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Interleukin-13 promotes cellular senescence through inducing
mitochondrial dysfunction in IgG4-related sialadenitis
Mengqi Zhu1, Sainan Min1, Xiangdi Mao2, Yuan Zhou3, Yan Zhang2, Wei Li1, Li Li2, Liling Wu2, Xin Cong2✉ and Guangyan Yu1✉

Immunoglobulin G4-related sialadenitis (IgG4-RS) is an immune-mediated fibro-inflammatory disease and the pathogenesis is still
not fully understood. The aim of this study was to explore the role and mechanism of interleukin-13 (IL-13) in the cellular
senescence during the progress of IgG4-RS. We found that the expression of IL-13 and IL-13 receptor α1 (IL-13Rα1) as well as the
number of senescent cells were significantly higher in the submandibular glands (SMGs) of IgG4-RS patients. IL-13 directly induced
senescence as shown by the elevated activity of senescence-associated β-galactosidase (SA-β-gal), the decreased cell proliferation,
and the upregulation of senescence markers (p53 and p16) and senescence-associated secretory phenotype (SASP) factors (IL-1β
and IL-6) in SMG-C6 cells. Mechanistically, IL-13 increased the level of phosphorylated signal transducer and activator of
transcription 6 (p-STAT6) and mitochondrial-reactive oxygen species (mtROS), while decreased the mitochondrial membrane
potential, ATP level, and the expression and activity of superoxide dismutase 2 (SOD2). Notably, the IL-13-induced cellular
senescence and mitochondrial dysfunction could be inhibited by pretreatment with either STAT6 inhibitor AS1517499 or
mitochondria-targeted ROS scavenger MitoTEMPO. Moreover, IL-13 increased the interaction between p-STAT6 and cAMP-response
element binding protein (CREB)-binding protein (CBP) and decreased the transcriptional activity of CREB on SOD2. Taken together,
our findings revealed a critical role of IL-13 in the induction of salivary gland epithelial cell senescence through the elevated
mitochondrial oxidative stress in a STAT6–CREB–SOD2-dependent pathway in IgG4-RS.
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INTRODUCTION
Immunoglobulin G4-related disease (IgG4-RD) is a systemic
disease characterized by elevated serum IgG4 concentration,
multi-organ inflammation, infiltration of IgG4+ plasma cells, and
storiform fibrosis in various organs, including the liver, kidney,
salivary gland, pancreas, and lung.1 Salivary gland is one of the
most commonly affected organs, which is called IgG4-related
sialadenitis (IgG4-RS).2 The main symptoms of IgG4-RS are the
painless enlargement of the involved salivary glands and varying
degrees of hyposecretion, both of which seriously threaten
patient’s quality of life.3 The pathogenesis of IgG4-RS is still not
clear and effective treatments are limited. Recent studies have
shown that unlike other autoimmune disorders such as Sjögren’s
syndrome, which are mainly related to the dysfunction of T helper
1 (Th1) and/or Th17 subset, IgG4-RD is considered to be
dominantly caused by Th2 or a combination of Th2 and regulatory
T cells.1 The activated Th2 cells produce an inflammatory cytokine
milieu that promotes the maturation from B cells into plasma cells
and the isotype switch towards IgG4.4 Among the Th2-secreted
cytokines, interleukin-13 (IL-13) plays a crucial role in the
progression of allergic diseases and has been found to be
significantly elevated in the serum and affected tissues of the
patients suffering from many autoimmune diseases, such as
Sjögren’s syndrome, rheumatoid arthritis, and systemic sclerosis.5

Notably, the number of IL-13-positive cells in the submandibular
glands (SMGs) of IgG4-RS patients is much higher than that of
submandibular sialolithiasis and normal controls.6 These data
indicated that IL-13 might be a specific cytokine responsible for
the occurrence of IgG4-RS. However, the exact function and
mechanism of IL-13 in IgG4-RS was poorly understood.
Cellular senescence is referred to a state of irreversibly arrested

cell cycle which can be induced by DNA damage, mitochondrial
dysfunction, oncogenic activation, telomere erosion, chronic
inflammation, and oxidative stress.7 The key features of senescent
cells include decreased cell proliferation, increased activity of
senescence-associated β-galactosidase (SA-β-gal), and high
expression of cyclin-dependent kinase inhibitor genes, such as
p53, p21, and p16. Another remarkable feature of senescent cells
is the transition into the senescence-associated secretory pheno-
type (SASP) that produces a complex secretome, including IL-1β,
IL-6, and transforming growth factor-β1 (TGF-β1).8,9 In recent
years, much attention has been paid to mitochondrial dysfunction
as a pathological factor in cellular senescence. Since mitochondria
are not only the primary source of reactive oxygen species (ROS)
production but also the main immediate target of ROS, the
oxidative stress induced by elevated ROS would then cause
mitochondrial dysfunction.10 Previous researches have found that
human serum IL-13 level is positively associated with age and

