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Abstract: In recent years, a series of research experiments have been conducted on WiFi-based gesture
recognition. However, current recognition systems are still facing the challenge of small samples
and environmental dependence. To deal with the problem of performance degradation caused by
these factors, we propose a WiFi-based gesture recognition system, WiGAN, which uses Generative
Adversarial Network (GAN) to extract and generate gesture features. With GAN, WiGAN expands
the data capacity to reduce time cost and increase sample diversity. The proposed system extracts
and fuses multiple convolutional layer feature maps as gesture features before gesture recognition.
After fusing features, Support Vector Machine (SVM) is exploited for human activity classification
because of its accuracy and convenience. The key insight of WiGAN is to generate samples and merge
multi-grained feature maps in our designed GAN, which not only enhances the data but also allows
the neural network to select different grained features for gesture recognition. According to the result
of experiments conducted on two existing datasets, the average recognition accuracy of WiGAN
reaches 98% and 95.6%, respectively, outperforming the existing system. Moreover, the recognition
accuracy under different experimental environments and different users shows the robustness
of WiGAN.

Keywords: wireless; gesture recognition; channel status information; generate adversarial network;
support vector machine

1. Introduction

With the rapid development of virtual reality and smart home, human–computer interaction
applications are becoming more and more popular in our life. Since human gesture recognition can
improve the quality of human–computer interaction and intelligent services, it has become one of the
most important research hotspots in intelligent applications.

Traditional gesture recognition methods are mainly based on cameras [1], wearable sensors [2],
RFID [3], radar [4], and other special equipment [5]. Compared with these methods, WiFi-based
gesture recognition methods are of more importance. For example, cameras have advanced technology
and high accuracy in recognizing human gestures; however, these devices are usually expensive and
there is a risk of privacy leakage. In contrast, WiFi-based gesture recognition has the superiority of
low cost, no special equipment, scanning through walls, and privacy protection, which is better than
traditional methods in certain aspects. Therefore, the demand for human–computer interaction has led
to extensive research on gesture recognition using commercial WiFi devices.

In general, signal indicators used in WiFi-based gesture recognition are mainly received signal
strength (RSS) and channel state information (CSI). Due to the convenience of collecting data,
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RSS [6,7] is often used in scenarios with simple actions and low equipment requirements. However,
when the distance increases and the multipath effect becomes obvious, the performance of RSS will
be significantly reduced in some complex environments. Therefore, with the deepening research,
researchers prefer to use CSI instead of RSS to recognize human gestures. Compared with RSS,
CSI greatly improves the accuracy of gesture recognition because it can provide more information.
At present, some CSI-based works such as E-eyes [8], WiFall [9], WiMU [10], and TW-See [11] have
been proposed, which shows that WiFi-based gesture recognition has become an important part of the
state-of-the-art. E-eyes collects CSI information on commercial WiFi devices to recognize nine typical
daily in-place activities and eight walking activities under two environments. On the basis of motion
detection by anomaly detection algorithm, WiFall, which is designed by using the temporal stability
and frequency diversity of CSI applies a one-class Support Vector Machine classifier and Random
Forest algorithm to achieve fall detection. WiMU further segments DFS power profile for multi-person
activity recognition. TW-See is a device-free wireless recognition system that can recognize human
activities passing through walls, which uses an Or-PCA approach to obtain the correlation between
human activities and corresponding changes of CSI. TW-See extracts features based on correlation and
uses neural networks to realize activity recognition.

However, most of the current research is carried out in the experimental environment. In practical
applications, we often encounter some problems which are mainly caused by imbalanced sample
classes and inconvenient movement collection. In this paper, the situation of limited training samples
is referred to a small sample problem. For commodity devices, they need to collect data to learn
and recognize gestures as soon as the user uses them, but each class of samples collected is usually
imbalanced. For example, the WiKey [12] proposed by Ali et al. is a classic human–computer
interaction system, which can perform key recognition based on the CSI changes caused by the subtle
movements of human fingers during typing. However, it is non-uniform for the usage rate of each
key, which results in a class imbalance problem in offline training. In addition, in the scenario of fall
recognition [13], it is difficult to collect falling data because the fall action occurs with a small probability.
However, we usually need a lot of data to ensure system performance in these scenarios. In addition,
if the fall data are forcibly collected, there will be a high time cost. Therefore, these small sample
problems have affected the popularity and application of gesture recognition algorithms. Moreover,
the experimental results of most existed systems depend on specific experimental environments and
fixed users, which will significantly reduce the performance of cross-domain recognition [14,15]. In this
paper, we refer to this phenomenon of not adapting to new scenes as environmental dependence.
This is a relatively difficult problem to address in gesture recognition, and each researcher has a
different focus. In recent years, many researchers have been striving to make their systems adaptable
in some aspects. For example, WiFinger [16] devises an environmental noise removal mechanism to
mitigate the effect of environmental changes. WiAG [17] presents a novel configuration estimation
scheme that automatically identifies the position and orientation of the user, which enables position
and orientation agnostic gesture recognition.

