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Abstract Introduction: The aim of this studywas to build a random forest classifier to improve the diagnostic ac-
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curacy in differentiating dementia with Lewy bodies (DLB) fromAlzheimer’s disease (AD) and to quan-
tify the relevance of multimodal diagnostic measures, with a focus on electroencephalography (EEG).
Methods: A total of 66 DLB, 66 AD patients, and 66 controls were selected from the Amsterdam
Dementia Cohort. Quantitative EEG (qEEG) measures were combined with clinical, neuropsycho-
logical, visual EEG, neuroimaging, and cerebrospinal fluid data. Variable importance scores were
calculated per diagnostic variable.
Results: For discrimination between DLB and AD, the diagnostic accuracy of the classifier was
87%. Beta power was identified as the single-most important discriminating variable. qEEG
increased the accuracy of the other multimodal diagnostic data with almost 10%.
Discussion: Quantitative EEG has a higher discriminating value than the combination of the other
multimodal variables in the differentiation between DLB and AD.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) and dementia with Lewy
bodies (DLB) are the two most common forms of dementia
in the aging population [1,2]. DLB and AD have several
overlapping characteristics, making differential diagnosis
in clinical practice at times difficult [3]. Compared to AD,
consensus criteria [1] in DLB have moderate sensitivity
[4,5]. Accurate diagnosis of DLB and AD is essential for
patient guidance and appliance of possible early treatment
and prevention strategies [6]. Therefore, disease-specific
red no conflict of interest.

tributed equally to the study.

thor. Tel.: 131-88-75-57468.

.dauwan-3@umcutrecht.nl

16/j.dadm.2016.07.003

he Authors. Published by Elsevier Inc. on behalf of the Alzhe

commons.org/licenses/by-nc-nd/4.0/).
biomarkers from cerebrospinal fluid (CSF) and neuroimag-
ing are increasingly used, but these diagnostic tests can be
costly and are not always available [5,7]. Furthermore, the
frequent presence of concomitant AD pathology in DLB
patients renders amyloid markers and magnetic resonance
imaging (MRI) less discriminative [5,8]. In contrast,
electroencephalography (EEG) has been proposed as a
low-cost and readily available diagnostic tool to distinguish
between DLB and AD [9,10]. At present, in a clinical
setting, data from patient history and above-mentioned diag-
nostic tests are weighted differently in each individual pa-
tient to make a diagnosis [11]. The exact contribution of
the (combinations of) EEG and other diagnostic tests to
the differential diagnosis of DLB and AD remains unclear.

Automated classification algorithms can directly provide
the most relevant diagnostic variables and estimate their
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relative importance in classifying cognitive impairment,
which can improve diagnostic efficiency [12,13]. Ensemble-
learning methods construct automated classification algo-
rithms that can learn fromandpredict data bybuilding amodel
in the form of input-output relationships of variables (i.e., fea-
tures in classification algorithms) [14]. Random forest is one
such algorithm, developed by L. Breiman, and based on the
principle of decision tree learning [15]. In the field of demen-
tia, ensemble-learning methods have mainly been studied to
classify patients with AD [13], whereas very little evidence
is available on the automated discrimination between DLB
andAD [12] or on the combination of different diagnosticmo-
dalities in an automated classifier.

This study aimed to build a random forest classifier to
discriminate between DLB, AD, and controls and to quantify
the importance of (combinations of) different types of diag-
nostic features (i.e., clinical, neuropsychological, EEG, CSF,
and neuroimaging data), with a specific focus on the role of
EEG.
2. Methods