Received: 25 February 2022 Revised: 9 May 2022 Accepted: 10 May 2022

1Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China; 2Department of Physiology and Pathophysiology, Peking
University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors
Research, Beijing, China and 3Department of Biomedical Informatics, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences,
Ministry of Education, Beijing, China
Correspondence: Xin Cong (congxin@bjmu.edu.cn) or Guangyan Yu (gyyu@263.net)

www.nature.com/ijosInternational Journal of Oral Science

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-022-00180-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-022-00180-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-022-00180-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-022-00180-6&domain=pdf
mailto:congxin@bjmu.edu.cn
mailto:gyyu@263.net
www.nature.com/ijos


IL-13 promotes the cellular senescence in IMR90 human
embryonic lung fibroblasts and human umbilical vein endothelial
cells.11,12 Moreover, IL-13 promotes ROS production in human
airway epithelial cells and rat hippocampal neurons.13,14 But
whether IL-13 could induce the cellular senescence in salivary
glands through mitochondrial dysfunction and herein participate
in IgG4-RS was totally unknown. Hence, this study sought to reveal
the specific involvement of IL-13 and underlying mechanism
during IgG4-RS, which might enrich our knowledge of the disease
and contribute to the development of novel therapeutic
approaches for the treatment of IgG4-RS.

RESULTS
Senescent epithelial cells increase and the level of IL-13 and IL-13
receptor α1 (IL-13Rα1) elevate in the SMGs of IgG4-RS patients
To explore whether cellular senescence happened in the SMGs of
patients with IgG4-RS, SA-β-gal staining was used. More SA-β-gal
positive cells were observed in the residual both acinar and ductal
cells in IgG4-RS than that in controls (Fig. 1a, b, d). By contrast, the
positive staining was less observed in the samples from patients
with chronic sialadenitis (CS), another inflammatory and fibrotic
diseases in SMGs, which suggested that the cellular senescence
might be a specific phenomenon in IgG4-RS.
Since Th2 lymphocytes and the related secreted cytokines are

thought to play a dominant role in the pathogenesis of IgG4-RD,
we therefore focused on IL-13 and its canonical receptor IL-
13Rα1.15 Immunofluorescence staining results revealed that the
level of IL-13 (Fig. 1a, c) and IL-13Rα1 (Fig. 1d, e) were markedly
elevated in the SMGs of IgG4-RS patients compared with those
in controls. IL-13-positive cells were mainly located around the
residual acinar and ductal cells as well as within the infiltrated
lymphocytic foci. IL-13Rα1-positive cells were mainly located
around the residual acinar and ductal cells. In addition, although
the staining intensities of IL-13 and IL-13Rα1 in CS patients
showed slight increases than those in controls, yet they were
still much lower than those in IgG4-RS. In addition, the mRNA
expression of IL-13 and IL-13Rα1 were also higher in the SMGs
of IgG4-RS patients compared with those in age-matched
controls (Fig. 1f). However, no significant change was found in
circulating IL-13 level in the serum samples of IgG4-RS patients
((27.06 ± 9.43) pg·mL−1) compared with that of controls
((33.79 ± 10.11) pg·mL−1) (Fig. 1g). Furthermore, the IL-13
immunofluorescence intensity was positively correlated with
SA-β-gal activity in the SMGs of patients with IgG4-RS (Fig. 1h).
These results suggested that the salivary gland epithelial cells
underwent cellular senescence, which might be closely related
with the local IL-13 in the glandular tissues of IgG4-RS.

IL-13 directly induces cellular senescence in SMG epithelial cells
To determine whether the elevated IL-13 in the SMGs of IgG4-RS
was involved in the cellular senescence, the cultured SMG-C6
cells were directly treated with IL-13 (50 ng·mL−1) for 1, 2, and
4 days. The results showed that the number of SA-β-gal positive
cells was gradually increased over time and reached about 12
folds compared with that in controls at day 4 (Fig. 2a). Another
common feature of senescent cells is growth arrest.16 We then
performed cell counting kit 8 (CCK8) assay to determine how IL-
13 affected cell proliferation. The proliferation ability of SMG-C6
was significantly decreased by 50, 100, and 150 ng·mL−1 IL-13
treatment for 4 days (Fig. 2b). Besides, 50 ng·mL−1 IL-13
obviously inhibited the cell proliferation from day 4, and this
effect lasted to day 8 (Fig. 2c). Accordingly, we chose 50 ng·mL−1

as the drug concentration in the following experiments. It is well
known that cellular senescence is primarily controlled by p53/
p21 and p16 pathways, both of which inhibit cell cycle
progression.17 IL-13 significantly upregulated the protein and
mRNA expression of p53 and p16, but had no significant effect

on p21 (Fig. 2d, e). We further measured the mRNA expression of
SASP factors that can be secreted by the senescent cells.8,9 The
mRNA level of IL-1β and IL-6 were markedly increased by IL-13
treatment for 4 days, whereas the mRNA level of TGF-β1 was not
changed in SMG-C6 cells (Fig. 2f). These results altogether
showed that IL-13 was the trigger that directly induced cellular
senescence in salivary gland epithelial cells.