To tackle the above two problems, this paper proposes a CSI-based gesture recognition algorithm,
namely WiGAN. The system does not require any additional equipment or wearable sensors to
complete gestures recognition, thus greatly reducing the system cost. The gesture recognition process
of our system is shown in Figure 1. First of all, since raw CSI data have a series of noise, some
data processing approaches are used to remove the noise and extract the amplitude characteristics.
Second, based on GAN, WiGAN not only performs data generation in the generator, but also fuses
features in the discriminator. Finally, SVM [18,19] is utilized for human activity classification, which is
more suitable for small-scale training samples. Through a lot of experiments, we can infer that the
data enhancement by GAN increases the diversity and number of samples, meaning that the problem
of small sample caused by class imbalance and difficulty in motion collection is addressed. With the
increase of the sample diversity and the application of feature fusion methods [20], compared to other
systems, WiGAN can better deal with the environmental dependency issue. Experimental results show
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that our system can effectively improve the recognition performance. The main contributions of this
paper are summarized as follows:

• We propose a WiFi-based gesture recognition system, WiGAN, which addresses the problem of
performance degradation caused by small samples and the environmental dependence. The idea
of feature fusion and generation is presented for gesture recognition with limited samples.

• A GAN model that combines feature maps of different layers is presented, where more diverse
features are extracted to recognize gestures. By taking superiority of the data enhancement and
feature fusion in GAN, WiGAN not only saves the time of collecting difficult samples, but is also
beneficial to dealing with small sample problems.

• Extensive experiments are conducted to show that WiGAN has a better recognition performance
and it possesses good properties of robustness.

The rest of the paper is organized as follows. Section 2 provides an overview of related work.
Section 3 describes the design of each module in the system. Section 4 introduces the structure and
function of GAN in detail. Section 5 presents the experiments and evaluations. Finally, we conclude
our work in Section 6.

Channel State Information

Extract Amplitude

Data Preprocessing 

GAN Training

Gesture Predict

Training DataTest Data

Improved STElinear Interpolation

Correlation Analysis DWT

SVM

Original Data Generated Data

Figure 1. The flow of our gesture recognition.

2. Related Work

As we know, existing gesture recognition methods can be divided into two categories:
device-based systems and device-free systems. Although most of the device-based systems can achieve
an impressive estimation accuracy, they often employ additional equipment such as sensors, cameras,
or smartphones. Instead, device-free systems work without any special equipment. Such systems
are mainly based on RSS and CSI, which are more convenient than device-based systems in many
scenarios. In this paper, we explored CSI-based gesture recognition because CSI contains more
fine-grained information.

In Section 2.1, we will briefly describe the superiority and weaknesses of CSI-based gesture
recognition methods. Since our work studies the application of GAN in gesture recognition, the differences
of several CSI-based gesture recognition methods using GAN will be separately discussed in
Section 2.2.
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2.1. CSI-Based Gesture Recognition

There are three main CSI-based gesture recognition methods: model-based gesture recognition,
fingerprint library matching-based gesture recognition, and learning-based gesture recognition.

Model-based methods mainly analyze the correlation between CSI dynamics and each gesture,
and then establish a model to show it. The model is used to calculate parameters to finally realize
gesture recognition. For instance, Wang et al. [21] built a human activity recognition system, CARM,
which uses CSI-Speed and CSI-Activity models to estimate the correlation between CSI dynamics
and human activities. It recognizes a given activity by matching it to the best-fit profile based
on this correlation. The QGesture [22] system establishes a one-dimensional scene model and a
two-dimensional scene model respectively, which can measure the movement distance and direction
of human gestures in two scenarios. Model-based methods are generally simple to train models and
do not require large datasets. However, they have strong environmental dependence, so it is difficult
to effectively identify in new scenes.

Fingerprint library matching-based methods usually establish a complete fingerprint library
about CSI features to recognize a given gesture by matching gesture features with the fingerprint
library. For instance, Li et al. [23] proposed WiFinger to identify finger-grained gestures by extracting
gesture features and using K-nearest neighbor and dynamic time warping (KNN & DTW) to
match the fingerprint library. Al-qaness et al. [24] presented WiGeR to identify human gestures by
calculating DTW distances between given samples and fingerprint library samples. Fingerprint library
matching-based methods can achieve a reliable recognition accuracy, but they require sufficient samples
to build a fingerprint library. In a small sample scenario, they usually cannot show better performance.

Learning-based methods usually combine signal processing algorithms and machine learning
for gesture recognition. For example, Ma et al. [25] presented a sign language recognition system,
SignFi, which uses a nine-layer convolutional neural network (CNN) to realize the recognition of
276 sign gestures with an accuracy of 94%. CrossSense [26] applies transfer learning to effectively
reuse the learned knowledge across different sites and tasks. At present, deep learning-based gesture
recognition has become a research hot spot. When the data features are inconspicuous, deep learning
can learn better features compared with other methods. The biggest obstacle for WiFi-based gesture
recognition in many applications is to find a suitable feature set. However, for deep learning, the biggest
excellence is that a better feature set can be learned as long as there are enough layers. Neural
networks can find and characterize the complex structural features within the problem, so they greatly
improve performance.

The above systems always have weaknesses that affect further popularity. Therefore, we propose
a GAN-based WiFi gesture recognition system to overcome the above problems. Experiments show
that WiGAN has better recognition accuracy for different environments and users under small
sample conditions.