2.1. Study population

A total of 66 probable DLB patients, 66 probable AD pa-
tients, and 66 subjects with subjective cognitive decline
(SCD) were selected from the Amsterdam Dementia Cohort
[11]. The groups were matched on group level for age and
gender. All subjects were referred to the Alzheimer Center
of the VU University Medical Center (VUmc) in Amster-
dam, The Netherlands, between September 2003 and June
2010. Standardized dementia diagnostic workup included
neuropsychological assessment, lumbar puncture, brain
MRI, and resting-state EEG. All subjects gave written
informed consent for storage and use of their clinical data
for research purposes. The Medical Ethics Committee of
the VUmc approved this study. A clinical diagnosis and
treatment plan was made by consensus in a weekly multidis-
ciplinary meeting [11]. Probable AD was diagnosed accord-
ing to the revised NINCDS-ADRDA criteria [2], and
probable DLB was diagnosed according to consensus guide-
lines [1]. Subjects were labeled as SCD when they experi-
enced and presented with cognitive complaints, but
diagnostic workup was not abnormal and no other neurolog-
ical or psychiatric disorder known to cause cognitive prob-
lems could be diagnosed [11]. These subjects were
included as controls.

The EEG data set of the present study population has been
previously analyzed focusing on functional and directed
connectivity and network topology in DLB and AD [16,17].

2.2. Feature selection

All the non-EEG features (Table 1) for the classification
algorithm were manually selected from the diagnostic
workup based on availability, and their correspondence
with the clinical criteria of DLB and AD [1,2].
2.2.1. Clinical features
Visual hallucinations were assessed with the neuropsy-

chiatric inventory (NPI) [18]. Extrapyramidal signs were
assessed by a preformatted checklist and defined as the
presence of bradykinesia, rigidity, or tremor. Cognitive
functions were assessed using a standardized test battery
[11]. From this, the mini-mental state examination
(MMSE) was used as a measure of global cognitive func-
tion [19], trail making test part A (TMT-A) as a measure
of motor speed [20], the visual association test (VAT) as a
measure of episodic memory [21], and the forward and
backward condition of the Digit Span as a measure of
attention [22].

2.2.2. Biomarkers
CSF was collected by lumbar puncture [11]. Amyloid-b

1–42 (Ab42), total tau, phosphorylated tau (p-tau), and a ratio
of tau to Ab42 were included as features [23]. From neuro-
imaging, medial temporal lobe (MTA) atrophy, global
cortical atrophy, and white-matter hyperintensities on MRI
were included as features [11].

2.2.3. EEG recordings
As part of the diagnostic workup, all subjects underwent a

20-minute no-task, resting-state EEG recording with OSG
digital equipment (Brainlab; OSG B.V. Belgium), according
to the international 10–20 system [17].

EEGs of all subjects were rated according to a standard
visual rating scheme [24]. The visual rating includes the
severity of EEG abnormalities on a 4-point rating scale
and the presence of focal, diffuse, and epileptiform abnor-
malities [11,24]. In addition, all EEGs were assessed for
the presence of frontal intermittent rhythmic delta activity
(FIRDA) [9,10].

Subsequently, four artifact-free epochs, recorded in an
awake state with eyes closed, were visually selected for
each subject. Data were converted to American Standard
Code for Information Interchange (ASCII) format, and 4
epochs of 4096 samples per subject (i.e., approximately 4
! 8 s EEG data per subject, sufficient to perform qEEG an-
alyses [25]) were loaded into the BrainWave software for
further analysis (BrainWave version 0.9.152.2.17, C. J.
Stam; available for download at http://home.kpn.nl/
stam7883/brainwave.html).

The machine-learning module of BrainWave was used to
create a data file containing all the qEEG features shown in
Table 1. Phase transfer entropy (PTE) was used as a measure
for effective connectivity between EEG channels. PTE mea-
sures the strength and direction of phase-based functional
connectivity between interacting oscillations [26]. In addi-
tion, minimum spanning tree (MST) measures (i.e., highest
degree, leaf number, and tree hierarchy) were used as a rep-
resentation of functional network topology. MST is a unique
acyclic subnetwork that connects all nodes in a network such
that only the strongest connections in the network are
included without forming loops [27].
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Table 1

