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Coumarins inhibit g-class carbonic anhydrase from Plasmodium falciparum
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ABSTRACT
Coumarins were discovered to act as inhibitors of a-carbonic anhydrases (CAs, EC 4.2.1.1) after undergoing
hydrolysis mediated by the esterase activity of the enzyme to the corresponding 2-hydroxycinnamic acids.
Other classes of CAs among the eight currently known do not possess esterase activity or this activity was
poorly investigated. Hence, we decided to look at the potential of coumarins as inhibitors of the g-CA
from the malaria-producing protozoan Plasmodium falciparum, PfaCA. A panel of simple coumarins incor-
porating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system
acted as low to medium micromolar PfaCA inhibitors, whereas their affinities for the cytosolic off-target
human isoforms hCA I and II were in a much higher range. Thus, we confirm that g-CAs possess esterase
activity and that coumarins effectively inhibit this enzyme. Elaboration of the simple coumarin scaffolds
investigated here may probably lead to more effective PfaCA inhibitors.
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1. Introduction

Comarins were discovered relatively recently to act as inhibitors of
the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1)1. Unlike all
other inhibitor classes investigated at that time, surprisingly, these
compounds were shown to not coordinate to the metal ion from
the a-CA active sites (the human isoforms hCA I – XIV were ini-
tially investigated for their interaction with these compounds1,2)
but to bind at the entrance of the active site cavity. In addition,
the coumarin lactone ring was found hydrolysed to the corre-
sponding 2-hydroxycinnamic acids (either in cis- or trans geom-
etry) making these compounds the first reported class of pro-drug
CA inhibitors (CAIs). Thus, a rather large number of drug design
studies were performed over the last decade2–4 using both natural
products as well as synthetic coumarins as starting point, which
established the fact that coumarjns are among the most effective
and isoform-selective CAIs known to date1–4. Indeed, derivatives
with selectivity for all human isoforms have been reported so far,
although the largest number of studies and derivatives investi-
gated to date were designed for targeting the transmembrane,
cancer-associated isoforms hCA IX and XII, which are validated
antitumor/antimetastatic drug targets5,6.

However, up until now, coumarins were not investigated for
their interactions with non-a-CAs. In fact, among the eight
reported CA genetic families (the a – i-CA classes7,8) known so far,
only the a-CAs were investigated in detail for their catalytic versa-
tility, and they possess indeed a rather effective esterase as well
as other catalytic hydratase/hydrolase activities9. Generally, other
CA classes than the a-family do not possess esterase activity,
although there are several erroneous reports of such an activity
for b- and d-CA enzymes10, which have been shown by other
groups to be artefactual data11. However, the g-CAs, present in

protozoans belonging to the genus Plasmodium, PfaCA12, which
have originally been annotated as being a-CAs, are known to pos-
sess esterase activity with 4-nitrophenyl acetate as substrate13.
They were subsequently shown to represent a new CA family, the
g-class, and also proposed as a potential anti-malarial drug tar-
get12,14. However, apart the initial reports from Krungkrai’s
group13, which undoubtedly showed that PfaCA has esterase
activity with 4-nitrophenyl acetate as substrate, and that this activ-
ity is potently inhibited by primary sulphonamides13, the main
class of zinc-binding CAIs15, no detailed such studies on this
enzyme were performed. It should be stressed that after we
showed that PfaCA is not an a- but an g-CA12, a multitude of sul-
phonamide and anion inhibitors of this enzyme (both for a trun-
cated as well as for a longer form of it) have been detected, some
with potency in the low nanomolar range (for the sulphonamides
and their derivatives)16.

Here we show that coumarins indeed act as PfaCA inhibitors,
which is only possible due to the esterase activity of PfaCA, the
prototypical g-class CA. In a small series of simple such derivatives,
inhibition constants in the micromolar range against PfaCA were
detected, and, more interestingly, many of the investigated cou-
marins were more effective protozoan enzyme inhibitors com-
pared to their activity on the off-target human isoforms hCA I
and II.

2. Materials and methods

2.1. Enzymology and CA activity and inhibition measurements

The CA-catalysed CO2 hydration activity has been measured with
an Applied Photophysics stopped-flow instrument17. The used pH
indicator was phenol red (at a concentration of 0.2mM), working
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at the absorbance maximum of 557 nm. 10mM HEPES (pH 7.4)
was employed as a buffer, in the presence of 10mM NaClO4 to
maintain the ionic strength constant. The initial rates of the CA-
catalysed CO2 hydration reaction were followed up for a period of
10–100 s. The substrate CO2 concentrations ranged from 1.7 to
17mM for determining the inhibition constants. For each inhibitor,
at least six traces of the initial 5–10% of the reaction were used to
determine the initial velocity. The uncatalyzed rates were deter-
mined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitors (10mM) were pre-
pared in distilled-deionized water with maximum 5% DMSO, and
dilutions up to 10 nM were done thereafter with the assay buffer.
Inhibitor and enzyme solutions were preincubated together for
1–6 h prior to the assay, in order to allow for the formation of the
E-I complex. The inhibition constants were obtained by non-linear
least-squares methods using Prism 3 and the Cheng-Prusoff equa-
tion, as reported previously18–20, and represent the mean from at
least three different determinations. The PfaCA concentration in
the assay system was 12.38 nM. The human/protozoan enzymes
were recombinant proteins obtained in-house, as described
earlier12,16.

