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Abstract

The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR) from a large repertoire is
critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression
regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified
an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory
factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of
ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene
expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such
regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with
distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and
repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory

system.
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Introduction

The external world is perceived by peripheral neurons that each
expresses only one or a stereotyped set of receptors from a large
genomic repertoire [1-4]. The selective receptor expression
ensures the specific function of each sensory neuron and produces
a daunting diversity of sensory neuron classes. However, little is
known about how the neuron class-specific receptor expression is
controlled.

In the mouse olfactory system, each olfactory sensory neuron
(OSN) chooses to express one odorant receptor (OR) out of
approximately 1,200 OR genes [5]. OR choice in mammalians is
in part a stochastic process restricted by the developmental
context, which is manifested as restricted zonal expression patterns
of each OR [6]. The zonal patterns can be resembled by the
expression of transgenic OR promoters [6,7] and raises the
possibility that there are transcription factors (TTs) that in
combinations or in gradients specify mouse OR expression. Two
TFs, Lhx2 and Emx2, have been identified as general regulators of
OR expression [8-10], but the identities of the TFs that regulate
specific mouse ORs are unknown, because the large size of the OR
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repertoire makes systematic analysis of TF phenotypes cumber-
some and specific defects difficult to detect.

In similarity to mammals the Drosophila ORs are expressed in a
salt and pepper pattern within domains of the antenna OSNs
(Figure S3) [11]. Drosophila OR expression create 34 OSN classes
with a stereotype neuronal number and location [12-14], suggesting
a strictly predetermined process. The large number of OSN classes
and precise OR regulation makes the Drosophila antenna an
extraordinary system to study how ORs are regulated and how a
large number of neuron classes are specified. To date, only two TTs,
Acj6 and Pdm3, has been shown to specify a subset of Drosophila
ORs [15,16]. However, no systematic approach has yet been
undertaken to address the regulatory mechanism of OR expression.

To address how the olfactory system specifies the unique OR
identity of a large number of sensory neurons we have performed
the first systematic genetic (directed RNAIi) screen for direct
regulators of Drosophila OR expression. Hereby, we have identified
a set of only seven TTs that regulate the complete OR collection of
the adult Drosophila olfactory system. We provide a systematic
analysis to demonstrate how these TFs employ multiple strategies
to specify OR class identity.
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Author Summary

Our nervous system has a daunting diversity; it contains
100 billion neurons that all have defined functions and
connections. To address how neuronal diversity is pro-
duced, we have turned to a complex but defined set of
neurons, the Drosophila olfactory system located in the
antenna. This system contains 34 neuron classes with
different functions and connections, each defined by the
unique odorant receptor they express. We set out to
identify the transcription factors (regulatory genes) that
are required for each class to express the correct odorant
receptor. We find that seven transcription factors are
continuously required in different combinations for the
expression of all tested 32 odorant receptors. We also
show that these transcription factors can both turn on and
turn off odorant receptor genes, making the expression
regulation more economical. We conclude that dual use of
a small set of factors, which are always on in the neuron,
can define its functional class and thereby produce
diversity in the nervous system.

Results

A Systematic RNAi Screen Identifies Seven TFs That
Regulate OR Expression

In mammals and insects, the majority of OSNs each express a
single OR gene out of a large genomic repertoire. To identify the
TFs that are necessary for proper OR expression in Drosophila we
used the transgenic UAS-driven inverted repeats (IRs) from the
Vienna Drosophila RNAi Center (VDRC) [17] to interfere with the
753 annotated putative TFs in Diosophila (www.FlyTFs.org) [18].
The TF-IRs were expressed in postmitotic OSNs by pebbled-Gal4
[19], and OR expression was visualized by direct OR promoter
fusions with CD&::GFP (Figure 1A). In two separate rounds we
analyzed the RINAI effect on the expression of four representative
OR classes: 0r92a and Or98a for basiconic OSNs in the distal and
central antennal region, Or23a and Or47b for trichoid OSNs in
overlapping proximal antennal domains (Figure 1A). We found
611, 81.1% of the TFs, to be available as RNAI lines in the VDRC
library and expression of which lead to lethality of another 14.2%
(Figure 1B). Of the remaining 504 gene knock downs (TF-IRs), we
identified seven that resulted in a strong and highly penetrant loss
of OR expression: ag6-, £93 (Epp93f)-, Ferl-, onecut-, sim-, xbpl-,
and zf30-IRs (Figure 1C and 1D).

To exclude false positives caused by off-targeting and insertion
mutagenesis, multiple IR lines from VDRC (http://stockcenter.
vdrc.at), National Institute of Genetics (NIG-Fly, http://www.
shigen.nig.ac jp/fly/nigfly), and Transgenic RNAi Project (TriP,
http://www.flyrnai.org) that corresponded to each of the seven
genes were analyzed. All constructs gave rise to identical
phenotypes (Table S1), supporting the specific knock down of
each TF. In addition, mutant analysis for the TTs with available
defined mutant alleles (agf6°, xbpI*??% sim" and 230,97
gave similar phenotypes compared to the RNAI lines (Figure 1E;
Table S1). Finally, direct expression analysis on each IR
background demonstrated knock down of the corresponding TF
(Figures 2 and S1). These results indicate that these seven TTs are
critical regulators of OR expression.