Overview selected features

Feature number Feature name Feature number Feature name

Quantitative EEG

1 Lowest delta power 36 Mean PTE alpha1 band

2 Mean delta power 37 Highest PTE alpha1 band

3 Highest delta power 38 Lowest PTE alpha2 band

4 Lowest theta power 39 Mean PTE alpha2 band

5 Mean theta power 40 Highest PTE alpha2 band

6 Highest theta power 41 Lowest PTE beta band

7 Lowest alpha1 power 42 Mean PTE beta band

8 Mean alpha1 power 43 Highest PTE beta band

9 Highest alpha1 power

10 Lowest alpha2 power Clinical data

11 Mean alpha2 power 44 Hallucinations

12 Highest alpha2 power 45 Extrapyramidal signs

13 Lowest beta power Neuropsychological data

14 Mean beta power 46 MMSE score

15 Highest beta power 47 VAT total score

16 Lowest peak frequency 48 TMT-A score

17 Mean peak frequency 49 Digit span forward

18 Highest peak frequency 50 Digit span backward

19 Theta/alpha ratio

20 MST: highest degree theta band Neuroimaging (MRI) biomarkers

21 MST: leaf number theta band 51 MTA score

22 MST: tree hierarchy theta band 52 GCA score

23 MST: highest degree alpha1 band 53 Fazekas score

24 MST: leaf number alpha1 band

25 MST: tree hierarchy alpha1 band CSF biomarkers

26 MST: highest degree alpha2 band 54 Ab42
27 MST: leaf number alpha2 band 55 Tau

28 MST: tree hierarchy alpha2 band 56 p-Tau

29 MST: highest degree beta band 57 Tau/Ab42 ratio

30 MST: leaf number beta band

31 MST: tree hierarchy beta band Visual EEG

32 Lowest PTE theta band 58 Severity of EEG abnormalities

33 Mean PTE theta band 59 Diffuse abnormalities

34 Highest PTE theta band 60 Focal abnormalities

35 Lowest PTE alpha1 band 61 FIRDA

Abbreviations: FIRDA, frontal intermittent rhythmic delta activity; MST, minimum spanning tree; PTE, phase transfer entropy; MMSE, mini mental state

examination; VAT, visual association test; TMT-A, trail making test part A; MTA, medial temporal lobe atrophy; GCA, global cortical atrophy; Ab42, amyloid-b

1–42; tau, total tau; p-tau, tau phosphorylated at threonine 181.

NOTE. Features 1–43 represent quantitative EEG features. Power is the relative power per frequency band (delta [0–4 Hz], theta [4–8 Hz], alpha1 [8–10 Hz],

alpha2 [10–13 Hz], beta [13–30 Hz]). Theta/alpha ratio is calculated as theta/(theta 1 alpha1 1 alpha2). MST highest degree is the maximum degree (i.e.,

number of links for a given node) within the MST. MST leaf number is the number of nodes in the MSTwith only one link (i.e., degree). MST tree hierarchy

is a measure of optimal network organization. Fazekas score is a measure of white-matter hyperintensities on T2-weighted fluid-attenuated inversion recovery

(FLAIR) imaging.
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2.3. Data handling

All the measures from clinical and neuropsychological
data, CSF and neuroimaging biomarkers, and visual EEG
rating (Table 1) were added to the data file with qEEG
data per subject. Missing data were imputed by the average
value over the two tested diagnostic groups for a particular
feature. Features with �33% missing values were excluded
from analyses.
2.4. Classification algorithm

The classification algorithm was built in the machine-
learning module of BrainWave. The random forest approach
was used to build a classifier to differentiate between DLB
and AD, DLB and controls, and AD and controls. Each de-
cision tree in the random forest is built using a bootstrap
sample (i.e., new training set), with replacement, from the
original data (i.e., training set). Each new training set of fea-
tures is randomly drawn from the original data set of fea-
tures. This bootstrap aggregating (i.e., bagging) and
random feature selection help in reducing the variance of
the model, avoid overfitting, and result in uncorrelated trees
[15]. Consequently, in random forest, the cross-validation is
done internally, and there is no need for a separate test set to
estimate the generalization error of the training set [15].