Protein profile analysis shows that mitochondrial dysfunction and
oxidation–reduction imbalance are involved in SMGs of IgG4-RS
To explore the potential mechanism regarding the involvement
of cellular senescence in the pathogenesis of IgG4-RS, we
performed proteomics and bioinformatics of the SMG samples
from IgG4-RS patients and controls. A total of 1 135 (659 up-
regulated and 476 down-regulated) differentially expressed
proteins (DEPs) were identified in IgG4-RS SMGs compared to
controls (Fig. 3a, b). Gene ontology biological process (GO-BP)
analysis revealed that the up-regulated DEPs in IgG4-RS were
mostly associated with immune-related biologic processes, such
as T cell meandering migration, T cell receptor signaling pathway,
and positive thymic T cell selection (Fig. 3c), while the down-
regulated DEPs were mainly enriched in mitochondrion-related
biologic processes, such as oxidation–reduction process, cristae
formation, mitochondrial ATP synthesis couple proton transport,
and ATP biosynthesis process (Fig. 3d). Furthermore, we analyzed
the down-regulated DEPs under the term “oxidation–reduction
process” in GO-BP-enriched categories. Many redox reaction-
related proteins, especially the antioxidant system such as
superoxide dismutase 2 (SOD2), peroxiredoxin 5 (PRDX5), and
thioredoxin (TXN), were significantly lower in IgG4-RS SMGs
(Fig. 3e). These data hinted that mitochondrial dysfunction and
oxidation–reduction imbalance might be involved in the patho-
genesis of IgG4-RS.

IL-13 causes mitochondrial dysfunction through increasing
mitochondrial ROS (mtROS) accumulation
Since mitochondrial dysfunction has been identified as one of the
main triggers of cellular senescence, we next tested whether the
mitochondrial dysfunction was involved in the IL-13-induced
cellular senescence. Mitochondrial membrane potential (MMP) is
an indicator of mitochondrial function, and can be determined by
using JC-1 which is a fluorescent dye sensitive to MMP. As shown
in Fig. 4a, IL-13 treatment caused a gradual reduction in MMP as
observed by decreased ratios of red/green fluorescence at day 2
and 4 in SMG-C6 cells. Besides, the cellular ATP content was
significantly decreased as early as 1 day after IL-13 treatment
(Fig. 4b), again suggesting that the mitochondrial function was
impaired by IL-13. Moreover, the reduction of ATP level was also
detectable in the SMG tissues of IgG4-RS patients (Fig. 4c).
Excessive accumulation of mtROS is a well-known contributor to
mitochondrial dysfunction.18 Here, we observed a significant
increase in mtROS level after treatment with IL-13 for 24 h, and
this increase became much more obvious in the cells treated with
IL-13 for 48 h (Fig. 4d). The ROS level was significantly elevated in
the residual acinar and ductal cells in the SMGs of IgG4-RS
patients than that of controls (Fig. 4e). To determine whether the
IL-13-induced mtROS accumulation and mitochondrial dysfunc-
tion could lead to cellular senescence, we used both N-acetyl-L-
cysteine (NAC) and MitoTEMPO, the scavenger for total ROS and
specific mtROS, respectively. Pretreatment with either NAC
(10 μmol·L−1) or MitoTEMPO (1 μmol·L−1) significantly abolished
the IL-13-induced increased proportion of SA-β-gal positive
staining cells (Fig. 5a, b). Furthermore, MitoTEMPO pretreatment
reduced the IL-13-induced elevated mRNA and protein expres-
sion of p53 and p16 (Fig. 5c, d). These above results indicated
that IL-13 elevated mtROS content and caused mitochondrial
dysfunction, thereby contributing to cellular senescence in
salivary epithelial cells.
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Signal transducer and activator of transcription 6 (STAT6) serves as
the intracellular signal that mediates the IL-13-induced cellular
senescence
Furthermore, the intracellular signals that mediated IL-13-induced
cellular senescence were explored. STAT3 and STAT6 are two key
transcription factors that can be regulated by IL-13. Upon IL-13
stimulation, the phosphorylated STAT3 (p-STAT3) and/or STAT6
translocate into the nucleus and then activate the transcription of
multiple target genes.19 Here, we found that IL-13 treatment for
15 min significantly promoted STAT6 phosphorylation at Tyr641,
whereas no obvious change in STAT3 phosphorylation was

detected (Fig. 6a). To determine whether STAT6 participated in
the IL-13-induced cellular senescence, AS1517499, a potent STAT6
inhibitor was used. Pretreatment with AS1517499 (100 nmol·L−1)
significantly reduced the IL-13-induced increased number of SA-
β-gal-positive cells (Fig. 6b). The IL-13-induced increases in p53
and p16 protein and mRNA expression were also inhibited
by AS1517499 (Fig. 6c, d). Furthermore, pretreatment with
AS1517499 significantly attenuated the IL-13-induced mtROS
accumulation and MMP decrease (Fig. 6e, f). These data suggested
that IL-13-induced cellular senescence through STAT6–mtROS
pathway in SMG-C6 cells.
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serum of IgG4-RS patients (n= 8) and controls (n= 8) was detected by cytokine antibody array. h Correlation between the
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The decreased expression and activity of SOD2 is responsible for
the IL-13-induced mtROS accumulation
The accumulation of mtROS can be caused by increases in mtROS
production and/or decreases in mtROS scavenger. Mitochondrial
respiratory chain complexes, particularly complex I and III, are the