Overlapping Expression of the Seven TFs

All identified TTs belonged to different protein families
(Figure 2A): Acj6 (POU-Homeobox; Hox), E93 (Psq like helix-
turn-helix; HTH), Ferl (basic helix loop helix; bHLH), Onecut
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(cut-Hox), Sim (PAS-bHLH), Xbpl (bZIP), and Zf30c (C2H2;
zinc finger). Two of the genes, z/30¢ (zinc finger at 30c), which
encodes a protein with ten C2H2 zinc finger domains and Fer/
(Forty eight related 1), encoding a bHLH factor, had not previously
been characterized.

We next asked whether expression of the seven TTs correlated
to the OR expression domains or sensilla groups. There are three
main groups of sensilla, basiconic, coeloconic and trichoid,
differently distributed across the antenna [20]. In situ hybridiza-
tion and immunohistochemistry demonstrated that all seven TFs
were expressed in the adult antenna in various patterns (Figure 2B).
Each pattern showed little restriction to domains or sensilla groups
and none of the TFs were expressed in only one or only a few
ONSN classes (Figure 2B). Two of the TFs, ag6 and xbpl, were
ubiquitously expressed and might regulate OR expression more
indirectly via any of the other five TFs. When analyzed, no
obvious differences in strength or distribution of E£93, Ferl, onecut,
sim, and zf30c expression were found in the ag6- and xbpI-IRs,
indicating that the seven TFs might be directly required for OR
expression (Figure 2C and 2D).

To address the extent of coexpression between the seven TFs,
we analyzed each TFs expression in two OSN classes (Figure 2E).
In 0r92a OSNE, all seven TFs were expressed including £93, the
TF that was not required for 0r92a expression. Similarly, Or47b
neurons expressed £93, the only TF required for expression, and
agb, Ferl, sum, and xbpl. These data show that the seven TFs are
expressed in broad and overlapping populations of mature sensory
neurons, which do not correlate with sensilla groups or OSN
classes. The lack of anatomic correlation of the expression patterns
suggests that these TFs are part of a distinct regulatory network
separate from the general process of antenna and neuron
specification.

The Identified OR Regulators Are Required in Adult Flies

The onset of OR expression takes place during the second half
of pupal development, after OSN axon guidance, and is one of the
final steps of sensory neuron differentiation (Figure 3A). To rule
out a role of the seven TFs in early OSN specification and
differentiation, which could affect OR gene expression more
indirectly, the pan neuronal markers, Elav and Neuroglian, were
analyzed. The overall number of OSNs and axonal projections
from the antenna to the brain was not affected in any of the RNA1
knock downs, indicating no gross changes in sensory neuron
development (Figure S2).

Next, to determine the temporal window of TF function in OR
expression we used the TARGET system [21]. Here, the IR-
mediated gene knock-down can be regulated via a temperature-
sensitive Gal4 repressor (GAL80®) (Figure 3A). At the restrictive
temperature (29°C), GAL80" is inactivated, permitting Gal4 to
express the TF-IR in all OSNs (Figure 3A). Flies maintained
continuously at 18°C (no TF-IR expression) expressed Or92a and
Or47b at the correct antennal location (Figure 3B). In contrast,
when the TF-IR flies were shifted after the onset of OR expression
to 29°C, Or92a or Or47b expression was lost (Figure 3C).

In a reverse approach, knock down of the TFs during pupal
development and a reversal of the wild-type TTF expression in early
adult stages allowed us to distinguish between earlier develop-
mental roles and a later function in OR gene regulation
(Figure 3D). Developmental suppression of ag6, E93, Ferl, sim,
onecut, and xbpl did not affect adult OR expression (Figure 3D),
whereas knock down of Zf30c during pupal development reduced
OR expression. These data support a view of sensory neuron
development where these seven TTs possess a specific OR
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Figure 1. An RNAi screen identifies seven TFs required for OR expression. (A) Whole mount preparations of antenna from the two
screening rounds (GFP in black). In the first round, expression of Or98a-CD8::GFP and Or23a-CD8::GFP in two mid-antennal domains (light blue and
orange oval) were analyzed. In the second round, Or92a-CD8::GFP expression in the most proximal (dark blue oval) antenna domain and Or47b-
CD8::GFP expression in the most distal (red oval) antenna domain were analyzed. (B) Statistics from the screen is depicted as a graph, summarizing
the number of IR lines that did not affect OR expression (Wt, white), led to lethality (Lethal, grey) or lost OR expression (Loss of OR expression, Green).
(C) Phenotype summary for the seven TF-IRs and the analyzed OSN classes, wild-type OR expression (grey dots) and loss of OR expression (black dots).
(D) Antenna from each TF-IR with representative OR expression phenotypes. (E) Whole mount antennal lobe with the Or92a-CD8:GFP OSN
projections shown in green and the synaptic marker, nc82, delineating the glomeruli of the antennal lobe, in magenta. The boxed region indicates
the antennal lobe area in the right panel, which compares the RNAi and mutant phenotypes of acj6, sim, xbp1, zf30c. Note the loss of Or92a in both
the mutant and RNAi lines.

doi:10.1371/journal.pbio.1001280.g001

regulatory function and with Zf30c having an additional earlier system. The resulting OR expression phenotypes were assembled

role in OSN class specification.