The two random forest parameters, namely mTry (i.e., the
number of input variables randomly chosen at each split
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calculated by the square root of number of features) and
nTree (i.e., the number of trees to grow for each forest)
were set to 8 (square root of 61 features) and 500, respec-
tively. Interestingly, the classification outcome is not highly
sensitive to the choice of these parameters [28].

In every classification, each feature receives a variable
importance (VIMP) score between 0 and 1. For each anal-
ysis, it was possible to manually include and exclude fea-
tures from being used in the tree. By doing so, it was
possible to determine the performance of the classifier for
various combinations of clinical and EEG features.

Three performance metrics, accuracy, sensitivity, and
specificity, were used to assess the performance of the
random forest in discriminating DLB, AD, and controls.

Additional methodologic details are provided in the
Supplementary Material.
3. Results

3.1. Baseline characteristics

The baseline characteristics of the three groups are shown
in Table 2. DLB patients more frequently used medication
affecting the central nervous system (CNS), compared to
AD and controls (P , .05). EEG power in theta and alpha1
band and peak frequency differed between the three groups
(P , .05), whereas power in the alpha2 and beta band
differed between DLB and controls, and between DLB and
AD, but not between AD and controls.

3.2. Classifier results

For all three data sets (DLB vs. AD, DLB vs. controls,
AD vs. controls), performance of the classifier using
different combinations of clinical and/or EEG features is
shown in Table 3. An example of the machine-learning
output is shown in Fig. 1.

It was possible to discriminate between DLB and AD
with an accuracy of 87%, a sensitivity of 88%, and a speci-
ficity of 86%, when all features were included. qEEG
increased the accuracy of the combination of clinical,
biomarker, and visual EEG features with 7% (Table 3). Dif-
ferentiation between DLB and controls was possible with an
accuracy of 94% and a sensitivity and specificity of 95% and
93%, respectively. For differentiation between AD and con-
trols, an accuracy of 91% with a sensitivity of 92% and a
specificity of 91% was achieved.

3.3. Feature importance

Fig. 2 shows the VIMP scores of the features in the group
analyses when all features were included. For discrimination
between DLB and AD, EEG highest beta power was the
most important feature, followed by mean beta power. Using
highest beta power as the only feature resulted in an accu-
racy, sensitivity, and specificity of 71%. Clinical features,
MRI, and CSF biomarkers were of limited value in the
discrimination between DLB andAD (Table 3). qEEG solely
had a higher diagnostic value in the differentiation between
DLB and AD than the combination of the other multimodal
variables without qEEG.

For DLB and controls, the qEEG measure theta/alpha ra-
tio was the most important discriminating feature, followed
by the visual EEG feature “diffuse abnormalities”. Using
theta/alpha ratio as the only feature resulted in an accuracy
and specificity of 83% with a sensitivity of 82%.

For discrimination between AD and controls, the clinical
feature MMSE showed the highest VIMP score, followed by
VAT, TMT-A, and CSF Tau/Ab42 ratio. MMSE, solely, pro-
vided an accuracy of 87% with a sensitivity of 93% and
specificity of 81%.
4. Discussion

This study is the first to combine visual and qEEG
measures with multimodal diagnostic tests in a machine
learning–based classifier. For all three groups (DLB vs.
AD, DLB vs. controls, and AD vs. controls), reasonable
diagnostic accuracies (.85%) could be achieved when
all preselected diagnostic variables were used. However,
when studying variable importance, different “profiles”
were found. (q)EEG features were identified as the most
important for discrimination between DLB and AD and
DLB and controls. Interestingly, the accuracy of the clas-
sifier for discrimination between DLB and AD was higher
when only qEEG features were used, than with a combi-
nation of clinical features (including MRI and CSF anal-
ysis) and visual EEG. When discriminating AD from
controls, cognitive tests (e.g., MMSE) were more valu-
able. (q)EEG did not have additional value for this
discrimination.
4.1. DLB vs. AD and controls

