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ABSTRACT

Nitrous oxide (N,0) is a potent greenhouse gas as well as the key component depleting the ozone sphere
of the earth. Cattle have high feed and water intakes and excrete large amounts of urine and feces. N0
can be produced from cattle excreta during storage and use as fertilizer. Mitigating the N,O emissions
from cattle excreta during production is important for protecting the environment and the sustainable
development of the cattle industry. Feeding cattle with low-protein diets increases N utilization rates,
decreases N excretion and consequently reduces N,O emissions. However, this approach cannot be
applied in the long term because of its negative impact on animal performance. Recent studies showed
that dietary inclusion of some plant secondary metabolites such as tannins, anthocyanins, glucosinolates
and aucubin could manipulate the N excretion and the urinary components and consequently regulate
N,O emissions from cattle excreta. This review summarized the recent developments in the effects of
dietary tannins, anthocyanins and glucosinolates on the metabolism of cattle and the N,O emissions
from cattle excreta and concluded that dietary inclusion of tannins or anthocyanins could considerably

reduce N,O emissions from cattle excreta.
© 2022 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

respectively (IPCC, 2014). N,O is also a key factor that depletes the
ozone sphere of the earth and causes acid rain (Ravishankara et al.,

Global warming has garnered more attention in recent years. It
is caused by increasing levels of greenhouse gases, mainly including
CO,, CH4, and N,O (IPCC, 2014). Average molar fractions of green-
house gases in the atmosphere hit high records in 2019, with
410.5 pL/L of CO,, 1,877 pL/L of CH4, and 332.0 uL/L of N3O,
respectively (WMO Greenhouse Gas Bulletin, 2020). Although the
total amount of N,O emissions from the natural environment and
human activities is less than CO, and CHy4, the intensity of the
greenhouse effect of N,O is 265 and 28 times of CO, and CHy,
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2009). The N0 emissions from livestock farming account for 65% of
the anthropogenic N,O emissions (Steinfeld et al., 2006) and about
75% to 80% of the total agricultural N,O emissions (Nasiru et al.,
2021). This review will introduce the processes and mechanisms
of N,O formation in the excreta of animals and summarize the
advances of N excretion, as well as the effects of dietary supple-
mentation with plant secondary metabolites (PSM), to decrease the
N>,O emissions from cattle excreta.

2. N0 formation in cattle excreta

The N0 from cattle excreta is formed through the processes of
nitrification and denitrification of nitrogenous compounds which
are caused by soil microbes and regulated by soil water-filled pore
space (Harris et al., 2021). Fig. 1 shows that urea — which is the
major nitrogenous compound in cattle urine — can be degraded
into NH3 by microbial urease in the environment. The majority of
NHjs is transformed into NH4" and any remaining NH3 evaporates.
Consequently, NHs" in excreta and soil is transformed into NO;",
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Fig. 1. Transformation of nitrogenous compounds in soil (modified from Levy-Booth et al., 2014). The amoA gene encodes NH; monooxygenase; napA and narG genes encode NO3
reductases; nirK and nirS genes encode NO3 reductases; norB gene encodes NO reductase; nosZ gene encodes N,O reductase; nxrA gene encodes NO5 oxidase; nifH gene encodes

nitrogenase; DNRA: Dissimilatory nitrate reduction to ammonium.

catalyzed by NH; monooxygenase (encoded by amoA gene) and
hydroxylamine oxidoreductase, and NOs3~ is catalyzed by NO,™ ox-
idase in the processes of nitrification under aerobic conditions.
Then, NO,™ is transformed into NO by NO,™ reductase (encoded by
nirK and nirS genes) through nitrifier denitrification, and finally
reduced into N,O by NO reductase through denitrification pro-
cesses (Levy-Booth et al., 2014).

N0 can also be produced as an intermediate product through
the process of denitrification under anaerobic or low-oxygen con-
ditions, in which NO3™ and NO,  are transformed into N, by
dissimilatory reduction processes catalyzed by several reductases
(Zhu et al., 2013). Fig. 1 indicates that decreasing the total N content
is a direct way to reduce the N,O emissions from cattle excreta. The
N excretion including fecal N and urinary N is positively correlated
with the N intake in cattle (Burke et al., 2008). Feeding cattle with
low-protein rations would therefore improve the N utilization rate
(Castillo et al., 2001) and decrease the total N excretion, especially
the urinary N which may reduce the N,O emissions.