A TF Regulatory Matrix for Drosophila OR Expression

To determine whether this small set of TFs can regulate the full
collection of OR genes, we extended our RNAIi analysis to the
majority of the sensory neurons classes in the Drosophila olfactory
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into a regulatory matrix (Figure 4A; for statistics see Table S2).
The matrix exposed several general regulatory features. First, all
32 ORs required at least one of the seven TFs for correct
expression, demonstrating a prominent role in OR gene regulation
for the TFs (Figure 4A and 4C). Second, in line with the wide TF
expression patterns across the antenna (Figure 2B), the TFs were
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Figure 2. Expression of OR gene regulators in the adult Drosophila antenna. (A) The identified TFs belong to different protein families as
indicated by their protein domain organization. (B) In situ hybridizations and immunohistology on wild-type antenna sections showing the
expression pattern of each TF (red) counterstained with the nuclear marker DAPI (blue). (C,D) RNAi-mediated reduction of Acj6 (C) and Xbp1(D) does
not affect the overall expression pattern of the other six TFs. (E) Expression of the TFs (magenta) in either Or47b-CD8::GFP or Or92a-CD8::GFP (green)
expressing OSNs. Note, that the Or47b expressing OSNs lack expression of onecut and zf30c (arrows).

doi:10.1371/journal.pbio.1001280.g002

required for OR expression in OSN classes indiscriminate of required for expression of partly overlapping sets of OR genes
sensilla group or antenna location (Figures 4B and S3), supporting (Figure 4A), suggesting a combinatorial mode of OR gene
that the TTs disconnect the OR expression from the early antenna regulation. Last, unique TF combinations were associated with
patterning and development. Third, the identified seven TFs were 17 of the 32 ORs expression and each combination ranged from
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Figure 3. All seven TFs are continuously required for OR expression. (A) Schematic of the TARGET experiments. Flies were shifted at late
pupal stage from 18°C to 29°C (red line), or from 29°C to 18°C (green line); the RNAi was induced specifically at 29°C. (B-D) Or92a and Or47b in situ
hybridizations (red) counterstained with DAPI (blue). (B) With the suppression of RNAi at 18°C, the OR was expressed in all genotypes (red staining).
(C) The TF knock down at the end of pupal development (shift from 18°C to 29°C) fully suppresses OR expression. (D) Developmental TF knock down

(shift from 29°C to 18°C) does not affect OR expression except for zf30c-IR.

doi:10.1371/journal.pbio.1001280.g003

one to six TFs and only two additional TFs would be sufficient to
resolve the remaining redundancies. Taken together these data
show that the identified small set of TFs in different combinations
are required for OR expression in each OSN class.

The Seven TFs Bind to Different Combinations of Motifs
Upstream OR Genes

To address, whether any of the identified TFs bind directly to
the regions upstream of each OR, we exploited the well-
established vertebrate DNA binding motifs of Acj6, Onecut, and
Xbpl. It has been shown that Drosophila Acj6 and Onecut share
binding properties with their vertebrate orthologs (Figure S4)
[16,22,23]. Most vertebrate Xbpl DNA motifs contain a 6-bp core
sequence C/TCACGT [24,25]. In mobility shift assays, recom-
binant Drosophila Xbpl bound this core sequence (Figure S4A),
demonstrating shared binding properties between the Xbpl
orthologs.
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The Acj6-, Onecut-, and Xbpl-DNA binding motifs were used
to search 1 kb upstream of 32 OR genes and identified various
combinations of the TTF binding motifs upstream of each OR
(Figure 5A; for location of each motif see Table S3). Most OR
promoter regions contained at least one binding site for the TFs
required for expression (Figure 5A). The fact that some OR
promoter regions lacked predicted binding sites for the required
TF suggest either that the Drosophila TF and the vertebrate
ortholog have slightly different DNA binding requirements or that
the TTF in these cases indirectly regulate the OR gene. In vitro
binding assays for four of the OR genes showed that all motifs
were recognized by the matching TFs (Figure S4C). These data
together with the strong correlation between motif and OR gene
activation suggest that each OR promoter is bound and regulated
by different combinations of these TTs.