To date, little evidence is available on machine-learning
classifiers for the diagnosis of DLB [12]. Nonautomated
(q)EEG as a diagnostic modality has been more extensively
studied and seems valuable for this diagnosis [9,10,29,30].
Visual EEG abnormalities are a supportive feature in the
clinical criteria for DLB [1]. The present findings strongly
support the potential of (q)EEG for the differentiation be-
tween DLB and AD.

Although the relative power in the delta, alpha2, and
beta band was significantly different between DLB and
AD, power in the beta band turned out to be the most
important differentiating feature. This finding is remark-
able, as beta power has not been reported previously to
have specific discriminative value between these two
forms of dementia. Medication use does not seem to be
a likely underlying cause, because most medication that
was used in the DLB group (e.g., cholinesterase inhibi-
tors) would be expected to cause an increase in beta po-
wer [31], while instead a decrease was found. Likewise,



Table 2

Patient characteristics

DLB AD Control

N 66 66 66

Age, y 70 (9) 70 (9) 70 (7)

Sex, female 14 (21%) 14 (21%) 14 (21%)

Disease duration, y 2.9 (2.2) 3.3 (2.2) 3.6 (4.8)

CNS medication*y 16 (24.2%) 6 (9.1%) 6 (9.1%)

Rivastigmine 6 (9.1%) 4 (6.1%) 1 (1.5%)

Haloperidol 1 (1.5%) 1 (1.5%) 1 (1.5%)

Clozapine 2 (3%) 0 (0%) 0 (0%)

Quetiapine 2 (3%) 0 (0%) 0 (0%)

AED 3 (4.5%) 1 (1.5%) 2 (3%)

Other CNS medication 3 (4.5%) 0 (0%) 2 (3%)

MMSEz 23 (5) (n 5 59) 21 (5) (n 5 63) 28 (1) (n 5 66)

VATz 7.9 (3.5) (n 5 47) 5.6 (4.3) (n 5 60) 11.5 (.8) (n 5 62)

TMT-Az, sec 123 (86) (n 5 47) 87 (63) (n 5 54) 43 (15) (n 5 63)

Digit span forwardx 11.5 (2.5) (n 5 50) 10.5 (3.2) (n 5 61) 12.4 (3.0) (n 5 64)

Digit span backwardk 6.5 (2.8) (n 5 49) 6.6 (3.0) (n 5 60) 9.3 (2.9) (n 5 64)

Hallucinationsz 16 (37.2%) (n 5 43) 3 (5.8%) (n 5 52) 0 (0%) (n 5 40)

Extrapyramidal signs 32 (72.7%) (n 5 44) 7 (13.5%) (n 5 52) 4 (9.1%) (n 5 44)

Bradykinesiaz 26 (59.1%) (n 5 44) 2 (3.8%) (n 5 52) 1 (2.3%) (n 5 44)

Rigidityz 26 (59.1%) (n 5 44) 2 (3.8%) (n 5 52) 3 (6.8%) (n 5 44)

Tremor 6 (13.6%) (n 5 44) 4 (7.8%) (n 5 51) 2 (4.5%) (n 5 44)

RBD 23 (88.5%) (n 5 26) NA NA

Cognitive fluctuations 42 (91.3%) (n 5 46) NA NA

CSF

Ab42
z 677.7 (236.7) (n 5 47) 503.6 (218.2) (n 5 48) 835.0 (245.0) (n 5 37)

Tauyx 341.4 (187.9) (n 5 47) 601.7 (338.1) (n 5 48) 326.2 (156.2) (n 5 37)

p-Tauyx 56.7 (26.4) (n 5 47) 86.9 (39.7) (n 5 48) 52.1 (19.0) (n 5 37)