main sites of mtROS production in cells.20 Our above proteomics
results did not show any change in the protein level of complex I
(nicotinamide adenine dinucleotide dehydrogenase ubiquinone
Fe-S protein 3, NDUFS3) and complex III (ubiquinol-cytochrome C
reductase complex core protein 2, UQCRC2) in the SMGs between
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IgG4-RS patients and controls. Consistently, the protein expres-
sion of NDUFS3 and UQCRC2 were not significantly altered by IL-
13 treatment for 1, 2, and 4 days in SMG-C6 cells (Fig. 7a),
suggesting that the elevated mtROS level might not be caused by
its over-generation at the respiratory chain complexes. We next
focused on the changes of the two important intracellular SODs.
The protein and mRNA expression of SOD1 were increased

whereas those of SOD2 were decreased by IL-13 treatment for 1,
2, and 4 days in SMG-C6 cells (Fig. 7b, c). In addition, mRNA and
protein expression of SOD1 was higher together with a lower
expression of SOD2 in the SMGs of IgG4-RS patients than those in
controls (Fig. 7d, e). Moreover, it was notable that both total SODs
and SOD2 activities were significantly decreased after IL-13
treatment for 1, 2, and 4 days (Fig. 7f). Then we explored whether
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SOD2 was the downstream target underlying STAT6. Pretreat-
ment with AS1517499 significantly attenuated the IL-13-induced
downregulation of SOD2 protein in SMG-C6 cells, whereas
AS1517499 alone did not affect SOD2 expression (Fig. 7g).
CAMP-response element binding protein (CREB) is a transcription
factor that promotes the transcription of SOD2 as previously
reported.21 The phosphorylation of CREB at Ser133 promotes its
transcriptional activity by its interaction with the coactivator
CREB-binding protein (CBP).22 Similarly, STAT6 also participated in

transcriptional regulation by interacting with CBP.23 Co-
immunoprecipitation (Co-IP) results showed that IL-13 treatment
for 12 and 24 h induced an increased interaction between
p-STAT6 and CBP, together with a decreased interaction between
p-CREB and CBP, as evidenced in the immunoprecipitated
proteins by the antibody against CBP, p-CREB or p-STAT6
(Fig. 7h). These results indicated that there might be a
competitive relationship between p-STAT6 and p-CREB in regard
to the combination with CBP. Hence, while IL-13 promoted the
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combination between p-STAT6 and CBP, the interaction between
p-CREB and CBP was decreased, thereby resulting in a declined
transcription activity of p-CREB and contributing to the reduced
expression and activity of SOD2 in salivary gland epithelial cells.

DISCUSSION
IgG4-RS is a recently recognized disease characterized by the
infiltration of IgG4-positive plasma cells and fibrosis in the salivary
glands along with elevated serum IgG4 levels. However, the
pathogenesis of IgG4-RS is still unclear. Here, we found that
the salivary gland acinar and ductal epithelial cells senescence
occurred in IgG4-RS. Elevated IL-13 in the local lesions was an
important cytokine to induce salivary gland epithelial cell
senescence. Mechanistically, the accumulation of mtROS through
STAT6–CREB–SOD2 signaling pathway contributed to the IL-13-
induced senescence in salivary gland epithelial cells (a scheme
was shown in Fig. 8). Our findings provided a novel insight of the
pathogenesis of IgG4-RS.

Cellular senescence refers to a constant state of cell cycle arrest
and produces multiple SASP cytokines, both of which impair the
function of the affected organs and tissues and cause a variety of
aging-related diseases. For example, cellular senescence leads to a
higher production of pro-inflammatory cytokines and matrix
degrading enzymes, which contributes to the development of
osteoarthritis.24 Many cardiovascular diseases in aging are partially
a consequence of the vascular dysfunction induced by the
endothelial cell senescence.25 The senescent salivary gland stem
cells exist in the parotid gland of the patients with primary
Sjögren’s syndrome.26 The numbers of senescence-associated
T cells are increased in aged mice and Sjögren syndrome model
mice due to the overexpression of chemokine (CXCL13 or CXCL12)
in salivary gland.27 These studies indicated that cellular senes-
cence may be involved in immune inflammatory disease of
salivary gland. However, whether cellular senescence was involved
in the occurrence of IgG4-RS was still undetermined. Our results
identified an obvious elevation of SA-β-gal-positive cells in both
acini and ducts of IgG4-RS (Fig. 1a, b, d), suggesting that the
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epithelial cellular senescence existed and might be related with
the dysfunction of salivary glands in IgG4-RS.
One of the main features of IgG4-RS is the accumulation of