Fig. 1 also shows that inhibiting the activities of the enzymes
which catalyze the processes of nitrification and denitrification
could be another approach to decrease N,O emissions. Previous
studies showed that thiosulfate could decrease NH4" concentra-
tions derived from the degradation of urea by inhibiting soil urease
activity (Margon et al., 2015) and reduce the N,O emissions from
the soil applied with urea (Cai et al., 2018). Dicyandiamide, hippuric
acid, and benzoic acid are also well-known nitrification inhibitors
that could depress soil nitrification and subsequently attenuate the
N,O emission of urine patches from ruminants (Bertram et al.,
2009; Minet et al., 2018). Thus, dietary manipulation to increase
the concentrations of nitrification inhibitors in the excreta of cattle
is an important approach to reduce N,O emissions.

3. Nitrogen utilization in cattle

Cattle are large ruminants with high feed and water intakes
which results in large amounts of feces and urine. The average
output of total excreta of beef cattle of 180 to 500 kg in liveweight is
13 to 32 kg/d (Smith and Frost, 2000), and the outputs of feces and
urine of fattening cattle of 455 kg in liveweight are 7.5—11.3 kg/
d and 7.2—15.5 kg/d, respectively (Li et al., 2014). The N excretion of
beef cattle with an average liveweight of 455 kg is about 81.0% to
84.1% of the total N intake (Li et al., 2014). Dong et al. (2014)
summarized the N utilization data of beef cattle including 180
mean values of 869 animals in 49 trials and found positive corre-
lations between the N excretion (g/d) and the N intake (g/d): Fecal
N excretion = (0.20 + 0.01) N intake + (15.82 + 1.88) (n = 180,
r = 0.806); Urinary N excretion (0.51 + 0.02) N intake -
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(1412 + 2.71) (n = 180; r = 0.878). The results showed that the
higher the N intake, the greater the excretion of fecal and urinary N,
and subsequently, the greater the NH3 emission and NH4" forma-
tion during excreta storage (Todd et al., 2013). Large amounts of
excreta and low N conversion rates not only waste protein from
feedstuffs and increase feed cost, but also increase the precursors
for N,O formation. Therefore, reducing the dietary N intake of beef
cattle is an important option to decrease N excretion and conse-
quently N,O emissions from cattle excreta. However, feeding cattle
with lower dietary N levels than required over a long period is
unacceptable in animal production. Investigating the options to
inhibit the activities of enzymes related to nitrification and deni-
trification for N,O formation and thereby mitigate the N>O emis-
sion would be more important.

4. Impacts of urinary nitrogenous compounds of cattle on
N»O formation

The nitrogenous compounds in the urine of ruminants mainly
include urea, uric acid, creatinine, allantoin and hippuric acid. Urea
is synthesized in the liver of cattle using blood NHj3 as the precursor
absorbed from the rumen and the hindgut (Bach et al., 2005). Most
of the urea can enter the rumen through saliva secretion and via the
rumen epithelium, and part of the urea can be excreted into the
urine. Table 1 shows the N proportion of different nitrogenous
compounds in the urine of beef cattle from different studies. Urea is
the main nitrogenous compound and its N proportion of total uri-
nary N averaged 60% to 70%. Urea can be degraded rapidly by mi-
crobial urease within soil into NH4" within a few hours and
subsequently transformed into NO,™ and NOs~ through the nitrifi-
cation process in soil (Whitehead et al., 1989). Previous studies
reported that urease inhibitors could effectively reduce the degra-
dation of urea in soil and decrease NH3 and N,O emissions from
cattle urine (Singh et al., 2013; Zaman et al., 2013). The results
suggest that urea in the urine of cattle is the most direct and
important N source for urinary N,O formation.

Hippuric acid is an arylglycine synthesized in the liver of
cattle using benzoic acid and glycine as the precursors and can be
excreted into urine. The proportion of hippuric acid-N in the
urine N averaged at 2.2% to 7.3% in beef cattle (Table 1). Several
studies indicate that hippuric acid is a nitrification inhibitor that
inhibits the activities of soil nitrifiers and consequently reduces
the N,O emissions from cattle urine. Van Groenigen et al. (2006)
reported that increasing hippuric acid concentration from 0.4 to
5.6 mmol/kg in artificial urine decreased the N,O emissions by
54% during a 64-d incubation of soil. Bertram et al. (2009) re-
ported that increasing the proportion of hippuric acid-N in
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Table 1
N proportions of urinary nitrogenous compounds in beef cattle’.
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Item Da Silva Cardoso et al. (2019) Gao et al. (2022) Bao et al. (2018) Zhou et al. (2019) Zhao et al. (2021) Xie et al. (2021)