Neuroimaging

MTA scorez 1.0 (0.25–1.5) (n 5 45) 1.5 (1.0–2.0) (n 5 59) 0.5 (0.0–1.0) (n 5 59)

GCA scorez 1.0 (1.0–2.0) (n 5 45) 1.0 (1.0–2.0) (n 5 59) 1.0 (0.0–1.0) (n 5 59)

Fazekas score 1.0 (0.0–1.0) (n 5 45) 1.0 (0.0–2.0) (n 5 59) 1.0 (0.0–1.0) (n 5 59)

Power

Delta band*y 0.42 (0.16) 0.29 (0.12) 0.27 (0.11)

Theta bandz 0.32 (0.12) 0.22 (0.11) 0.14 (0.07)

Alpha1 bandz 0.11 (0.07) 0.17 (0.10) 0.23 (0.14)

Alpha2 band*y 0.05 (0.03) 0.11 (0.07) 0.12 (0.07)

Beta band*y 0.08 (0.04) 0.16 (0.07) 0.18 (0.07)

Peak frequencyz 7.02 (0.91) 8.06 (1.17) 8.84 (0.91)

Theta/alpha ratioz 0.67 (0.15) 0.45 (0.18) 0.30 (0.13)

Abbreviations: NA, not available; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; MMSE, mini mental state examination; VAT, visual associ-

ation test; TMT-A, trail making test part A; MTA, medial temporal lobe atrophy; GCA, global cortical atrophy; RBD, REM sleep behavior disorder; Ab42,

amyloid-b 1–42; Tau, total tau; p-Tau, tau phosphorylated at threonine 181; MST, minimum spanning tree; AED, anti-epileptic drugs; CNS, central nerve sys-

tem.

NOTE. Data are mean (SD), median (interquartile range), or n (%). Disease duration measured as years since onset of complaints. TMT-A scores are pre-

sented as time needed to complete the task; higher scores mean worse performance. Diagnoses, including “subjective cognitive decline” for the control group,

were made in a consensus meeting after clinical workup; therefore, some control subjects were using medication affecting the central nerve system. Halluci-

nations were assessed using the NPI. Cognitive fluctuations, extrapyramidal signs, and RBD were qualitatively assessed on their presence or absence at the first

clinical presentation. Fazekas score is a measure of white-matter hyperintensities on T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging. Power

is the relative power per frequency band (delta [0–4 Hz], theta [4–8 Hz], alpha1 [8–10 Hz], alpha2 [10–13 Hz], and beta [13–30 Hz]). Peak frequency is the

frequency with highest power in range between 4 and 13 Hz. Theta/alpha ratio is an index that shows the percentage of theta versus alpha spectral potential

during resting state, computed as theta/(theta 1 alpha11 alpha2).

*Significantly different between DLB and controls.
ySignificantly different between AD and DLB.
zSignificantly different between all groups (P , .05).
xSignificantly different between AD and controls.
kSignificantly different between the two dementia groups and controls (P , .05).
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muscle artifacts cannot explain the difference since mo-
tor symptoms in DLB would have resulted in increased
beta power. A more plausible explanation is that defec-
tive dopaminergic networks in DLB, that are intact in
AD, could be related to the lower beta power found in
this group and therefore be a cause for the high discrim-
inative value of this EEG measure. Previous studies have
linked changes in beta power, and beta peak frequency to



Fig. 2. Variable importance scores in the three main classifications using

all features. VIMP scores showing the relative importance of different

groups of features for discrimination between DLB and AD, DLB and

controls, and AD and controls, respectively. Variable importance score

(VIMP) on a 0–1 scale; Clinical features: hallucinations, mini mental

state examination (MMSE) score; visual association test (VAT) score;

trail-making-test (TMT)-A score; Digit span forward and backward.

