, but in a more specific
manner (Table 1) [56]. A consequence of their
greater specificity is less anxiolytic and anticon-
vulsant activity [56]. Similarly to benzodi-
azepines, these drugs may cause respiratory
depression by suppressing central respiratory
drive, decreasing respiratory muscle strength,
and increasing upper airway resistance [59, 60].
However, a recent clinical study found differen-
tial effects on the respiratory arousal threshold,
with no reduction in upper airway muscle activ-
ity or alteration of airway collapsibility during

sleep—instead, muscle activity increased during
airway narrowing [66].

Opioids
Opioids are often prescribed for acute and
chronic pain relief, as they provide analgesia by

acting on mu-opioid receptors located
throughout the CNS (Table1; Fig. 6)
[47, 50, 51]. Opioid-induced respiratory

depression can occur through the suppression
of respiratory drive by interacting with neurons
in the pons and medulla, including the pre-
Botzinger complex, or suppressing peripheral or
central chemoreceptors, which impacts respira-
tory thythm and blunts the normal response to
hypoxemia and hypercapnia (Fig.7) [47-51].
Opioids also suppress neural signals to the
upper airway dilator muscles, thereby impact-
ing upper airway patency [61].

Based on their agonistic activity at the mu-
opioid receptor, the impact on respiratory drive
and extent of respiratory depression varies
among different opioids [67, 68]. The risk of
respiratory depression is greater with classic full
mu-opioid receptor agonists, such as morphine,
hydrocodone, and oxycodone, than it is with
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Fig. S Effect of CNS depressants on respiration. Pharmaceutical and recreational agents such as barbiturates,

benzodiazepines, Z drugs, opioids, and ethanol can suppress

atypical opioids, such as tramadol, tapentadol,
and buprenorphine, because these atypical
opioids are mixed-mechanism drugs
[1, 48, 67, 69-71]. For example, in addition to
being full mu-opioid receptor agonmists, tra-
madol and tapentadol have been shown to
activate descending pain inhibitory pathways
through norepinephrine reuptake inhibition,
with tramadol also acting as a serotonin reup-
take inhibitor [72, 73]. Buprenorphine is a par-
tial mu-opioid receptor agonist, an antagonist

multiple steps in respiration to cause respiratory depression

at the kappa- and delta-opioid receptors, and a
full agonist at opioid receptor-like 1 [74]. Of the
classic and atypical opioids, buprenorphine has
unique partial agonism and signaling profiles at
the mu-opioid receptor, which may result in a
ceiling effect on respiratory depression but not
on analgesia (Fig. 8) [67, 70, 75-79]. Mu-opioid
receptors are coupled to inhibitory proteins
that, upon activation, separate from one
another to engage in a variety of intracellular
signaling cascades that depress neural functions

I\ Adis



478

Pain Ther (2020) 9:467-486

A\ W

Central

[
Pharyngeal dysfunction

Depress central

[ == e e e o e
Alter respiratory

| Pons rhythm

] Pneumotaxic .

: center— [

I Apneustic e Y

I center Depress central
chemosensitivity and

L inputs from peripheral

T T T T T T T T T T T T T T T T chemoreceptors

| Medulla Dorsal group Pre-BotC

| ; / \

l | sf

.

[ Depress inspiration

I Ventral group o

I

I

I

e

Fig. 6 Opioid effects on central neural control. Opioids
interact with mu-opioid receptors located throughout the
respiratory centers in the brainstem, which under certain

[79]. Full mu-opioid receptor agonists recruit
(an adaptor protein) that is associated with sig-
naling events that lead to poor outcomes such
as respiratory depression, whereas the biased
signaling mechanism elicited by buprenorphine
limits B-arrestin recruitment, which may con-
tribute to an enhanced safety profile [74].

Other

Alcohol is a widely used and abused recreational
substance that contributes to approximately
15% of opioid overdose deaths [62, 80]. Alcohol
is primarily metabolized in the liver by alcohol
dehydrogenase to acetaldehyde, which increa-
ses CNS inhibition and decreases excitation
through interactions with GABA receptors
(Table 1) [62]. This can suppress central neu-
ronal control and upper airway patency,
thereby resulting in respiratory depression [62].

chemoreceptors

chemosensitivity

@ Mu-opioid receptors

circumstances may suppress various components of respi-
ratory drive. Pre-BitC pre-Botzinger complex

Diphenhydramine may also impact respira-
tory drive (Table 1) [81]. In addition to its use in
the relief of allergy symptoms, diphenhy-
dramine is frequently used to treat pruritus and
nausea in patients who have received neuraxial
opioids and was found to augment the interac-
tion between hypoxic and hypercapnic venti-
latory drive in healthy patients [81]. However,
additional research is needed to determine any
additional effects of diphenhydramine on res-
piratory drive.