IgG4+ plasma cells in the salivary glands. Many previous studies
have shown that Th2 cells, which can be activated by environ-
mental allergens and infectious pathogens, play a dominant role
in the pathogenesis of IgG4-RD, and the Th2-produced cytokines
including IL-13 are significantly elevated in the affected tissues in
IgG4-RD patients.1,28 It is thought that in IgG4-RD these Th2
cytokines activate B cells to class switch from IgM to IgE and/or
IgG4, thus resulting in the infiltration of IgG4+ plasma cells.29 In
accordance with the previous study,6 we found that IL-13 was
higher in the SMG tissues of patients with IgG4-RS (Fig. 1a, c, f).
However, there was no significant change in the serum level of IL-
13 between IgG4-RS and controls (Fig. 1g), suggesting that IL-13
might derive from and act on the local lesions rather than
circulating system. IL-13 activates the intracellular downstream
signaling molecules by binding with IL-13Rα1/IL-4Rα heterodi-
mer.30 We also observed an increased IL-13Rα1 expression in the
SMGs of IgG4-RS patients (Fig. 1d, e, f). These data indicated that
IL-13 signal was activated in the local lesions and its role in the
pathogenesis of IgG4-RS was worth further investigating.
Nowadays, the role of cytokine-induced senescence in human

diseases has received much attention. Previous studies have
reported that the cytokine-induced senescence serves as part of
immune surveillance of tumors, and the application of interferons
in the treatment of tumors through induction of cellular
senescence is currently under investigation.31,32 Here, our data
showed that IL-13 stimulation significantly increased SA-β-gal
activity, decreased cell proliferation, and upregulated the expres-
sion of senescence markers and SASP factors in SMG-C6 cells
(Fig. 2). These data suggested that the elevated IL-13 in local
lesions could directly lead to salivary gland epithelial cell
senescence. Importantly, it is worth noting the differences in
pathogenetic mechanisms between IgG-RS and other autoim-
mune diseases. For example, in Sjögren syndrome which is
dominated by Th1 reactions, serum IL-13 level is significantly

increased in patients, and IL-13 is found to aggravate lacrimal
gland destruction and dysfunction by promoting the production
of interferon-γ as well as the recruitment of mast cells into the
glands.5 However, till now, there is no report showing whether IL-
13 contributed to cell senescence in Sjögren syndrome. Therefore,
IL-13 might play a different role in the pathogenesis of these two
diseases. Considering that eliminating the IL-13-producing cells or
neutralizing IL-13 is reported to improve salivary gland function in
a mouse model of Sjögren syndrome,33 targeting IL-13 might be a
promising therapeutic strategy for treatment of IgG4-RS through
modulating the progression of cellular senescence.
Next, we explored the mechanism that is involved in the IL-13-

induced cellular senescence in salivary gland epithelial cells. ROS
are considered to be a crucial causative factor of cellular
senescence and aging.34 ROS are mainly produced by mitochon-
drial respiratory chain, which is why mitochondria are the primary
targets of oxidative damage, and a decline in mitochondrial
function will in turn increase ROS production. Emerging studies
have revealed a close relationship between mitochondrial
dysfunction and many kinds of age-related diseases.35,36 But
whether this phenomenon existed in IgG4-RS was totally
unknown. We found that IL-13 promoted mtROS accumulation
and caused decreases in both ATP and MMP (Fig. 4a, b, d),
whereas pretreatment with antioxidants, especially for mtROS,
inhibited the IL-13-induced cellular senescence (Fig. 5a-d). These
results indicated that mitochondrial dysfunction induced by
increased mtROS was responsible for the IL-13-induced cellular
senescence in salivary gland epithelial cells.
Furthermore, the intracellular signaling pathway connecting IL-

13 and mtROS was explored. As a canonical downstream
molecule, STAT6 was obviously activated by IL-13 in SMG-C6 cells
(Fig. 6a). Pretreatment with STAT6 inhibitor significantly amelio-
rated the IL-13-induced mtROS accumulation and MMP decrease
as well as cellular senescence (Fig. 6b–f). Indeed, the application of
ROS and STAT6 inhibitors did partially but not completely inhibit
the IL-13-induced responses, suggesting that there might be
another molecules/signaling pathway involved in this process.
Gefitinib, a small molecule inhibitor of epidermal growth factor
receptor (EGFR), significantly inhibits the IL-13-induced cellular
senescence in IMR90 and HUVECs.12 In addition, IL-13 facilitates
oxidative stress-induced cell death through activating janus kinase
(JAK)/STAT6 and phosphoinositide-3-kinase/the mammalian tar-
get of rapamycin (PI3K/mTOR) pathway in both mouse and human
dopaminergic neurons.37 These studies suggested that EGFR and
PI3K-mTOR signal pathway may be other possible mechanisms
underlying IL-13.
Our results showed that the protein expression of respiratory