CSF, cerebrospinal fluid.

Fig. 1. Example of machine-learning output for discrimination between AD

and controls. 15 subjects on x-axis arranged by diagnosis: 1–665 AD pa-

tients, 67–132 5 controls (represented in feature 62 on y-axis);

2 5 diagnostic features 1–61 (Table 1); 3 5 feature 62: “true” diagnostic

labels, set by authors, dividing subjects between AD patients (red) and con-

trols (blue); feature 63: diagnostic labels set by classifier; 4 5 variable

importance (VIMP) score per feature.

Table 3

Classifier results

Group and feature selection

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

DLB vs. AD

All features 87 88 86

Only clinical features 66 65 67

Clinical features 1 biomarkers 71 71 70

Clinical features 1 biomarkers 1
visual EEG

78 76 80

Quantitative and visual EEG 85 86 84

Only quantitative EEG 85 86 85

DLB vs. controls

All features 94 95 92

Only clinical features 89 92 86

Clinical features 1 biomarkers 86 87 85

Clinical features 1 biomarkers 1
visual EEG

90 87 94

Quantitative and visual EEG 91 93 89

Only quantitative EEG 92 95 89

AD vs. controls

All features 91 92 91

Only clinical features 90 93 88

Clinical features 1 biomarkers 93 94 92

Clinical features 1 biomarkers 1
visual EEG

93 93 92

Quantitative and visual EEG 63 62 64

Only quantitative EEG 62 63 62

Abbreviations: AD, Alzheimer’s disease; DLB, dementia with Lewy

bodies; EEG, electroencephalography.

NOTE. Clinical features include hallucinations, extrapyramidal signs,

and neuropsychological test results (mini mental state [MMSE] score; vi-

sual association test (VAT) score; Trail-making-test (TMT)-A score; and

digit span forward and backward); Biomarkers include MRI (medial tempo-

ral lobe atrophy [MTA] score; global cortical atrophy [GCA] score; Fazekas

score), and cerebrospinal fluid (CSF) (amyloid-b 1–42 (Ab42); total Tau,

phosphorylated Tau (p-Tau), and tau to Ab42 ratio) data.
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PD, PD dementia, and dopaminergic medication [32–34].
Furthermore, beta power can also be influenced by the
cholinergic system [35,36]. Both the cholinergic system
and the beta band have been related to the processes of
attention [16,37]. The cholinergic system is more
severely impaired in DLB brains than in AD brains
[38,39], and this cholinergic deficit and associated
attentional deficits might also be a discriminating
aspect between the two types of dementia. Finally, the
lower beta power in DLB could be caused by the
overall shift in EEG activity from higher to lower
frequency bands in DLB that has been shown by
previous work [9,10,29].

For DLB and controls, theta/alpha ratio was the most
important discriminating feature. In DLB, theta power is
higher, and alpha power is lower than in AD and controls
(Table 2). Therefore, EEG slowing seems to be more
remarkable in DLB, which is in line with previous results
[9,30]. The greater EEG slowing in DLB makes theta/
alpha ratio a potentially important discriminating factor
between DLB and controls.
4.2. AD vs. controls

For classification between AD and controls, an accuracy
of 91% is in line with accuracies reported earlier in machine
learning–based classification techniques for AD [13,40,41].
Although most of these studies were imaging based, some
studies used EEG data. Established neuropsychological
tests and CSF biomarkers [23] have high VIMP scores in
the present classifier, which is in accordance with their
importance in current clinical decision making. However,
the observed accuracy of 63%when including only EEG fea-
tures is low compared to previous studies on qEEG-based
classifiers reporting accuracies of 80%–95% [40,41]. A
possible explanation for this could be the use of healthy
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subjects as controls in these studies [40,41]. In the present
study, subjects with SCD were used as controls, and
possibly, they have more EEG abnormalities than healthy
elderly without SCD. Furthermore, earlier studies have
shown that EEG results in AD can be heterogeneous,
abnormalities are less profound than in DLB, and normal
EEGs frequently occur [29,39]. These factors could all be
contributing to the lower accuracy found.
4.3. Strengths and limitations