Herbal Supplements

Patients with chronic pain are likely to seek out
herbal supplements for pain relief, which may
be used in conjunction with prescription med-
ications [82]. Some common supplements uti-
lized for their analgesic properties, but that may
also suppress the CNS, include kratom,
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Common causes:
disease or drugs

Stimulus for

hypercapnia CO,
(ie, inhaled CO,)
CSF
Arterial:
Medulla
oblongata

Peripheral

Central chemoreceptors
(70% of response)

Carotid bodies

chemoreceptors
(30% of response)

Aortic bodies

Measured as

COZ+H201—>H2003<—>H++CO32-

BBB permeable
to CO, but not H*

Central neural
control

Efferent
impulses
Respiratory

muscles and
lungs

Afferent

impulses ]

Feedback
response
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Increased ventilation

Fig. 7 Feedback response to hypercapnia. Hypercapnia
results from a stimulus such as an inhaled gas mixture, a
disease, or CNS depressants. Respiratory drive depends on
the activity of central and peripheral chemoreceptors that
respond to changes in CO, and pH levels in the blood and
CSE. A feedback loop among central and peripheral
chemoreceptors, central neural control, and respiratory
muscles and lungs allows for coordination of respiration to

synthetic cannabinoids, valerian root, and kava
[82-86]. Although additional research is needed
to determine the specific effects of these agents
on respiratory drive, clinicians must provide
proper education to patients with chronic pain
regarding the risks associated with concomitant
use of supplements with their current
prescriptions.

Concomitant Use

When analgesic drugs from different classes are
combined, the resulting effects are typically
synergistic rather than merely additive [87].
Synergy between CNS depressants is more
common when drugs acting primarily on GABA
receptors (e.g., barbiturates, benzodiazepines,
Z drugs, ethanol) are combined with drugs act-
ing on other receptor types (e.g., opioids) [87]. It

(more CO, exhaled)

normalize CO, and pH levels. Measuring the ventilatory
response to hypercapnia is a common research assessment
that reflects the ability of central chemoreceptors to carry
out a normal respiratory response. BBB blood-brain
barrier, CNS central nervous system, CSF cerebrospinal
fluid, MV minute ventilation, P2CO, partial pressure of
carbon dioxide

is especially important to note that respiratory
depression is a potentially fatal complication of
opioid use and may be exacerbated by simulta-
neous ethanol intake [88]. One clinical trial
showed that ethanol ingestion with concomi-
tant oxycodone use resulted in clinically rele-
vant ventilatory depression to a greater extent
than when either agent was used alone [88]. The
combination of an opioid, benzodiazepine, and
the skeletal muscle relaxant carisoprodol is
commonly referred to as the “Holy Trinity,” and
these medications behave synergistically to
induce respiratory depression, which could
collectively result in death [89, 90]. Compared
to treatment alone, the combination of opioids
with benzodiazepines or alcohol has been
shown to increase the risk of serious adverse
respiratory events by 31% [91]. Thus, clinicians
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Fig. 8 Biased signaling: full vs partial mu-opioid receptor
agonists. Buprenorphine has less intrinsic activity com-
pared with full mu-opioid receptor agonists, which

must take caution when prescribing agents that
can collectively enhance the potential for seri-
ous adverse events caused by CNS depressants
[92].

In addition to sedative herbal supplements
and antihistamines, the concomitant use of
prescription analgesics with other drug classes
such as gabapentinoids can also lead to
increased CNS depression [82, 93]. The pre-
scription of the gabapentinoid drugs gaba-
pentin and pregabalin has recently increased
because physicians and patients are seeking
opioid alternatives for pain relief during the
opioid crisis; however, gabapentinoids are often
being co-prescribed with CNS depressants, such
as opioids, thereby increasing the risk of life-
threatening and fatal respiratory depression
[93, 94]. The increased risk of adverse events

N
7

Dose

translates to downstream signaling events that lead to
effective analgesia but a decreased risk of respiratory
depression

with concomitant use of CNS depressants and
other medications and supplements must be
considered prior to the prescription or recom-
mendation of multiple agents.

Assessment and Risks

To promote patient safety, it is important that
clinicians have a deep understanding of respi-
ration as a whole, and how various pharma-
ceutical and recreational agents can impact
each step of the process to cause respiratory
depression. If a patient presents with chronic
pain and opioid treatment is under considera-
tion, a risk-benefit analysis should be per-
formed, including the assessment of factors that
influence respiration. Medical history should be
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carefully reviewed to identify conditions known
to increase the risk of respiratory depression.