chain complex I and III, the primary sources of mtROS production,
were unchanged by IL-13 stimulation (Fig. 7a). Besides, the protein
level of these two complexes were not significantly altered in the
SMGs of IgG4-RS patients. We then focused on the scavenge route
of ROS through antioxidant defense. SODs are a group of an
endogenous protective system that prevents oxidative injury by
maintaining antioxidant defence. Three typical members are
existed in the cytosol and the mitochondrial intermembrane
space (Cu, Zn-SOD or SOD1), the mitochondrial matrix and inner
membrane (Mn-SOD or SOD2), and extracellular compartment
(extracellular SOD or SOD3).38 It should be noteworthy that SOD
genes exhibit a high degree of homology between SOD1 and
SOD3, with extremely low homology with SOD2,39 thus indicating
that the transcription process might differ between SOD1/3 and
SOD2. Besides, the antioxidant function of SOD2 in the
mitochondrial matrix cannot be replaced by the presence or
even overexpression of SOD1 in the cytosol, even though the
antioxidant mechanism of SOD1 and SOD2 is similar,40 which
emphasizes that SOD2 is irreplaceable for maintaining mitochon-
drial and cellular homeostasis. In the present study, the mRNA and
protein expression of SOD2 were significantly reduced in both the
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Fig. 8 Schematic illustrates a proposed mechanism of IL-13-induced
cellular senescence in salivary epithelial cells. The binding of IL-13 to
its functional receptor, the IL-13Rα1/IL-4Rα heterodimer, leads to the
phosphorylation of STAT6. The p-STAT6 monomers homodimerize
and translocate to the nucleus and bind to CBP, which results in a
decreased interaction between CREB and CBP and a decreased
transcriptional activity of p-CREB. This would then cause the
accumulation of mtROS by decreasing mRNA and protein expres-
sion of SOD2, thereby promoting mitochondrial dysfunction to
induce cellular senescence
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SMGs of IgG4-RS patients and the IL-13-treated SMG-C6 cells
(Fig. 7b-e). Although the SOD1 level was elevated at the same
time, yet the activity of total SODs was still significantly decreased
by IL-13 treatment (Fig. 7f). The results suggested that mtROS
accumulation induced by IL-13 might mainly be due to the
deficiency of SOD2 expression and function, which could not be
compensated by the elevated SOD1 expression. Herein, these
above data indicated that the impairment of mitochondrial
scavenging system was an important cause of IL-13-induced
redox imbalance in SMGs.
Finally, the possible regulation of SOD2 expression by IL-13 was

investigated. Upon combination with CBP, CREB is a transcription
factor that has been identified to directly upregulate the SOD2
expression.21 By contrast, no CREB binding site in SOD1 was found
or reported in the previous studies.41 Since STAT6 also needs to be
combined with CBP to promote its transcriptional activity,23 we
therefore detected the interaction between CBP with either
p-STAT6 or p-CREB. Co-IP assay showed an increased interaction
between p-STAT6 and CBP, together with a decreased interaction
between p-CREB and CBP (Fig. 7h), suggesting that there might be
a competitive action between p-STAT6 and p-CREB to bind with
CBP. Thus, the decreased transcriptional activity of p-CREB might
explain the downregulation of SOD2 mRNA and protein expres-
sion induced by IL-13 in salivary gland epithelial cells. However,
much work should be done to prove this speculation in our
following studies.
In conclusion, our data revealed that IL-13 increased mtROS

accumulation in a STAT6–CREB–SOD2-dependent manner,
thereby contributing to the mitochondrial dysfunction and cellular
senescence in salivary gland epithelial cells. These findings not
only revealed a critical role of IL-13 in the cellular senescence
through the induction of mitochondrial oxidative stress, but also
provided potential therapies targeting IL-13 and mtROS-related
cellular senescence for IgG4-RS.

MATERIALS AND METHODS
Patients and samples
According to the comprehensive diagnostic criteria, human SMG
tissues were collected from the patients in Peking University
Hospital of Stomatology who were diagnosed with IgG4-RS during
September 2020 and October 2021.42 Supplementary Table 1
shows the clinical characteristics of the patients. Control SMG
tissues, which were pathologically confirmed normal, were
obtained from the age-matched individuals who had undergone
neck dissection for head–neck cancers. Fresh tissue samples were
immediately put into liquid nitrogen after surgery. Moreover, the
SMG tissues from six patients with CS induced by calculi were
used as disease controls (mean age= 55.5 ± 4.81; three males and
three females). All patients had signed their informed consent
prior to sample collection. This study was approved by the Ethics
Committee of Peking University School and Hospital of Stomatol-
ogy (No. PKUSSORB-2013008).

Cell culture
Rat SMG epithelial polarized cell line SMG-C6 (a gift from Prof.
David O. Quissell) was cultured at 37 °C with 5% CO2 in Dulbecco’s
modified Eagle’s medium/nutrient mixture F-12 (DMEM/F-12)
containing the following constituents: fetal bovine serum (2.5%),
transferrin (5mg·L−1), retinoic acid (0.1 μmol·L−1), glutamine
(5mol·L−1), thyronine T3 (2 nmol·L−1), insulin (5mg·L−1), epidermal
growth factor (80 μg·L−1), hydrocortisone (1.1 μmol·L−1), gentami-
cin sulfate (50mg·L−1), penicillin (100 U·mL−1), and streptomycin
(100mg·L−1).

Serum IL-13 level detection
A cytokine array was used to measure the level of IL-13 in the
serum of eight IgG4-RS patients and eight controls, following the

manufacturer’s instructions (Human Th1/Th2/Th17 Array Q1, QAH-
TH17-1; RayBiotech).