2.2. GAN Data Enhancement-Based Gesture Recognition

To the best of our knowledge, there are two GAN systems in CSI-based gesture recognition being
AF-DCGAN [27] and CsiGAN [28]. Li et al. [27] use the AF-DCGAN model to generate more amplitude
feature maps of the sampling point position. It saves a great deal of time collecting each single sample
point as well as human cost on the indoor positioning problem. CsiGAN is a semi-supervised learning
model to address the performance degradation of leave-one-subject-out validation for CSI-based
activity recognition. In contrast, WiGAN is primarily a gesture recognition system specialized on the
condition of small samples. The system pays more attention to address the problem of small samples
and environmental dependencies. Therefore, based on our GAN model, the CSI data processing
module and SVM are designed to help it address these problems. To evaluate the performance of the
system, we set up two datasets for comparison, and better demonstrate the superiority and robustness
of the system compared to others. Moreover, unlike AF-DCGAN and CsiGAN that only use GAN to
generate samples, the GAN module we designed is not only used to generate data but also extracts key



Sensors 2020, 20, 4757 5 of 19

layer information for fusion. This approach makes full use of coarse-grained and fine-grained features,
which is equivalent to exploiting different levels of description of the same action to recognize gestures.

In addition, WiADG [15] is also a system with adversarial networks as the core. It trains a
target encoder to map the target data to the domain invariant latent feature space to minimize the
domain discrepancy distance between the source domain and the target domain. After that, this
system uses the source domain classifier to classify target domain data to achieve cross-domain
recognition. Structurally, WiGAN adds a generation module and feature fusion module compared
to WiADG, which leads to a completely different theory between the two systems. Unlike using an
encoder for domain mapping in WiADG, WiGAN exploits the GAN that has been trained in the source
domain to enhance the data in the target domain and fuse sufficient features. Our system can also
deal with the performance degradation caused by environmental dependence. WiADG conducted
experiments in a conference room and an office zone to illustrate the domain adaptability of the system
to the environment. In addition, we not only discuss the environmental impact but also explain the
performance of the system under different users, both of which make our evaluations more extensive
than previous works.

3. System Design

In this section, we will explain the main structure and function of WiGAN.

3.1. Overview of WiGAN

WiGAN is a device-free system that can recognize gestures using commercial WiFi devices.
As shown in Figure 2, this system consists of three sections: (1) Data processing; (2) Feature generation
and extraction; and (3) Gesture classification. Next, we introduce the components and functions of
each module.

The CSI processing module converts the raw CSI data into sanitized CSI amplitude through some
signal processing approaches. Therefore, this module is mainly divided into four sections: (1) Activity
detection. Extract the amplitude of CSI and cut out the gesture data in CSI. (2) Interpolation. Use linear
interpolation to unify the CSI shape and compensate for CSI packet loss. (3) DWT denoising. Remove
high-frequency noise in CSI. (4) Subcarrier selection. Choose subcarriers suitable for feature extraction.
In general, the CSI signal processing module extracts appropriate CSI gesture data to prepare for the
subsequent part.

The feature generation and extraction module is composed of GAN and CNN algorithms. In GAN,
the generator is responsible for generating the preprocessed data, while the discriminator is used to
extract features and classify the CSI data by softmax. In summary, GAN has played a role in enhancing
data and extracting features in the system. The CNN algorithm is part of the discriminator, which has
the function of reducing the feature map dimension and fusing the feature information of selected
layers in the discriminator. This allows the CSI features of different grains to be combined into a
complete feature set as softmax layer input for classification.

The classification module completes the recognition of gestures. Under the condition of small
samples, WiGAN uses the generated data to enhance the dataset for classifier training, and it recognizes
a given activity by the trained SVM classifier.
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Figure 2. WiGAN system architecture.

3.2. Channel State Information

In an indoor environment, WiFi signals propagate from the transmitter to the receiver through
multiple paths, which carry environmental information during the propagation process. Therefore,
we take the information that can describe the channel condition as the basic information of
environmental perception, such as RSS and CSI. However, RSS measures the effect of WiFi signal
multi-path propagation superposition, and cannot distinguish multiple propagation paths of signals.
These weaknesses not only affect environmental perception, but also limit the further development
of RSS.

Researchers began to use the Channel Impulse Response (CIR) [29] of the wireless channel to
describe the channel in the time domain. However, accurate CIR cannot be extracted from ordinary
wireless devices. Therefore, we convert the CIR to the frequency domain by FFT, and characterize the
multipath by the channel frequency response (CFR) [30]. Finally, CFR can be obtained in the form of
CSI even on ordinary WiFi devices. The received CSI signal is a matrix of Nt × Nr × Nc. (number of
transmitting antennas × number of receiving antennas × number of subcarriers).