To address whether the motifs were necessary in vivo for OR
expression, we focused on the shortest promoter region sufficient
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doi:10.1371/journal.pbio.1001280.g004

for OR expression, Orl9a (Figure 5D). The sufficient promoter
region contains both an Acj6 and Onecut motif, both TFs
required for Or!9a expression (Figure 5A). When either of the two
motifs was mutated, the expression of the Or/9a construct was
abolished (Figure 5B). These results demonstrated that the motifs
were necessary for promoter function and that the TFs directly
regulate OR expression.

Long Range Repression Modulates OR Expression

For Acj6 and Onecut a peak of binding motifs was observed
directly upstream of the OR genes (Figure 5C), (for individual
predictions see Table S3), which corresponded to a region of high
sequence conservation found upstream of most OR genes
(unpublished data) [26]. Transgenic constructs containing these
conserved regions produced antenna OSN expression for ten
tested OR promoters (Figure 5D), suggesting that a short region
directly upstream of each OR gene was sufficient for expression.
However, half of the short promoter constructs produced
misexpression (Figure 5D and 5E); the lack of OSN class
specificity implies that distal regulatory regions are required to
repress OR expression in some OSN classes. The similarities in
behavior for the various OR promoter constructs suggest a
common OR promoter organization with a proximal region that
produces expression and a distal repressive region that restricts the
OR expression to one single OSN class.

@ PLoS Biology | www.plosbiology.org

The Location of the DNA Binding Motif Determines TF
Function

The bioinformatic analysis uncovered DNA motifs in OR
promoters that did not require the matching TTF for expression
(Figure 5A). When the upstream locations of these “nonessential
motifs”” were plotted, a peak was found downstream of the TATA
boxes (Figure 6A; see Table S3 for location of each motif).
Conversely, all motifs upstream of ORs that required the matching
TF were located upstream of each TATA box (Figure 6B),
suggesting that motif location might reflect different TF functions.
For example, 0r98a, which did not require xbp! for expression, had
an Xbpl motif downstream of the TATA box (Figure 6D).
Moreover, in xbpl-IR flies, Or98a showed ectopic expression in
OSNs that normally express Or7a and pairs with Or56a (Figure 6C).
The repression of Or98a and the activation of Or7a expression in
the same OSN class show that Xbpl has a dual function in the
specification of OR gene expression. One simple explanation might
be that Xbpl, when bound far upstream, activates expression of
Or7a and, when bound next to the TATA box, hinders
transcriptional initiation of Or98a. To address this possibility, the
Or98a Xbpl motif was mutated, which produced misexpression
across the central antenna (Figure 6D). These data suggest that the
differential activity of Xbpl can be defined by the location of the
binding motif in the regulatory regions of the two OR genes.
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Figure 5. The identified TFs have binding motifs upstream the regulated OR genes. (A) Regulatory matrix for Acj6, Onecut, and Xbp1
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doi:10.1371/journal.pbio.1001280.g005

The Identified TFs Both Activate and Repress OR
Expression

To investigate if any of the other six TFs also repress OR gene
expression, the knock-downs were reexamined more closely and
striking de-repression was observed for two more TFs (Figure 4C).
Strong ectopic Or43b expression was found in E93-IR distal
antennae (Figure 7A). Double-labeling experiments showed that
OSNs with ectopic Or43b expression formed a pair with Or23a
OSNs and thereby replacing Or83¢ in E93 knock-downs
(Figure 7A), which suggested that £93 repressed Or43b in these
OSNs and was required for Or83c¢ expression. These results
indicate a dual regulatory function similar to Xbpl in which the
location of the unknown E93 motif might possibly produce Or83c
expression and Or43b repression. The second example of ectopic

@ PLoS Biology | www.plosbiology.org

expression was identified in a¢j6-IR antennae with Or67a being de-
repressed and coexpressed with Or67b (Figure 7B). Both Or67a and
Or67b have upstream Acj6 binding motifs (Figure 5A) and the TFs
required for Or67b expression were some of the TFs also required
for Or67a expression (Figure 7B). Hence, the dual Acj6 function
required to separate Or67a and Or67b expression might be
determined in a combinatorial fashion possibly by attraction of
different cofactors to each promoter.

Discussion

We performed a multilevel systematic analysis of sensory class
specification in the Drosophila olfactory system and identified seven
TFs to be critical regulators of odorant gene expression. Different
combinations of these TFs are required for precise neuron-specific

7 March 2012 | Volume 10 | Issue 3 | 1001280
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doi:10.1371/journal.pbio.1001280.g006

onset of OR gene expressions as well as maintenance in mature
OSNs. The systematic analysis further reveals that the identified
TFs bind to different DNA motifs through which they can act as
both activators and repressors of OR gene expression (Figure 7C).

The Seven Identified TFs Are OR Selector Genes

In 1975, Antonio Garcia-Bellido presented the concept of
selector genes, TTFs that can determine a particular cell fate.
Several levels of selector genes has been found, which control gene
programs that individually specify organ, tissue, and cell type [27].
Recently, studies in Caenorhabditis elegans have revealed that one
factor and its motif can be enough to assign expression to one
neuronal class [28-30]. These observations have led to the
formulation of the terminal selector gene hypothesis [31], which
put forward that only a small set of TT's are continuously required
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to express the genes that signify each neuron class, like ORs.
However to date few such cases have been identified.