Total N, g/L 15.3 (6.7 to 26.9) 2.6 (241t02.9) 5.1 (4.0 to 6.5) 43(2.5t05.5) 6.2 (5.8 t0 6.9) ND

N proportion, % UN
Urea 60.4 (43.0 to 70.4) 65.4 (59.2 to 70.3) 70.4 (63.9 to 76.8) 66.0 (57.4 to 77.4) 69.2 (67.2 to 71.9) 64.7 (59.0 to 70.1)
Allantoin 3.1 (1.9 to 4.5) 6.0 (4.6 to 7.4) 6.9 (5.5t08.1) 9.5(5.7t0 11.2) 9.6 (7.9 to 10.5) 6.1 (5.7 to 6.6)
Uric acid ND 0.9 (0.8 to 1.0) 1.1 (0.8 to 1.3) 1.4 (1.0to 1.8) 0.9 (0.9 to 1.0) 0.2 (0.2 to 0.3)
Creatinine 34 (241t049) 10.5 (10.3 to 10.7) 6.5(4.3t09.2) 9.6 (5.7 to 14.7) 9.4 (8.8 to 10.0) 5.4 (5.0 to 5.8)
Hippuric acid 50(22t07.3) 2.7(2.5t02.9) 4.2 (3.21t05.8) 4.2 (2.2 t0 5.6) 5.1 (4.8 to 5.4) 3.2(3.1t03.2)

ND = not determined or not reported; UN = urinary N.

! Data are expressed as mean values (range within brackets). Data in Da Silva Cardoso et al. (2019) contained 5 treatment means with n = 5 per treatment; Gao et al. (2022)
contained 4 treatment means with n = 8 per treatment; Bao et al. (2018) contained 4 treatment means with n = 4 per treatment; Zhou et al. (2019) contained 4 treatment
means with n = 4 per treatment; Zhao et al. (2021) contained 3 treatment means with n = 6 per treatment; Xie et al. (2021) contained 4 treatment means with n = 8 per

treatment.

urinary N from 6.4% to 12.6% decreased N,O emissions of artifi-
cial urine by 65%. The results indicated the inhibitive effects of
hippuric acid on N;O formation, and increasing the urinary
excretion of hippuric acid could be an option to reduce N;O
emissions of cattle urine.

Creatinine is the metabolite of muscle catabolism and is directly
related to muscle mass in beef cattle (Hayden et al., 1992). The
proportion of creatinine-N in urine N varies greatly from 2.4% to
14.7% (Table 1). Urinary allantoin and uric acid are derived from the
nucleic acids of the rumen microbes and the total amount of uri-
nary uric acid and allantoin is used as the indicator to predict the
ruminal microbial N yield (Chen and Gomes, 1992). The proportion
of uric acid-N in urine N is less than 1.8% (Table 1) because uric acid
can be oxidized into allantoin in the liver (Tas and Susenbeth,
2007), and the proportion of allantoin-N in urine N is 1.9% to
11.2% in beef cattle (Table 1). No recent studies are available on the
positive effects of creatinine, allantoin and uric acid on the N,O
emissions of cattle urine (Gardiner et al., 2018a).

5. Plant secondary metabolites and their functions

The PSM differ from the primary plant structural components
such as carbohydrates, lipids and protein. Kossel (1891) first
defined PSM as opposed to plant primary structural components
and demonstrated that PSM play important roles in plants to
adapt to the environment. The PSM are characterized by low
abundance, often below 1% of the total carbon in plants, and their
storage usually occurs in dedicated cells or organs of plants
(Bourgaud et al., 2001). Based on their biosynthetic pathways,
PSM are usually divided into 3 large molecule families including
phenolics (tannins, anthocyanins, proanthocyanidins, etc.), ter-
penes and steroids (monoterpenes in essential oils, aucubin, sa-
ponins, phytosterol, etc.), and alkaloids (theophylline, berberine,
theine, etc.) (Harborne, 1999). Most PSM have the ability to pro-
tect the plants from damage or disoperation by animals or mi-
croorganisms. Kessler and Kalske (2018) summarized that PSM
protect the plants from ingestion by herbivores through the direct
defenses by toxic and antinutritional PSM and the indirect de-
fenses of PSM to cause poor palatability of plants for animals. In
the last decade, more attention has been paid to the inhibitive
effects of PSM on the ruminal CH4 emissions, such as saponins
(Mao et al., 2010), tannins (Jayanegara et al., 2012) and essential
oils (Castro-Montoya et al., 2015). In recent years, it is reported
that PSM released from the roots of some plants had inhibitive
effect on the nitrification processes in soil (Subbarao et al., 2009).
Some PSM included in feeds could be hydrolyzed in the gut of
animals and their metabolites could be excreted into urine and
consequently reduce urine N,O emissions (Sanchez-Martin et al.,
2017; Bao et al., 2018).
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6. Effects of dietary plant secondary metabolites on
mitigating urine N>O emissions