3.3. Activity Detection

From Figure 3, we can see that there is always a small smooth segment at the beginning and
end of the signal, which are static CSI data that do not contain action information. Since the presence
of static CSI will interfere with gesture recognition, it is important to use appropriate approaches to
segment activity data. To detect endpoints in different gestures, we propose the improved short-term
energy (STE) [24] algorithm for activity recognition. The process of improved STE is divided into
three sections:

(1) As shown in Figure 3a–c, the difference in CSI between different antennas is relatively
large, so we consider cutting activity data on each antenna. However, each antenna contains Nc

subcarriers that have a strong correlation with others. Therefore, the algorithm first performed
Principal Component Analysis (PCA) on each subcarrier of the three antennas to extract the main
information of the CSI. Since the information of all subcarriers is fully utilized, the CSI information
selected by using PCA is more representative.

(2) When there is no moving object around, the amplitude of CSI remains relatively constant.
However, the CSI amplitude will be significantly distorted with the moving human body because
human bodies are good reflectors of wireless signals. Therefore, we designed improved STE as an
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algorithm based on an adaptive window, by calculating the energy of the CSI value in each time
window to determine whether there is activity. Generally, high energy and low energy represent the
presence and absence of activity. An improved STE algorithm is designed to adjust the window length
within the threshold to suit the length of activities. The short-term average energy of a speech signal at
time n is shown as Equation (1):

En =
n

∑
m=n−(N−1)

[CSIpca(m)w(n−m)]2 (1)

In (1), N is the window length, CSIpca is the first principal component signal after PCA of CSI;
w(n) is the window function, and an adaptive length rectangular window is used in this paper.

(3) Finally, we take the sum of the three window ranges and cut three antennas uniformly in the
synthesis window. Under the condition of significant activity, using the obtained window to perform
activity detection on all subcarriers has obtained satisfactory results.
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Figure 3. Raw CSI and sanitized CSI of the first subcarrier in each antenna. (a–c) are the CSI amplitudes
obtained by collecting the same gesture signal by the three antennas of the WiFi device. (d–f) are their
sanitized CSI amplitudes.

3.4. Interpolation

For different gestures, the time to complete the gesture is different, which results in a different
frame length for each CSI trace. To input the same shape CSI to neural networks for training, unifying
the shape of the CSI is a necessary step. From this perspective, linear interpolation is a suitable
method to ensure that each gesture has the same number of WiFi packets. Moreover, in the indoor
environment, the link signal is significantly weakened and part of the WiFi packets will be dropped
due to non-line-of-sight connections and wall penetration. Therefore, it is necessary to use linear
interpolation to reasonably compensate for lack of data and adjust the CSI shape. Specifically, we first
use the timestamp of each CSI to locate the CSI value, and then obtain CSI at equal intervals on the
time axis according to the length of time, thereby completing the unification of the CSI shape.

3.5. Discrete Wavelet Transform

The CSI value describes how the amplitude of the wireless signal change when the signal travels
from the sending antenna to the receiving antenna over a subcarrier. However, CSI measurements
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obtained from commercial WiFi devices contain noise from various sources such as interference
coming from nearby devices, transmission power adaptation at the sender, and imperfect clock
synchronization [31]. Figure 3a–c show the amplitude of the first subcarrier CSI of the three antennas
when humans make a push action. Due to the influence of environmental noise, the fluctuation of the
CSI value caused by the moving human body is irregular. Therefore, the CSI measurement value must
be denoised before extracting human gesture features.

Generally speaking, the noise signal is mostly contained in higher frequency details because of
the low gesture frequency. To effectively filter out noise and protect effective signals, we choose to
use Discrete Wavelet Transform (DWT) for signal denoising. The first step of DWT denoising is to
select the appropriate wavelet and wavelet decomposition level to perform wavelet decomposition on
the signal. After signal decomposition, the decomposed wavelet coefficients are weighted by using
thresholds. Finally, according to the low-frequency coefficients of the wavelet decomposition and the
processed high-frequency coefficients, the signal is reconstructed by the wavelet. Compared with
other noise reduction approaches, DWT denoising can protect useful signal spikes and abrupt signals,
and which distinguishes detailed information from high-frequency noise. Although DWT denoising
can be regarded as low-pass filtering to a large extent, but it is much smoother than the signal generated
by low-pass filtering and preserves details in CSI amplitude changes. In this paper, DWT filtering uses
a 5 level sym3 wavelet to decompose the signal. Through careful parameter selection, DWT filtering
eliminates in-band noise, retains high-frequency components, and reduces signal distortion. The raw
CSI denoising results are shown in Figure 3d–f.

3.6. Subcarrier Selection

When performing gesture recognition in a complex environment, the reflection of obstacles
between STA and AP not only weakens the signal strength, but also brings more noise. Therefore,
to achieve the purpose of ensuring recognition accuracy in some complex environments, placing
multiple sets of transceiver links to collect more information is an excellent solution. However,
the system processing too much data at one time will slow down the running speed. From [13,23,32],
it can be known that the CSI power segments of different subcarriers have correlations. In addition,
when humans move, the correlation becomes more obvious. Therefore, we follow the method in [32]
to apply this principle to select subcarriers. To remove insensitive subcarriers to activity, it is necessary
to calculate the correlation between subcarriers and select subcarriers with high correlation changes.
In this way, WiGAN tries to select subcarriers that can represent changes in motion.