Our systematic analysis presents several observations that
suggest the identified TFs to be terminal selector genes for OR
expression. First, continuous expression of all seven TTs are
required for OR expression in the mature OSNs (Figure 3C).
Second, the seven TFs are expressed in the mature OSNs, in
various patterns across the antenna (Figure 2B). Third, all 32
tested ORs require different combinations of the TTs for
expression (Figure 4A). Last, motifs for the TFs are found
upstream of the ORs genes they regulate (Figure 5A) and the
motifs are necessary for OR promoter function (Figure 5B).
Consequently, it appears that the large number of OR expression
patterns are achieved by combinatorial use of a few TFs that
function as OR selector genes.
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Figure 7. Transcriptional activation and repression are required for correct expression of each OR gene to one OSN class. (A) Double
in situ labeling of Or23a and Or43b in wild type (Wt) and £93-IR antennae, the Or43ba expression phenotypes are further depicted schematically and
summarized as a matrix (grey, wild-type expression; red, ectopic; and black, loss of expression). (B) Double in situ hybridization labeling of Or67a and
Or67b expression in wild type (Wt) and acj6-IR antenna. The resultant phenotypes are further summarized as a schematic and a matrix summary. Note
the new pair of Or43b and Or23a when E93 is knocked down (A), and OR coexpression generated in acjé knock-downs (B). (C) Model depicting how
activation and repression of OR expression can specify an OSN class. Activation of OR gene expression (left box); different combinations of a limited
set of TFs bind a proximal upstream region and produce OR expression in a broad antenna region. Repression of OR gene expression (right box),
distal located repressors together with the dual function of the TFs determined by binding site location or possibly cofactor use, restrict OR
expression. The combined sum of OR gene activation and repression produce expression to one single OSN class.
doi:10.1371/journal.pbio.1001280.g007

The OR selector genes belong to different protein families which could secure the fidelity of the combinatorial pattern. On
(Figure 2A), which indicate that evolution has favored recruitment the other hand, the high motif specificity for each factor suggests
of TFs with very different DNA binding properties, rather than that loss or gain of motifs for one OR selector might generate a
expansion of one family that shares the basic DNA binding motif, new OR expression pattern and a totally new OSN class. Thus,
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single OSN class expression and high evolvability, two hallmarks
of olfactory system evolution, might in part be due to the
combinatorial function of the OR selector genes.

Single OR Expression, a Large Regulatory Cost

How many OR selector genes are required to uniquely express
one OR in each OSN class? We identified seven OR selector genes,
but given the limitations of RNAI, it is likely that there are a total of
at least ten critical TFs to specify all OSN classes. Even this probably
low estimate generates a rather high number of TFs considering that
Drosophila antennae have 34 OSN classes that express ORs [13].
Theoretically the number of TFs needed for a binary combinatorial
code to generate 34 unique outcomes is six (2° = 64). Seven TFs can
in theory separate 27 =128 combinations, and ten TFs designate
more than 1,000 combinations, suggesting a large number of
unused combinations. This surplus of combinations may be due to
the inherent randomness of evolution and the impossibility of
creating a streamlined code by chance. Another possibility for this
large number is the need for a high degree of fidelity, with little or no
ectopic OR expression tolerable for proper functioning of the
olfactory system. Extrapolation of our observations to the regulatory
requirements of the mammalian olfactory system indicates that at
least 200—-300 TFs would be required to provide a regulatory system
that controls >1,000 mammalian ORs, a daunting number.
Therefore, it is reasonable to suspect that the stochastic OR
selection mechanism found in vertebrates was added during
evolution to accommodate the heavy increase in regulatory costs
resulting from an expanded number of OR genes.

Combinatorial Activation and Repression Control OR
Expression

To date very few TFs have been found to be restricted to small
neuronal populations in neuroepithelia or in the developing brain in
general [32]. This situation has motivated the suggestion that
combinatorial TF regulation defines broad expression patterns of
molecules such as neurotransmitters, but is insufficient to generate
the large number of neuron classes in, for example, the olfactory
system [33]. Similarly, all seven selector genes in this study are
expressed across the antenna but still are required for the expression
of some few ORs (Figures 2B and 4A). How can widely expressed
TFs then produce restricted expression patterns? We have
formulated two explanations. First, our promoter analysis suggests
that the OSN class specificity is in part due to repression. Most ORs
have a proximal regulatory region next to the gene that is sufficient
for expression in OSNs but requires repression from more distal
regions for the spatial restriction to each OSN class (Figure 5D). In
this model, the expression of the TTs that produce OR expression
does not need to be particularly specific as long as they are
counteracted by repressive factors. Second, the identified TFs can
both activate and repress OR expression dependent on the location
of the binding site or by the available cofactors (Figures 6C, 6D, 7A,
and 7B). Dual use of the TTs might increase their regulatory power
and as a likely consequence the number of TFs required for OR
expression to be reduced. We therefore suggest that specification of
large numbers of neuron classes in the olfactory system and likely in
the nervous system, require two layers of combinatorial coding, one
layer of terminal selector genes that produce expression and a layer
of repressors that restrict the expression to each class.