6.1. Tannins

6.1.1. Hydrolysable tannins and their metabolites

Tannins are polyphenolic compounds in plants and could be
divided into hydrolysable tannins and condensed tannins (CT)
(Fig. 2A, McSweeney et al., 2001). Tannic acid is a type of hydro-
lysable tannin composed of 8 to 10 molecules of gallic acid. Yang
et al. (2016) reported that dietary addition with tannic acid at
26.0 g/kg dry matter (DM) decreased the urinary N excretion and
increased hippuric acid excretion in beef cattle. Zhou et al. (2019)
reported that dietary addition with tannic acid at 16.9 g/kg DM at
2 dietary crude protein levels (11.1% vs. 13.6%) increased the ratio of
hippuric acid-N to urinary N in beef cattle and decreased the urine
N,O—N emissions by 40.7% and 45.8%, respectively.

Effects of dietary addition with tannic acid on decreasing the
N,O emissions could result from 3 origins. Firstly, tannic acid re-
duces N,O emissions through shifting N excretion from urine to
feces because the N,O emission factor of fecal N is much lower than
that of urinary N (Luo and Kelliher, 2010). Secondly, dietary inclu-
sion with tannic acid increases the urinary excretion of hippuric
acid which could inhibit the nitrification process in soil (Kool et al.,
2006). Thirdly, tannic acid can be hydrolyzed in the rumen (Fig. 3)
(Singh et al., 2001) and the metabolites of tannic acid such as py-
rogallol and resorcinol excreted into the urine of cattle inhibit the
urine N>O formation (Bao, 2019, unpublished results).

Previous studies showed that dietary additions with tannic acid
and gallic acid both increased the urinary excretions of pyrogallol
and resorcinol in beef cattle (Zhou et al., 2019; Bao et al., 2018).
Although gallic acid is the basic structure of tannic acid, dietary
addition with tannic acid increased urinary excretions of hippuric
acid, whereas gallic acid did not in beef cattle (Bao et al., 2018; Wei
et al.,, 2016). Bao et al. (2018) reported that dietary addition with
gallic acid at 15.2 g/kg DM reduced the estimated urine N,O—N
emission and the N,O—N/urine-N application ratio in steers. The
results suggest that the metabolites of gallic acid including pyro-
gallol and resorcinol could have inhibitive effects on decreasing the
urine N,O—N emissions in beef cattle. Further in vitro research
indicated that resorcinol decreased urine N,O formation, whereas
pyrogallol did not have the impact (Bao, 2019, unpublished results).

6.1.2. Condensed tannins

CT are polyphenolic compounds and cannot be easily degraded
in the rumen because the phenolic hydroxyl groups of CT are
combined with other macromolecules (Naumann et al., 2013). CT
are usually believed to be anti-nutritional factors in feeds, because
these compounds depress the feed intake and growth performance
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Fig. 3. The degradation of tannic acid in the rumen (modified from McSweeney et al., 2001).

of beef cattle (Reed, 1995). In recent years, many studies showed
that dietary addition with CT shifted N excretions from urine to
feces in beef cattle. Ebert et al. (2017) reported that dietary addi-
tions with quebracho extract containing 95% CT at 0.0%, 0.5%, and
1.0% in rations linearly increased the fecal N excretions and
decreased the urinary N excretions without affecting the N intake
and the N retention in beef cattle. Norris et al. (2020) who included
quebracho extract containing 78% CT at 0.0%, 1.5%, 3.0%, and 4.5% to
beef cattle rations and Koenig and Beauchemin (2018) who added
the extract from Acacia mearnsii containing 53.2% CT at 2.5% to beef
cattle rations found similar results as that of Ebert et al. (2017).
These results suggest that dietary addition with CT is an effective
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way to decrease the NO emissions from beef cattle excreta,
because the N;O emissions from fecal N is much lower than that of
urinary N (Luo and Kelliher, 2010).