A strength of this study is that the random forest algo-
rithm produces a highly accurate classifier (with cross-
validation build into the method and only two required
parameters, none of which is critical for the results). The
method is easy to use, has a high interpretability, runs effi-
ciently on large data sets, and gives estimates of which vari-
ables are important in the classification [14]. Moreover, an
essential part of the feature selection is done internally in
the random forest algorithm and thus helps in reducing the
variance of the model and avoids overfitting [15]. Second,
this study compared a relatively large group of DLB patients
with a carefully matched group of controls and AD patients.
Third, subjects with SCD were used as a control group.
These subjects visited the memory clinic with subjective
memory complaints, and therefore represent a heteroge-
neous group. In clinical practice, this group is the exact pop-
ulation from which patients with a diagnosis of dementia
need to be distinguished.

This study has some limitations. First, not all possibly
relevant variables (e.g., REM sleep behavior disorder, cogni-
tive fluctuations, results of DAT-SPECT scans and EEG vari-
ability) were available or scored quantitatively to be
included as features in the classification algorithm. Second,
some features had a relatively high number of missing
values, which were excluded from the analysis or imputed.
For instance, cognitive fluctuations and REM sleep behavior
disorder were excluded from the analyses for this reason. In
the case of CSF biomarkers, hallucinations, and extrapyra-
midal signs, missing values were imputed. Notably, CSF
biomarkers turned out to be important discriminating fea-
tures between AD and controls. This not only implies that
CSF biomarkers could have had a higher VIMP score if no
data had been missing, but also that when a continuous
feature is important in distinguishing two groups, its perfor-
mance is not fully influenced by the number of missing
values. In contrast, in the case of categorical features, it is
more difficult to impute the missing values with a meaning-
ful average. Therefore, missing data in these types of fea-
tures can result in an underestimation of the importance of
categorical features.

Finally, initial selection of available features by the au-
thors could have resulted in circular reasoning by including
features that are already known to be important discrimi-
nating variables between two groups, whereas there is no au-
topsy confirmed diagnosis as a gold standard. Nonetheless,
during a follow-up period of 0–7 years, none of the DLB di-
agnoses and only two AD diagnoses (mean follow-up of
21.2 months) were changed (the diagnosis was converted
in 15 SCD subjects).

In summary, machine learning–based diagnostic classi-
fiers show that qEEG is a valuable contribution in differen-
tiating between DLB and AD. EEG data are easily
obtained, as EEG is a low-cost and noninvasive procedure.
Further research should elucidate the diagnostic value of
relative beta power and theta/alpha ratio for the diagnosis
of DLB. VIMP scores quantify the importance of a variable
but do not provide information about the actual value, such
as a cutoff, and this needs to be studied separately. Still, the
current findings suggest a bigger role for (q)EEG in the diag-
nostic criteria for DLB.
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RESEARCH IN CONTEXT

1. Systematic review: We searched PubMed for studies
on automatic classification of dementia. Although
machine-learning techniques have been studied to
classify AD patients, we found only little work on
automatic differentiation between DLB and AD.
These relevant articles were cited. We found no
studies that used multimodal diagnostic data for this
purpose.

2. Interpretation: We hypothesize that machine-
learning techniques can aid and provide insight in
the multimodal diagnostic process of dementia. Our
findings show that (q)EEG is of important additional
value for the discrimination between DLB and AD.
Furthermore, some potentially important (q)EEG
features were identified.

3. Future directions: Future studies should further elab-
orate the diagnostic value of EEG features that were
identified as important by our classifier (e.g., relative
beta power and theta/alpha ratio). Overall, this study
suggests a bigger role for (q)EEG in the clinical diag-
nostic criteria of DLB.
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