Protein profile analysis
The SMG tissues from three IgG4-RS patients and three age-
matched controls were detected by proteomics analysis. The
tissue processing was performed as described in our previous
study.43 Briefly, we homogenized the SMG tissues on ice and
used 100 μg of homogenates per sample for proteomics
screening. After lysis, the concentration of protein was quantified
by the Bradford assay. Then, the samples were digested
overnight in trypsin at 37 °C and labeled with iTRAQ reagents
according to the manufacturer’s instructions (AB Sciex). The
labeled samples were analyzed using an EASY-Spray analytical
column (120 mm × 75 μm, 3 μm) on an EASY-nLC1000 connected
to a Q Exactive mass spectrometer (Thermo Fisher Scientific) and
liquid chromatography–tandem mass spectrometry.
Analysis on the DEPs between IgG4-RS and control tissues was

conducted with the edgeR package in R software. Data were
standardized by log2 conversion. Specific screening conditions
were followed by |fold change| >1.3 and P < 0.05. To dig into the
potential function of these DEPs in SMGs, we precisely used the
weighted enrichment analysis tools (WEAT) for the annotation of
weighted gene function and pathway analysis through selecting
“salivary gland” gene essentially score according to the instruc-
tions (http://www.cuilab.cn/weat/).44 GO-BP analysis were further
used to assess the weighted DEPs.

SA-β-gal staining
The senescent cells in human SMG tissues were stained for SA-
β-gal according to the manufacturer’s instructions (SG03;
DOJINDO). In brief, each section (7 μm) was fixed in 4%
paraformaldehyde for 3 min at room temperature and washed
with phosphate buffered saline (PBS) for 3 times. SPiDER-β-gal
working solution (pH 6.0) was added and incubated for 30min at
37 °C. After washing with PBS for 3 times, the slices were
examined under a laser confocal microscope (Leica TCS SP8.
Excitation wave: 488 nm; emission wave: 561 nm). The five
different fields were randomly selected from the same sample
and the average intensity was measured as n= 1. And we have
detected six samples from six IgG-RS patients (n= 6).
In SMG-C6 cells, the senescent cells were stained for SA-β-gal

according to the manufacturer’s instructions (9860; Cell Signaling
Technology). SMG-C6 cells (2 000 per well) were seeded in 12-well
plate and cultured 24 h before ready for IL-13 (50 ng·mL−1)
stimulation for 1, 2, and 4 days. Briefly, the cells were fixed with
the fixative solution, and then incubated with β-galactosidase
staining solution (pH 6.0) overnight at 37 °C. After washing with
PBS for 3 times, the cells were examined under a light microscope
(Q550CW; Leica), and SA-β-gal positive cells were stained as
green-colored cells. Five different fields from each sample were
randomly selected for further analysis.

Cell proliferation assay
The proliferation ability of SMG-C6 cells was performed by using
the CCK8 according to the manufacturer’s instructions (CK04;
DOJINDO). SMG-C6 cells (1 000 per well) were plated in 12-well
plate, and after 24 h, cells were stimulated by different doses of IL-
13 for the indicated times. CCK8 solution (10% CCK8 in serum-free
DMEM medium) was added and incubated for 3 h at 37 °C. Then
the optical density (OD) values were measured at 450 nm by an
EnSpire Multilabel Plate Reader (PerkinElmer).

Oxidative stress detection
In human SMG samples, the intracellular total ROS accumulation
was detected by DCFH-DA (D6883; Sigma) staining. Briefly, the
sections (7 μm) were incubated with the DCFH-DA solution
(10 μmol·L−1) for 30 min at 37 °C in the dark, and then
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immediately observed under a confocal microscope (excitation
wave: 490 nm; emission wave: 520 nm). Five randomly selected
fields from each sample were used for further analysis.
To detect the content of mtROS in SMG-C6 cells, 50 000 cells per

well were plated in six-well plate, and cells were incubated with IL-
13 (50 ng·mL−1) for the indicated times. Then, the cells were
incubated with MitoSOX working solution (5 μmol·L−1 in serum-
free DMEM medium) for 10 min at 37 °C and protected from light
before flow cytometry detection (excitation wave: 510 nm;
emission wave: 580 nm).

Quantitative real-time PCR analysis
Total RNAs were extracted from homogenized human SMG tissues
and SMG-C6 cells using TRIzol (15596018; Invitrogen) according to
the manufacturer’s instructions. cDNAs were synthesized by using
the HiScript III RT Super Mix for qPCR (R323-01; Vazyme) and
amplified using 2 × Real Star Green Fast Mixture (A301-10;
GenStar) under a PikoReal Real-Time PCR System (Thermo Fisher
Scientific). The ΔCt method using GAPDH as reference gene was
used to quantify the results. Supplementary Table 2 showed the
primers used in this study.