Materials and Methods

RNAi Methodology
Virgin flies containing Pebbled-GAL4, UAS-Dicer2, and the OR
promoter fusions were mated with males obtained from the
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VDRC library. The crosses were set up at 25°C, and after 3 d the
parental flies were removed and the vials shifted to 27°C. 2-3 d
after eclosure, the GFP levels corresponding to OR expression
were ranked 0-5, where 5 corresponded to the wild-type level. For
all assays, for five females per line crosses were scored blind to the
genotype and all lines with phenotypes scored below 2 were
retested. A line was considered to have established phenotype if
three consecutive crosses included flies that scored below 2. To
further validate the established phenotypes, RNAI lines from the
VDRC, NIG, and the Transgenic RNAi Project (TRiP) were used,
all the different lines gave the same phenotype as in the screen
(Table S1). In order to avoid animals with low RNAI efficiency
and reduce the risk of false negatives in the regulatory matrix, OR
expression phenotypes were only scored from antennae with total
loss of 0r92a or Or47b GIP.

Mutant Analysis and MARCM

To confirm ag6 function in OR gene regulation, viable offspring
from the a¢j6° mutant crossed to the Or92a promoter fusion were
analyzed. For the other mutants, genetic mosaics were generated
using the MARCM system [34], which was visualized with an
Or92a promoter fusion with Gal4 driving the expression of UAS-
SytGEFP [35]. For large clones in the antenna, an ¢y-FLP insertion
on the X chromosome was used [36], dependent on gene location
mosaics were generated in animals of the following genotypes: ¢y-
FLP, FRT40/42 TF mutant/ FRT40/42,TubGal80; Or92a-Gal4,
UAS-SyiGFP, or ey-FLP, O0r92a-Gal4, UAS-GFP, FRT80/82 TF
mutant/ FRT80/82 TubGal80.

Immunostaining and In Situ Hybridization

Immunostaining and in situ hybridization were performed
according to previously described methods [13]; for practical in
situ details see [37]. The OR probes were previously used in the
OR expression characterization [13]. TF in situ probe templates
included sequence from the first coding exon and 1 kb
downstream or to the end of the gene and were from genomic
DNA and cloned into pBSK. Or49a, Or65a,b,c, and Or69a,b were at
the detection limit and excluded from the regulatory matrix
analysis.

The primary antibodies used were Rat anti-Elav (7E8AI0,
DSHB, 1:500), mouse anti-Acj6 (DSHB, 1:100), mouse anti-
Neuroglian (BP104, DSHB, 1:50), and Rabbit anti-GFP (TP-401,
Torrey Pines, 1:2,000).

Bioinformatics

1 kb upstream the translational start site of each OR was
scanned with the motifs for HNF6 and BRN3 using weight
matrices and programs provided by Genomatix (HNF6.01,
BRN3.01, BRN3.02; http://www.genomatix.de/) [38] and Bio-
base (HNF6_Q6; http://www.gene-regulation.com/) [39]. The
Genomatix Matinspector and the Biobase match program
optimized matrix thresholds were applied. Putative Xbpl binding
sites were identified on the basis of a pattern search with the

consensus motif C/TCACGT [25].

Electrophoretic Mobility Shift Assay

The various TF DNA binding domains were cloned into the
pGEX-2T vector and bacterial recombinant glutathione S-
transferase fusion proteins were purified by glutathione Sepharose
4B beads (Amersham). For the binding assay, single-stranded
DNA oligonucleotides were end-labeled with T4 polynucleotide
kinase (Roche) and G-32-P ATP (PerkinElmer) with T4 polynu-
cleotide kinase according to the manufacturers’ instructions,
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annealed with the complementary strand, and purified on a
microspin column (Roche).

Binding reactions were performed at room temperature for
20 min. The binding reaction included 3 ul recombinant
glutathione S-transferase fusion proteins, 3 fmol labeled probe,
10 mM HEPES (pH 7.9), 70 mM KCI, 1 mM DTT, 1 mM
EDTA, 2.5 mM MgCIl2, 4% glycerol, and 1 pg poly (dI/dC)
(VWR). Cold competition was performed by adding DNA
oligonucleotides in molar excess 15 min before addition of labeled
probe. The samples were separated on a 6% acrylamide TBE gel
at 60 V for 90 min. Gels were dried and visualized by the FLA-
5100 Multi Gauge system (FujiFilm).