3.7. Generative Adversarial Network

The Generative Adversarial Network [33,34] is a deep learning model, which consists of two
modules, namely the generator (G) and the discriminator (D). G captures the distribution of sample
data and generates fake samples to deceive D, and D competes with G by distinguishing between
real samples and false samples. Usually, G and D are alternately trained to achieve dynamic balance
through games with each other. However, it is difficult for GAN to achieve balance through training.
The objective function of GAN is shown below:

min
G

max
D

V(D, C) = Ex∼Pdata(x){log D(x)}+ Ez∼Pz(z){log(1D(G(z)))} (2)

For WiGAN, combining the structure of Deep Convolution Generation Adversarial Network
(DCGAN) [35] and the characteristics of Conditional Generative Adversarial Network (CGAN) [36],
we propose a conditional convolution generation adversarial network, which can control the generation
of small samples using control conditions. Compared with other GAN structures, our GAN adds a
CNN module to fuse the feature maps of the last four layers in D, which is conducive to combine more
abundant features for recognition.
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To better show the performance of the system, the accuracy of WiGAN is evaluated under
supervised and semi-supervised conditions. From the experiment in Section 5.3, our GAN has achieved
excellent results. In supervised learning, when entering labeled samples and labels, D outputs the
probability of k + 1 classes, where real samples are classified in the first k categories, and produced
generated samples are classified in the (k + 1)th category. In semi-supervised learning, it is necessary
to input labeled samples, labels, and unlabeled samples. For unlabeled samples, D is a binary classifier
that judges the input unlabeled data as real samples or fake samples. Reflected on the output of D,
the first k categories are real samples, and the (k + 1)th category is false samples. For labeled samples,
they are divided into k + 1 categories like supervised learning. The structure of GAN is shown in
Figure 4.
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Figure 4. GAN structure.

3.8. Classifier

The classifier is used to classify features fused by GAN. To select the most suitable classifier for
small samples, we compared eight commonly used classification algorithms. According to Section 5.4.1,
the best performing classification algorithm is SVM [18,19] based on radial basis function kernel (RBF).
SVM is a supervised model, which maps input linear inseparable samples to a high-dimensional feature
space by using a kernel function, so that original linear inseparable samples become linearly separable.
This algorithm finds the largest edge hyperplane in the transformed feature space for classification.

In our research, there are two main reasons for using SVM as the final classifier. On the one hand,
compared with other algorithms, SVM is suitable for the scenario with a small number of samples and
imbalanced classes. Its accuracy is even slightly higher than the CNN algorithm under small sample
conditions. On the other hand, the classifier needs to input generated samples and original samples
at the same time, both of which are multi-layer fusion features. Compared with other classification
algorithms, SVM is convenient to input multi-grained features for classification.
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4. GAN Model Design

4.1. Generator and Discriminator

The generator G in WiGAN consists of a deconvolution layer, batchnorm layer, softmax, and ReLU
activation function. Since the structure of DCGAN is stable, we decided to use full convolution to form
G and introduce class labels in G to guide the sample generation process. In this way, G can generate
data according to the label to address the small sample problem. For our discriminator D, with a
similar structure to G, it adds a feature fusion module that contains four convolutional layers. Here,
the feature fusion module convolves the last four layers of network features to compress information,
and then inputs all features into the softmax layer to calculate the probability. Generally speaking,
real samples and fake samples are put into D alternately. As shown in Figure 4, our proposed GAN
model extracts the features of four convolutional layers in D and inputs them into the CNN for further
convolution. In this way, the size of feature maps is reduced to facilitate SVM classification. It is worth
explaining that softmax is used to classification during GAN training, while SVM does not belong to
GAN. It takes the generated and original features as input to recognize given gestures. In general,
D mainly plays the role of feature fusion and classification.

The discriminator D performs feature extraction through convolution. After continuous
convolution, the original features are continuously concentrated, and the deeper features finally
obtained make the sample classification more reliable. Just like for an image, in the feature extraction
stage, the shallow network can capture some simple features of the image, such as shapes and lines.
Due to the larger receptive field and more convolution operations, the deep network can capture
abstract features. After extracting process features, D combines these features maps of different layers
as compound features to recognize gestures.

In this way, compared with other GANs, the proposed GAN can make full use of the effective
features of each layer for recognition. Since both shallow and deep networks have their focus and
strength, fully integrating features of different sizes is more suitable for gesture recognition. Moreover,
the convolution process is usually accompanied by the loss of important information, so feature fusion
can also use as much information as possible for recognition. In short, the superiority of GAN in
our system is that, no matter which depth of the feature is effective for recognition, there may be
opportunities to use it. This method enables the network to learn and recognize the importance of
different depth features by itself.