Western blot analysis
Human SMG tissues and SMG-C6 cells were homogenized and
lysed in cold RIPA buffer (89900; Thermo Fisher Scientific)
containing protease inhibitors (Roche) for protein extraction, and
the protein concentration was measured by using the BCA kit
(P0012; Beyotime). Equal amounts of total proteins (20 µg) were
mixed and dissolved in 5 × SDS–PAGE loading buffer (P1040;
Solarbio) and heated to 100 °C for 10 min. After separation on 10%
or 12% SDS–PAGE, the proteins were transferred to polyvinylidene
difluoride membranes and blocked with 5% nonfat milk, before
being immunoblotted overnight at 4 °C with the primary
antibodies, including p53 (10442-1-AP; Proteintech), p21 (10355-
1-AP; Proteintech), p16 (PA1-30670; Invitrogen), STAT6 (5397; Cell
Signaling Technology), p-STAT6 (Tyr641) (56554; Cell Signaling
Technology), STAT3 (9139; Cell Signaling Technology), p-STAT3
(Tyr705) (9145; Cell Signaling Technology), NDUFS3 (ab110246;
Abcam), UQCRC2 (ab14745; Abcam), SOD1 (37385; Cell Signaling
Technology), SOD2 (BS6734; Bioworld Technology), CREB (9197;
Cell Signaling Technology), CBP (7389; Cell Signaling Technology),
and p-CREB (Ser133) (9198; Cell Signaling Technology). Mem-
branes were washed with PBST for three times before being
incubated with horseradish peroxidase-conjugated secondary
antibodies (Zhongshan Laboratories). Then, the bands were
visualized by using enhanced chemiluminescence reagent
(Thermo Fisher Scientific). Image J software was used to quantify
the density of bands. The relative protein level was calculated by
normalizing GAPDH protein level, and then the obtained value
was compared with that of the control group.

Immunofluorescence staining
Immunofluorescence staining was used to detect the distribu-
tion and expression of IL-13 and IL-13Rα1 in human SMG tissues.
Briefly, the 4% paraformaldehyde-fixed tissues were blocked
with 1% BSA. Thereafter, the sections were probed with the
primary antibody against IL-13 (JES10-5A2; Invitrogen) or IL-
13Rα1 (ab79277; Abcam) at 4 °C overnight. After incubation with
secondary antibodies conjugated to Fluor-488, sections were
captured using a laser confocal microscope (Leica TCS SP8.
Excitation wave: 488 nm; emission wave: 561 nm). The five
different fields were randomly selected from the same sample
and the average intensity was measured as n= 1. And we have
detected six samples from six IgG-RS patients (n= 6).

Measurement of ATP content
ATP-Lite assay kit was used to measure ATP content of human
SMG tissues and SMG-C6 cells (T007; Vigorous Biotechnology)

according to the manufacturer’s instructions. The ATP content was
normalized to protein concentration and the results were
expressed as fold change compared with control group.

Detection of MMP
The MMP was evaluated by using the JC-1 dye (65-0851-38;
Invitrogen). The higher the MMP is, the more JC-1 aggregates form
to appear a red fluorescence, in contrast to the JC-1 monomer that
has a green fluorescence. Thus, the MMP was displayed by the
change in the ratio between red and green fluorescence. SMG-C6
cells (2 000 per well) were seeded in 12-well plate 24 h before
stimulation with IL-13 (50 ng·mL−1) for 2 and 4 days. Then the cells
were collected and stained with JC-1 for 30 min at 37 °C in the
dark, and then determined by using fluorescence microscopy.

Total SODs and SOD2 activity assay
SMG-C6 cells (2 000 per well) were seeded in 12-well plate and
cultured for 24 h, and then stimulated with IL-13 (50 ng·mL−1) for
1, 2, and 4 days. The total SODs activity was measured by using
the total superoxide dismutase assay kit with WST-8 (S0101M;
Beyotime) according to the manufacturer’s instructions. To further
detect the activity of SOD2, zinc diethyldithiocarbamate
(1 mmol·L−1) was added into the sample to inhibit the activity
of SOD1 and extracellular SOD3 as previously reported.45 The
absorbance at 450 nm was measured. Total SODs and SOD2
activities were normalized to the total protein content. The results
were expressed as fold change compared with control group.

Co-IP assay
Co-IP assay was performed to determine the interactions between
two interested proteins in SMG-C6 cells. In brief, the cells were
collected and washed with PBS. Then, SMG-C6 cells were lysed with
RIPA buffer (89900; Thermo Fisher Scientific) and harvested by
centrifugation at 12 000 r·min−1 for 20min. Subsequently, the cell
lysates were incubated with Protein A/G Plus-Agarose beads (sc-
2003; Santa Cruz Biotechnology) at 4 °C for 3 h. A portion of the cell
lysates was removed as input control. Furthermore, the cell lysates
were incubated with the Protein A/G Plus-Agarose beads and
specific primary antibody at 4 °C overnight. Immunoprecipitates
were collected and washed with cold PBS for 3 times. Finally, the
immunoprecipitates and input controls were analyzed by western
blot assay using the corresponding antibodies of interested proteins.

Statistical analysis
All data are expressed as the mean ± standard deviation (SD). The
significance of differences between groups was analyzed by
unpaired Student’s t-test between two groups or one-way ANOVA
followed by Bonferroni’s test among three and more than three
groups. Correlation was analyzed by using Spearman test. All
statistical analyses were performed by using SPSS 26.0. P < 0.05
was considered statistically significant.
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