Fly stocks

OR promoter fusion lines have previously been described [13].
Pebbled-GAL4 and acj6’mutant flies were kind gifts from L. Luo.
sim™ was kindly provided by C. Klaembt. UAS-Dicer? and the TF-
IRs for the screen were provided by the VDRC. Additional TF-IR
lines were obtained from NIG and TRiP. sum-lacl flies were
obtained from the Szeged Drosophila Stock Centre (Szeged,
Hungary), and xbp1¥"7%% -1309%°% of30¢c-1acZ, tubP-Gal80" were
obtained from the Drosophila Stock Center (Bloomington, Indiana).
For the promoter studies all DNA constructs were injected into
w'""% flies, and six to 12 lines were analyzed.

Supporting Information

Figure S1 TF knockdown correspond to loss of TF
mRNA. In situ labeling of each TT (red) and DAPI (blue)
performed on TF-IR antenna, note the tight correlation of loss of
xbpl (red) and 0r92a-CD8::GFP expression (green).

(TTF)

Figure S2 Olfactory sensory neuron layers and mor-
phology are unperturbed in the TF knock downs. Antenna
from TF-IR flies stained for neuronal markers in red (Neuroglian
and Elav) and counterstained with DAPIL

(TIF)

Figure S3 None of the seven TFs were required for OR
expression to one antenna domain or sensilla group.
Regulatory matrix arranged after the five antenna domains (blue
to red) and each sensilla group. Each domain is exemplified by one
OR promoter fusion in green, counterstained with ELAV in red.
Note that at least three of the seven TFs are required for
expression in each sensilla group (basiconic, trichoid, and
coeloconic).

(TIF)

Figure S4 Predicted DNA motifs are bound by the
identified TFs in vitro. (A) Electrophoretic mobility shift assay
(EMSA) performed with radiolabeled probe containing the
vertebrate Xbpl core sequence with (+) or without (—)
recombinant Xbpl. Increasing amounts (100-, 200-, 300-, 900-
fold excess) of nonlabeled probe were used as cold competitors;
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probe at 900-fold excess are shown.
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Table S1 All tested IRs and mutants for each TF gave
rise to identical phenotypes. Statistics related to Figure 1. OR
expression phenotypes for two or more TF-IRs and available
mutants for each gene, noted as number of animals with loss of
OR  expression/number of analyzed animals. Wt, wild type,
denotes no loss of expression.

(DOC)
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per animal from; 0 (loss) to 5 (control levels) and denoted as
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considered to be wild-type variance.

(XLS)

Table S3 Motifs upstream all 32 analyzed ORs. Statistics
related to Figure 5A. Motif location is denoted as bps upstream the
translation start for each OR gene and motifs found downstream
the TATA box are depicted with an asterisk.

(DOC)

Acknowledgments

The RNAI screen and the initial work were carried out while MA was a
postdoctoral researcher in Barry Dickson’s Lab, IMP, Vienna, Austria. We
are grateful to A. Berghard, C. Ribeiro, B. Dickson, and the Alenius lab for
critical comments and discussion; M. Sigvardsson for technical advice; and
O. Forsberg and K. Bartalska for excellent technical assistance. We thank
L. Luo and C. Klaembt for flies.

Author Contributions

The author(s) have made the following declarations about their
contributions: Conceived and designed the experiments: Screen: MA;
expression analysis: MA; mutant analysis: TH; temporal TF requirement:
MA; regulatory matrix: MA; bioinformatics: MA; TF analysis: MA; OR
promoter analysis: MA; dual TF function: MA. Performed the experi-
ments: Screen: MA; expression analysis: MA; mutant analysis: AB TH;
temporal TF requirement: S] AB TH; regulatory matrix: S] LA MA;
bioinformatics: AS MA; TF analysis: S] MA; OR promoter analysis: SJ
MA; dual TF function: LA MA. Analyzed the data: Screen: MA;
expression analysis: LA MA; mutant analysis: AB TH; temporal TF
requirement: S] MA; regulatory matrix: S] LA MA bioinformatics: AS
MA; TF analysis: S] MA; OR promoter analysis: S] MA; dual TF function:
LA MA. Contributed reagents/materials/analysis tools: Screen: MA;
expression analysis: MA; mutant analysis: TH; temporal TF requirement:
MA; regulatory matrix: MA; bioinformatics: MA; TF analysis: MA; OR
promoter analysis: MA; dual TF function: MA. Wrote the paper: TH MA.

6. Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, et al. (2003)
Negative feedback regulation ensures the one receptor-one olfactory neuron rule
in mouse. Science 302: 2088-2094.

Lewcock JW, Reed RR (2004) A feedback mechanism regulates monoallelic

odorant receptor expression. Proc Natl Acad Sci U S A 101: 1069-1074.

8. Kolterud A, Alenius M, Carlsson L, Bohm S (2004) The Lim homeobox gene
Lhx2 is required for olfactory sensory neuron identity. Development 131:
5319-5326.

9. Hirota J, Mombaerts P (2004) The LIM-homeodomain protein Lhx2 is required
for complete development of mouse olfactory sensory neurons. Proc Natl Acad
Sci U S A 101: 8751-8755.

~

March 2012 | Volume 10 | Issue 3 | 1001280



20.

21.