4.2. GAN Training Process

Our training process is shown in Algorithm 1. By setting cycles, GAN fixes one parameter at a
time to update another (θD and θG), and then iterates the process continuously until it reaches balance.
From [28], we know that it is easier to collect a large amount of unlabeled data in the process of offline
data training than to collect labeled data. Therefore, the semi-supervised GAN model is more suitable
for practical applications. To better evaluate and draw conclusions, the two cases of semi-supervised
learning and supervised learning are compared in the experiment. In semi-supervised learning, xt is
labeled data and unlabeled data. However, we only use labeled data as xt in supervised learning.
To easily observe the training effect, the algorithm set an evaluation breakpoint parameter M (line 2).
That is, within a cycle (lines 2–5), the training accuracy and validation accuracy are evaluated every
a certain period, which is beneficial to save debugging time. The training process of each epoch
(line 6–13) is that G firstly generates fake samples through the input uniform noise z and label y.
Then, D exploits the input fake sample and the real sample to calculate LD (D loss) and LG (G loss)
(lines 8, 11) Finally, the Adam algorithm with the default parameters is used to update the generator
parameter θD (line 9) and the discriminator parameter θG (line 12) until GAN reaches dynamic balance.
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Algorithm 1: Optimization of GAN Model via the Adam Method.
Input: Training data xt, validation data xv, learning rate η, label y, hyper-parameter β1,
β2, ε, training epochs Nepochs
Initialize: Discriminator with parameter θD, genertor with parameter θG,
number of batch Nbatchs, uniformly distributed random vector z
1: for t = 0 to Nepochs do
2: if i % M == 0 then
3: Sample a batch of validation data xv and training data xt.
4: Calculate and save validation accuracy and training accuracy.
5: end if
6: for batch = 0 to Nbatchs do
7: Sample a batch of data xt and label y.
8: Updata discriminator loss LD
9: Use Adam algorithm to update θD by minimize LD
10: Sample a batch of label y and z.
11: Updata genertor loss LG
12: Use Adam algorithm to update θG by minimize LG
13: end for
14: end for

5. Experimental Evaluation

5.1. Experimental Setup

We conducted experiments on two CSI-based gesture recognition datasets and implement WiGAN
in MATLAB and Tensorflow.

(1) Widar3.0 data: Zheng et al. [14] collected dozens of different gestures at 5.825 GHz using the
Linux CSI Tool. Due to the excessive number of gesture samples, we extracted push, sweep, clap,
and slide actions from 14 users. In addition, we use a large number of the first three actions but use
only a small amount of the fourth action to create a small sample condition. The dataset samples
come from three experimental environments: classroom, auditorium, and office. Each environment is
divided into five gesture collection locations, and the user performs gestures in five directions at each
location (details in [14]). In this dataset, each gesture uses one transmitting device and six receiving
devices to collect. Since this is a complex dataset, we use the CSI processing module to finally process
the CSI shape as 200× 180× 1.

(2) SignFi data: Ma et al. [25] used openrf modified by the 802.11n CSI tool to collect thousands of
sign language gestures in CSI. With a transmission power of 15 dBm, WiFi AP and STA work under
the conditions of 5 GHz and 20 MHz bandwidth. There are a total of 276 sign language gestures
collected by five users in experimental environments of lab and home. Since SignFi data are relatively
standard, there is rarely use data processing in the dataset. Compared with Widar3.0 data, SignFi data
have too many gesture categories, which leads to the number of samples in the SignFi dataset far
exceeding the Widar3.0 dataset. Therefore, the purpose of doing experiments on this dataset is to
observe the recognition performance of WiGAN under conditions of large samples and multiple
categories. We want to compare the performance of WiGAN on two datasets.

In the following experiment, 10-fold cross validation and user-based leave-one-subject-out
validation are used to compare with other methods under different conditions. WiGAN is optimized
by Adam with learning rate η = 0.0002 and the mini-batch size of data is 64. The hyper-parameters
β1, β2, and ε use the default parameters in tensorflow. In these experiments, training and testing are
performed by a Linux desktop with some GPU such as Tesla K80, Tesla K40m, GeForce GTX 1080,
and TITAN Xp.
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5.2. The Comparison between WiGAN and Existing Methods

On two datasets, WiGAN is compared with several existing gesture recognition methods (WiGeR,
WiFinger, SignFi). In these methods, WiGeR [24] identified human activities by calculating the DTW
distance between CSI traces and given samples; WiFinger [23] used KNN and the DTW algorithm
to recognize finger-grained gesture; SignFi [25] exploited features containing both amplitude and
phase, and then adopted a nine-layer CNN for sign gesture classification. In the CNN experiment,
we found that, using our CSI processing method, only the CSI amplitude as input can get better results
compared with SignFi. Therefore, to be consistent with our system, only the amplitude is used as
input in the CNN method. Both the DTW and KNN and the DTW experiments are the same as the
original system (WiGeR and WiFinger). Among these four systems, the methods used in WiGeR and
WiFinger belong to fingerprint library matching-based methods, while SignFi and WiGAN use the
deep learning-based methods. In the following experiment, the strengths and weaknesses of these two
categories of methods are compared.

5.2.1. Performance of Different Methods

To demonstrate the performance of our system in gesture recognition, 10-fold cross validation
is performed for four approaches on two datasets. Figure 5 shows the system performance of the
four approaches, of which WiGAN achieves the best performance. In particular, WiGAN reaches 98%
and 95.6% accuracy on both datasets respectively, and its performance is between 2% and 5% better
than CNN. This is because data enhancement and feature fusion in WiGAN play an important role,
making WiGAN generally superior to other methods under the conditions of large and small samples.
Moreover, from the comparison of several methods, the recognition accuracy of WiGAN is 50% and
20% higher than those of WiGeR and WiFinger respectively on two training sets. The reason why
the performance of fingerprint library matching-based methods is significantly reduced in Widar3.0
is that they cannot overcome the problems of small sample and complex environment. Therefore,
the performance gap between Widar3.0 data and SignFi data is particularly obvious. From this result,
compared with fingerprint library matching-based methods, WiGAN has always performed well in
two scenarios.
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Figure 5. Comparison of recognition accuracy in different methods.