6.2. Glucosinolates

Glucosinolates (GLS) are a special type of secondary metabolites
which exist only in cruciferous plants. The GLS are water-soluble
organic anions with a similar basic structure (Fig. 2B). Based on
the side chains, GLS can be classified into aliphatic, aromatic, and
indole types. Brassica is an important genus of the Brassicaceae
family. Increasing evidence shows that consumption of Brassica
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vegetables has some beneficial effects for human health, such as
decreasing the risk of breast cancer (Liu and Lv, 2013; Zhang et al.,
2018). The contents and types of GLS vary widely depending on the
species of Brassica plants (Table 2). Balvert et al. (2018) reported
that mixing Brassica plant tissues such as kale and turnip with urea
decreased N,O emissions derived from urea in soil and the N,O
emission factors compared with ryegrass tissues. Because GLS are
the specific secondary metabolites in Brassica plants (Tripathi and
Mishra, 2007), it could be speculated that the N,O formation
could have been inhibited by GLS and its metabolites.

The GLS and myrosinase exist separately within intact Brassica
plants. When the plants are masticated and ingested by animals,
the GLS can be hydrolyzed by the myrosinase in Brassica plants or
microbial enzymes in the digestive tract of animals into several
bioactive products such as isothiocyanates (ITC), oxazolidine-2-
thione (OZT), and thiocyanates (SCN). Previous studies showed
that SCN was found in ruminal fluid as well as in the urine of beef
cattle fed rapeseed meals (Subuh et al., 1995; Gao et al., 2021a), but
ITC and OZT were undetectable in the fluids. The results indicated
that the main metabolite of GLS in the rumen was SCN, suggesting
that the hydrolyzing pathway in the rumen was different from that
activated by myrosinase.

It was reported that some metabolites of GLS were harmful to
animals and microorganisms depending on the doses (Baskar et al.,
2016; Popova et al., 2017). Bending and Lincoln (2000) showed in
an incubation trial that ITC degraded from GLS inhibited the first
step of nitrification (NH4 " oxidation) both in sandy soil and clay soil
through inhibiting the activities of nitrifying bacteria compared
with intact GLS and nitriles. Snyder et al. (2010) reported that 2-
propenyl ITC and SCN degraded from GLS in Brassica juncea and
Sinapis alba seed meals inhibited the microbial respiration, and SCN
was responsible for the inhibitive effects on nitrification in soil.
Balvert et al. (2017) reported that some GL hydrolysis products of
GLS decreased the N,O emissions from silt loam soil applied with
urea (600 mg N/kg soil), and found that phenethyl ITC reduced the
N,O emissions from the soil by up to 51% in static incubation. These
results indicated that the metabolites of GLS in Brassica plants have
potential inhibitive effects on the nitrification processes caused by
soil microbes and on decreasing urine N,O emissions, if the me-
tabolites are excreted in the urine of animals. However,
Hoogendoorn et al. (2016) reported that the urine N,O emission
factors of sheep fed forage rape containing GLS was higher than
that of the sheep fed ryegrass. Gao et al. (2022) reported that di-
etary inclusion with rapeseed cake containing high GLS increased
the estimated urine N,O—N emissions and N;O emission factors in

Table 2
Contents and types of glucosinolates in Brassica plants.
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steers, and the urine N,O—N emissions were positively correlated
with the urinary SCN excretions. Further static incubation also
showed that SCN linearly increased the N;O—N fluxes and N,O—N/
N application ratio of artificial urine (Gao et al., 2021b). The results
suggest that feeding cattle with rapeseed cake containing GLS is not
beneficial in reducing urine N,O emissions. The discrepancy in the
results among different studies are unclear which needs to be
clarified in further research.