Mclntyre JC, Bose SC, Stromberg AJ, McClintock TS (2008) Emx2 stimulates
odorant receptor gene expression. Chem Senses 33: 825-837.

. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map

of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736.
Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in
the Drosophila antenna. Cell 117: 965-979.

Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional
organization of the Drosophila olfactory system. Curr Biol 15: 1535-1547.
Endo K, Aoki T, Yoda Y, Kimura K, Hama C (2007) Notch signal organizes the
Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat
Neurosci 10: 153-160.

Komiyama T, Carlson JR, Luo L (2004) Olfactory receptor neuron axon
targeting: intrinsic transcriptional control and hierarchical interactions. Nat
Neurosci 7: 819-825.

Bai L, Goldman AL, Carlson JR (2009) Positive and negative regulation of odor
receptor gene choice in Drosophila by acj6. J Neurosci 29: 12940-12947.
Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, et al. (2007) A genome-
wide transgenic RNAI library for conditional gene inactivation in Drosophila.
Nature 448: 151-156.

Adryan B, Teichmann SA (2006) FlyTF: a systematic review of site-specific
transcription factors in the fruit fly Drosophila melanogaster. Bioinformatics 22:
1532-1533.

Sweeney LB, Couto A, Chou YH, Berdnik D, Dickson BJ, et al. (2007)
Temporal target restriction of olfactory receptor neurons by Semaphorin-la/
PlexinA-mediated axon-axon interactions. Neuron 53: 185-200.

Shanbhag SR, Muller B, Steinbrecht RA (2000) Atlas of olfactory organs of
Drosophila melanogaster 2. Internal organization and cellular architecture of
olfactory sensilla. Arthropod Struct Dev 29: 211-229.

McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting
with the TARGET and gene-switch systems in Drosophila. Sci STKE 2004: pl6.
Turner EE (1996) Similar DNA recognition properties of alternatively spliced
Drosophila POU factors. Proc Natl Acad Sci U S A 93: 15097-15101.
Nguyen DN, Rohrbaugh M, Lai Z (2000) The Drosophila homolog of Onecut
homeodomain proteins is a neural-specific transcriptional activator with a
potential role in regulating neural differentiation. Mech Dev 97: 57-72.

. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, et al. (2007) XBP1

controls diverse cell type- and condition-specific transcriptional regulatory
networks. Mol Cell 27: 53-66.

@ PLoS Biology | www.plosbiology.org

12

26.

27.

28.

29.

30.

36.

37.

38.

39.

Specification of Drosophila OR Expression

Kanemoto S, Kondo S, Ogata M, Murakami T, Urano F, et al. (2005) XBP1
activates the transcription of its target genes via an ACGTT core sequence under
ER stress. Biochem Biophys Res Commun 331: 1146-1153.

Ray A, van Naters WG, Shiraiwa T, Carlson JR (2007) Mechanisms of odor
receptor gene choice in Drosophila. Neuron 53: 353-369.

Mann RS, Carroll SB (2002) Molecular mechanisms of selector gene function
and evolution. Curr Opin Genet Dev 12: 592-600.

Etchberger JF, Lorch A, Sleumer MC, Zapf R, Jones SJ, et al. (2007) The
molecular signature and cis-regulatory architecture of a C. elegans gustatory
neuron. Genes Dev 21: 1653-1674.

Wenick AS, Hobert O (2004) Genomic cis-regulatory architecture and trans-
acting regulators of a single interneuron-specific gene battery in C. elegans. Dev
Cell 6: 757-770.

Way JC, Chalfiec M (1988) mec-3, a homeobox-containing gene that specifies
differentiation of the touch receptor neurons in C. elegans. Cell 54: 5-16.
Hobert O (2008) Regulatory logic of neuronal diversity: terminal selector genes
and selector motifs. Proc Natl Acad Sci U S A 105: 20067-20071.

Gray PA, Fu H, Luo P, Zhao Q, Yu J, et al. (2004) Mouse brain organization
revealed through direct genome-scale TF expression analysis. Science 306:
2255-2257.

Ma Q (2006) Transcriptional regulation of neuronal phenotype in mammals.
J Physiol 575: 379-387.

Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of
gene function in neuronal morphogenesis. Neuron 22: 451-461.

Lattemann M, Zierau A, Schulte C, Seidl S, Kuhlmann B, et al. (2007)
Semaphorin-la controls receptor neuron-specific axonal convergence in the
primary olfactory center of Drosophila. Neuron 53: 169-184.

Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor
axon guidance in eye-specific mosaics. Development 127: 851-860.
Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ
detection of microRNAs in mouse tissue sections. Nat Protoc 2: 1508-1514.
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, et al. (2005)
MatInspector and beyond: promoter analysis based on transcription factor
binding sites. Bioinformatics 21: 2933-2942.

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, et al. (2006)
TRANSFAC and its module TRANSCompel: transcriptional gene regulation in
cukaryotes. Nucleic Acids Res 34: D108-110.

March 2012 | Volume 10 | Issue 3 | 1001280