5.2.2. Performance of Different Environments

To evaluate the robustness of WiGAN in different experimental environments, 10-fold
cross-validation is performed on two datasets. Figure 6 describes the recognition accuracy of the four
systems in different environments. For the Widar3.0 data in Figure 6a, our system WiGAN achieves
an average recognition accuracy of 83%, 71%, and 75.2% for environments ’classroom’, ’hall’, and
’office’, respectively. WiGAN performs best in all three environments, which shows that the system
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is suitable for different environments. For the SignFi data in Figure 6b, the recognition accuracy in
the home environment is 98%, but only 90% in the lab environment. This result is only slightly better
than the CNN method. As learned from [25], the major reason is that the lab has a complex multi-path
environment, which heavily impacts the WiFi signal. Another reason is that the distance between the
WiFi AP and STA in the lab is longer than that of the home environment, which leads to low reflection
signal and more noise signals for the lab environment. It can be seen from this that the complexity of
the experimental environment has a serious impact on gesture recognition.
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Figure 6. Comparison of the recognition accuracy of different environments on the two data.
(a) Widar3.0 data. (b) SignFi data.

5.2.3. Performance of Different Users

To evaluate the robustness of WiGAN for various users, 10-fold cross validation and
leave-one-subject-out validation are performed on two datasets. As shown in Figure 7a, the accuracy
of WiGAN is better than CNN by 5% to 10%, and is over 20% better than DTW and KNN and DTW.
However, as shown in Figure 7b, the performance of WiGAN is not always the best on the SignFi
dataset. The reason is that the dataset has too many categories, and WiGAN is not good at dealing
with this situation. As shown in Figure 8, we conducted leave-one-subject-out validation on Widar3.0
data by cross user. Compared with the other three methods, the recognition accuracy of WiGAN is
91 %, which is better than others. That is to say, when WiGAN uses existing personnel for training
and then uses new users for testing, WiGAN recognition accuracy will reach 91%. This experiment
shows that WiGAN is robust and capable of addressing the performance degradation caused by
environmental dependence.
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Figure 7. Comparison of the recognition accuracy of different users on the two data. (a) Widar3.0 data.
(b) SignFi data.
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Figure 8. Comparison of the accuracy of cross-user recognition.

5.3. Impact of Different GANs

In order to evaluate the performance of our GAN, the recognition accuracy of WiGAN is compared
with three other GAN-based algorithms. Semi-supervised GAN (SSGAN) [37] is a popular model.
When used in supervised learning, the semi-supervised part is not used in supervised learning.
CGAN [36] is a kind of GAN with conditional constraints, which introduces labels to generate samples
in G. DCGAN [35] and WiGAN use the same structure in this experiment, both fuse the middle layer
as the feature, and finally use the softmax layer to calculate the probability. However, during gesture
recognition, WiGAN will generate similar sample features to enhance the data and input them into
the SVM for classification along with the training sample features. The corresponding methods of the
three systems (WiGeR, WiFinger, SignFi) shown in this section are the same as above, and there is no
difference between supervised and semi-supervised.

5.3.1. Performance of Supervised GANs

From Figure 9a, the results show that the accuracy of the four GANs are all over 90%, of which
WiGAN has the highest accuracy. In addition, for these GAN-based methods, they are better than
previous methods such as DTW and CNN. From this result, the application of GAN to gesture
recognition has obtained important gains, which proves that it is feasible to use GAN for data
enhancement under small samples. In addition, WiGAN can achieve better or similar results compared
with other GAN methods under supervised conditions. This shows that the methods of feature
fusion and sample generation have played a role in improving the recognition accuracy. As shown
in Figure 9b, for leave-one-subject-out validation, the average recognition accuracy of the four GAN
algorithms are 80.1%, 80.9%, 85.1%, and 91%, respectively. Obviously, WiGAN has better robustness
for different users.
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0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

Figure 9. Performance comparison of supervised GANs under the two validation methods. (a) 10-fold
cross validation. (b) Leave-one-subject-out validation.
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5.3.2. Performance of Semi-Supervised GANs

Since semi-supervised learning is more suitable for the actual scenario, the recognition accuracy
of GANs under semi-supervised conditions is compared. In this experiment, we take some of the
labeled data and remove their labels as unlabeled data to simulate a small sample scenario.

As shown in Figure 10a, the recognition accuracy of WiGAN is 97.8% in Widar3.0 data, which is
between 3% and 4% better than other GAN algorithms. The accuracy of WiGAN is around 95% in
SignFi data. As shown in Figure 10b, for leave-one-subject-out validation, WiGAN still has obvious
superiority compared with other methods. According to the comparison of supervised learning and
semi-supervised learning, DCGAN and WiGAN perform better in Widar3.0 data, but only slightly
ahead in SignFi data. From this point of view, even under this condition, WiGAN still has stable
recognition accuracy.