Stroke, encephalitis, and brainstem diseases
decrease central respiratory drive and minute
ventilation, thereby limiting respiratory func-
tion [45]. Primary spinal cord/lower motor
neuron and muscle disorders, thoracic cage
disorders, and metabolic disorders can decrease
respiratory neuromuscular and thoracic cage
function and lead to respiratory depression [45].
In addition, gas exchange abnormalities, such
as pulmonary embolism and vascular disease,
chronic obstructive pulmonary disease, fever,
metabolic acidosis, and upper airway disorders,
can decrease ventilation [45]. Congestive heart
failure or chronic liver and kidney diseases may
make some patients (i.e., the elderly) more
sensitive to certain medications because of
inadequate clearance or metabolism by the liver
or kidney. This can cause fluid retention, which
ultimately impairs diaphragm function and
lung volume/reserve [95]. These and other
underlying factors must be considered prior to
prescribing CNS depressants, as they can cause
synergistic depression of a patient’s respiratory
function.

Assessment of sleep disturbances is a key
metric for evaluating patient risk as well as for
monitoring opioid therapy [96]. During an
exam, high blood pressure, body mass index
(> 28), age (= 50), neck circumference (> 17"
for men; > 16” for women), and sex (male)
should be taken into account, as these factors
may indicate greater risk of moderate to severe
obstructive sleep apnea (OSA) [96-98]. A history
of snoring, tiredness, and obstruction symp-
toms are also indicative of OSA [96-98]. Referral
to a sleep specialist may be appropriate for some
patients so that OSA can be diagnosed and
treated or the response to opioid therapy can be
gauged [99, 100]. If a patient is receiving auto-
matic positive airway pressure, the pressure can
be interrogated to determine appropriate set-
tings, but the optimization of sleep-related
breathing therapies should be done in con-
junction with a sleep specialist [100].

If sleep-related breathing is not an issue,
incentive spirometry can be performed at home
as a preventative measure to increase functional
residual capacity. O, saturation can be

measured independently using arterial blood
tests or as a noninvasive measurement of the
percentage of saturated hemoglobin in the
capillary bed using co-oximetry with a pulse
oximeter [101]. Preference may also be to utilize
the 6-min walk test, an exercise test that can be
predictive of underlying lung issues [102].

If a patient is taking multiple medications,
referral to a pain specialist may also be consid-
ered to optimize the use of multimodal agents
without increasing the risk of respiratory
depression [100, 103]. Prescribing CNS depres-
sant medications should be a collaborative
decision made by the multidisciplinary team
responsible for a patient with chronic pain,
including having full awareness of potential
side effects, access to antidotes, and ensuring
proper patient education regarding the admin-
istration and storage of medications [100]. In
regard to the prescription of opioids, medica-
tion selection of atypical opioids (buprenor-
phine, tramadol, tapentadol) versus full mu-
opioid receptor agonists (e.g., morphine, fen-
tanyl, oxycodone) may limit adverse events,
especially in terms of respiratory depression [1];
however, buprenorphine is unique in that it has
a ceiling effect on respiratory depression but not
on analgesia [1, 67, 70]. In humans, intravenous
(IV) administration of fentanyl has been shown
to suppress minute ventilation in a dose-de-
pendent manner, whereas suppression of min-
ute ventilation with IV administration of
buprenorphine plateaued as the dose increased
[67]. For this reason, many clinicians feel
buprenorphine may be better tolerated than
conventional full mu-opioid receptor agonists
for the treatment of chronic pain [1].

CONCLUSION

Patients with chronic pain are often exposed to
one or more pharmaceutical or recreational
agents that impact respiration. Respiratory drive
is controlled by the activity of a network of
neurons within the brainstem. Respiration is
influenced by peripheral and central chemore-
ceptor input (supplies information regarding
arterial pH and O, and CO, levels) and
mechanoreceptor input (provides information
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about the mechanical status of the lungs and
chest). These processes work in synchrony to
ensure appropriate ventilation by the lungs via
signaling to the primary muscles of respiration
to initiate the exchange of CO, for O,. When
one or more steps in respiration are suppressed,
life-threatening respiratory depression can
occur. Certain CNS depressant agents used
alone or concomitantly (e.g., benzodiazepines,
barbiturates, Z drugs, opioids, and ethanol) are
well known to cause respiratory depression. Of
note, opioid-induced respiratory depression has
triggered a serious national health crisis, which
may be mitigated through the prescription of
medications less likely to impact respiratory
drive, such as buprenorphine. Proper risk-ben-
efit assessments, collaboration with a multidis-
ciplinary team, medication selection, and
patient education can aid in limiting the inci-
dence of respiratory depression induced by
pharmacologic agents or recreational sub-
stances. Thus, prior to prescribing certain med-
ications, the risk of respiratory depression
should be considered and precautions should be
taken to reduce adverse outcomes, including
death.
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