6.3. Anthocyanins and aucubin

Anthocyanins (ATH) are water-soluble pigments and wildly
exist in plants. Chemically, ATH are flavonoids mainly composed of
aglycones (anthocyanidins) and sugars (Fig. 2C). More than 700
types of ATH are identified which are mainly derived from 6
different aglycones including cyanidin, delphinidin, pelargonidin,
peonidin, petunidin, and malvidin (Kahkonen and Heinonen,
2003). The ATH were found to have high antioxidative effects in
studies with rodents (Sankhari et al., 2012) and goats (Tian et al.,
2019). In humans, it was found that consumption of Vaccinium
myrtillus rich in ATH increased the serum hippuric acid concen-
tration (De Mello et al., 2017) and oral intake of 3C-enrichedcya-
nidin-3-glucoside (a type of ATH) increased the urinary hippuric
acid excretion (Czank et al., 2013; De Ferrars et al., 2014). Therefore,
it could be speculated that dietary inclusion with some extracts rich
in ATH could possibly increase urinary hippuric acid excretion and
consequently decrease urine N>O emissions in cattle. Gao et al.
(2021c) reported that addition with 114 g red cabbage extract
rich in ATH per day in the ration of beef bulls increased the hippuric
acid-N to urinary N ratio from 6.56% to 7.70% and decreased the
estimated urine N2O—N emissions by 33.1% through inhibiting the
nitrification processes in soil applied with the urine samples during
static incubation. This study indicates that oral intake of ATH would
be an effective approach to increase the urinary hippuric acid
excretion and decrease urine N,O—N emissions in beef bulls.
However, whether feeding cattle with other sources of ATH such as
purple corn (Zea mays L.), barley (Hordeum vulgare L.), and red
sorghums have the same effects, needs to be investigated in the
future.

Aucubin, an iridoid glycoside (Fig. 2D), is one of the PSM existing
in many plants such as Aucuba japonica and Plantago plants (Zeng
et al.,, 2020). Both field and laboratory experiments showed that
direct addition with aucubin in the urine of cattle decreased urine
N,O—N emissions (Gardiner et al., 2018b, 2020). Another study
showed that feeding cows with 45% DM of Plantago lanceolata

Glucosinolates Broccoli sprouts’ Brussels Sprouts’ Cauliflower’ Red cabbage? Kale rosette leaves®

Total, pmol/100 g fresh weight 402 940 322 462 880

Individual molar proportion, %
Glucoiberin 14.90 6.24 12.92 8.01 5.57
Glucoraphanin 33.08 1.61 141 32.03 1.02
Progoitrin 2.64 14.15 2.66 19.85 0.11
Gluconapin 0.61 11.49 0.42 7.64 58.41
Sinigrin 0.93 16.49 13.04 8.74 8.18
Glucoalysin 0.03 117 1.45 0.00 0.00
Glucoerucin 25.37 0.00 0.80 1.86 0.45
Glucobrassicin 0.99 39.79 47.52 0.00 18.75
Neoglucobrassicin 7.76 0.00 7.27 0.00 4.77
4-Methoxyglucobrassicin 13.78 8.98 12.55 1041 1.14
Gluconasturtiin 0.00 0.00 0.00 2.84 1.25
4-Hydroxyglucobrassicin 0.00 0.00 0.00 1.86 1.14

T Tian et al. (2005).
2 Volden et al. (2008).
3 Sun et al. (2011).
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containing aucubin did not affect urine N>O emission factors, but
decreased N,O emissions through reducing urinary N concentra-
tions (Simon et al., 2019). However, the metabolism of aucubin in
ruminants is unclear. Whether aucubin could be absorbed and
excreted into urine and further inhibit NoO—N emissions needs to
be investigated in the future.

7. Perspectives

Present results indicate that dietary inclusion of PSM such as
tannins and tannic acid can effectively decrease N,O emissions
from beef cattle excreta through shifting N excretion from urine to
feces. Meanwhile, dietary inclusion of gallic acid or ATH can
decrease urine N,O emissions through the inhibitive effects of the
metabolites of these PSM excreted in the urine of beef cattle. The
effects of dietary inclusion of Brassica plants or by-products rich in
GLS on urine N0 emissions are not conclusive and need to be
clarified in further research. Mitigating N>O emissions from cattle
excreta through the metabolites of PSM has great potential and
more research in this field is required. It should be noted that PSM
such as nitrates, hydrogen cyanide, and some types of alkaloids may
have toxic effects on animal health. Some types of PSM such as
phytic acid and OZT degraded from GLS may have antinutritional
effects on animals. Additionally, pure PSM extracts are relatively
expensive. Plants containing PSM that do not have negative effects
on health and nutrient utilization yet effectively reduce N»O
emissions are recommended for feeding cattle.
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