On the one hand, we infer that it may be that the method of extracting each layer for data
fusion does not perform well when there are many categories. On the other hand, We predict that
SVM is difficult to accurately classify extensive samples. When the data distribution is not enough,
the accuracy of SVM will increase as the data increases. In the case of large-scale data, increasing the
data has little effect on accuracy. However, more and more noise will affect the hyperplane, which is
not beneficial for gesture classification. Compared with other methods, using SVM in large-scale data
is not only not conducive to improving accuracy, but also greatly increases the complexity.
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Figure 10. Performance comparison of semi-supervised GANs under the two validation methods.
(a) 10-fold cross validation. (b) Leave-one-subject-out validation.

5.4. More Discussions on WiGAN

5.4.1. Performance of Different Classification Methods

In order to achieve the highest recognition accuracy, several commonly used classification methods
in Widar3.0 data such as Random Tree (RT), Extreme Tree (ET), Adaboost, K-Nearest-Neighbours
(KNN), Bagging, Random Forest (RF), CNN, and SVM are compared. The experimental results are
shown in Figure 11. It can be found that the average recognition accuracy of SVM is 7% to 20%
higher than other methods when performing gesture classification in the small sample conditions,
even exceeding CNN. This is because the optimization objective of SVM is to minimize structural risk
rather than empirical risk, which reduces the requirements for data size and distribution. With strong
generalization ability and fast learning speed, SVM is most suitable for use in our system.
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Figure 11. Comparison of recognition accuracy of different classification methods

5.4.2. Impact of Number of Links

The impact of different link numbers on performance is an important discussion in WiFi gesture
recognition. To identify more accurately, a total of six links are deployed in Widar3.0. This section
studies the impact of the number of different links in Widar3.0 data on the system recognition accuracy.
In Figure 12, as the number of links gradually increases, the recognition accuracy gradually increases.
The main reason is that the captured information will continue to increase with the increase in the
number of links set. When the number of antennas decreases, gesture information in certain directions
or positions may be blurred, thereby reducing recognition accuracy.
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Figure 12. Comparison of the impact of different numbers of links.

5.4.3. Impact of CSI Processing

In WiGAN, the CSI processing module contains four sections: activity detection, interpolation,
DWT denoising, and subcarrier selection. The purpose of using the CSI processing module is to
convert the raw CSI data to the sanitized CSI amplitude. To better know the performance of the system,
the effect of the CSI processing module in Widar3.0 data is discussed in this section. Figure 13a shows
the impact of the CSI processing module under 10-fold cross validation. For CNN, DCGAN, and
WiGAN systems, the recognition accuracy without using the CSI processing module is only 74.2%,
80.3%, and 88.6%, which is reduced by between 10% and 20% compared to these approaches using
the CSI processing module. As shown in Figure 13b, we perform leave-one-out validation on the
three approaches. The recognition accuracy is 61.9%, 68.2%, and 78%, which also has a significant
degradation compared to these approaches using the CSI processing module. From these two



Sensors 2020, 20, 4757 17 of 19

experiments, it can be seen that these approaches of preprocessing CSI have played a key role so that the
accuracy can be improved by more than 10%. When CSI preprocessing is not performed, various noises
and non-action data will interfere with gesture recognition, and inappropriate subcarrier selection will
also lose important gesture feature information, both of which will affect recognition accuracy.

Table 1 shows the computational time of a single gesture. From here, the total time for CSI
processing is 0.197 s, which only accounts for 28.26% of the total time. Therefore, from the perspective
of cost and benefit, it is cost-effective to add a CSI processing module to the system. More importantly,
since the execution time of each gesture exceeds 1 s, WiGAN can provide a real-time action recognition
in the process of data measurements.
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Figure 13. Comparison of the impact of CSI processing modules under the two validation methods.
(a) 10-fold cross validation. (b) Leave-one-subject-out validation.

Table 1. Processing time for one gesture.

Activity Detection Interpolation DWT Denoising Subcarrier Selection Feature Extraction Classification

0.105 s 0.013 s 0.029 s 0.032 s 0.098 s 0.420 s

6. Conclusions

In this paper, a GAN-based WiFi gesture recognition system, WiGAN, is proposed to address the
problem of the performance degradation caused by small samples and environmental dependence
for CSI-based gesture recognition. WiGAN not only enhances the number and diversity of samples,
but also incorporates more diverse features, which makes it more successful to conduct the gestures
recognition. Experimental results show that the average recognition accuracy of WiGAN can be
up to 98% and 95.6% for the Widar3.0 data and SignFi data, respectively. During the experiment,
we found that the accuracy of gesture recognition is related to several reasons. First of all, suitable data
processing approaches can greatly reduce data noise and establish an excellent foundation for feature
extraction. Second, the method of extracting features is the key factor to determine the success of the
gesture recognition model. Its design depends on the experimental environment and the collected data.
Finally, a robust classifier is the direct cause that affects the accuracy of gesture recognition. In our
experiments, we found that similar gestures will affect recognition when the gesture has extensive
categories. Thus, for the future work, we will measure data in our environment and expand various
activity categories to make our system more versatile.
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