2.2. Chemistry

Coumarins 1–14, buffers, acetazolamide AAZ and other reagents
were of >99% purity and were commercially available from
Sigma-Aldrich (Milan, Italy).

3. Results and discussion

As mentioned in the introductory part, Krungkrai’s group first
report that the Plasmodium falciparum genome encodes for CAs,
which have been assigned to the a-class13. In these initial studies,
the esterase activity of such an enzyme, later denominated
PfaCA12 has been observed, working with 4-nitrophenyl acetate as
substrate, and indeed, the enzyme showed a significant such
activity, which has been potently inhibited by primary sulphona-
mides and their isosteres12,14,16, that are among the most investi-
gated classes of CAIs15.

A closer look at the amino acid sequence of PfaCA and ortho-
logs from other Plasmodium species, allowed us to observe that
these enzymes do not possess the three His ligands that coordin-
ate the Zn(II) ion in all a-CAs21, but instead the metal ion (which
is crucial for catalysis) was proposed to be coordinated by two His
and one Gln residues12. Indeed, a homology modelling study
allowed us to propose the partial structure of the enzyme12,
which could not be modelled entirely as the enzyme used was a
truncated form, but part of the active site and especially the metal
ion and its ligands could be clearly modelled and are shown in
Figure 1.

Although no X-ray crystallographic data were obtained so far
for PfaCA, a previous study from Christianson’s group showed that
mutating the His zinc ligands from the human isoform hCA II,
such as for example the His119Gln substitution, leads to an
enzyme that has the zinc coordination pattern presented in Figure
1 for PfaCA, and this enzyme also preserves its catalytic activity
for the CO2 hydration reaction22.

Such data prompted us to investigate the possible inhibitory
activity of coumarins against PfaCA, which as mentioned above,
must be hydrolysed by the esterase activity of the enzyme in
order to generate the active inhibitor1.

The simple mono- and di-substituted coumarins incorporating
hydroxyl, amino, ketone or carboxylic acid ester moieties in

various positions of the ring system of types 1–14 included in this
study are shown in Table 1, together with their inhibitory data
against PfaCA and two off-target human isoforms, hCA I and II.
The following structure-activity relationship (SAR) can be observed
from the above data:

i. the most effective PfaCA inhibitors in the investigated series
were 2, 3, 6, 8 and 9, which showed inhibition constants
ranging between 17.3 and 35.8 mM. The presence of OH moi-
eties in positions 6- or 7- of the coumarin ring led to the
most effective inhibitors (2 and 3, KIs of 17.3 – 20.4 mM),
whereas amino, diethylamino, or methylketone groups (pre-
sent in compounds 6, 8 and 9) led to slightly less effective
PfaCA inhibitors. The presence of substituents in position 4
of the coumarin ring led to a decrease of potency for the
methyl-containing such derivatives (6 and 8), which was
even more accentuated for the when CF3 (derivative 7) or
ethoxycarbonylmethyl (derivative 11) groups were present.

ii. Medium potency PfaCA inhibition was observed with the fol-
lowing coumarins investigated here: 1, 4, 5, 7, 10 and 12,
which had KIs of 46.9 – 90.5 mM (Table 1). The unsubstituted
coumarin 1 is thus a medium potency-weak inhibitor (KI of
69.4 mM) but minor structural changes, such as the introduc-
tion of an OH group in positions 6 or 7, as shown above,
drastically increase the inhibitory potency (derivatives 2 and
3 discussed above). However, the isomers with the OH group
in positions 3 and 4 (compounds 4 and 5) showed a
decrease of the inhibitory properties against PfaCA (KIs of
74.4 – 90.5 mM), demonstrating that these positions should
be not substituted even with compact groups in order to
obtain effective inhibitors. The same is true when a methyl is

Figure 1. Homology modelling and coordination of the zinc ion in the active site
of PfaCA. The zinc ion (central grey sphere) is coordinated by the imidazole moi-
eties of residues His299, His301 and the nitrogen from the CONH2 moiety of
Gln32012. The numbering of the amino acid residues is not shown for the sake of
simplicity, but the 61 amino acid residues insertion which could not be modelled
is highlighted in blue. The protein backbone is shown in green.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 681



present in position 2, with compound 10 being 2.3 times a
less effective PfaCA inhibitor compared to the de-methylated
analog 3.

iii. The least effective PfaCA inhibitors were 11, 13 and 14,
which showed KIs of 311.0–455.0 mM (Table 1). These com-
pounds incorporate bulkier moieties in positions 2 or 3 of
the coumarin ring compared to the other derivatives
included in the study, clearly demonstrating that the best
activity is probably obtained when the lactone ring is unsub-
stituted. Modifications leading to effective inhibitors should
thus consider substitution patterns in positions 6, 7 and 8 of
the coumarin. This situation was in fact observed also for the
inhibition of the human CA isoforms hCA I-XIV already in the
first studies in which coumarins were reported as CAIs1,2.

iv. The investigated coumarins were rather ineffective inhibitors
of the human isoforms hCA I and II; with KIs in the range of
137.0–948.9 mM against hCA I and of KIs of 296.5–961.2 mM
against hCA II. This is a relevant observation, as it demon-
strates that the parasite enzyme is more inhibited than the
human CAs included in the study.

4. Conclusions

This is the first study in which the inhibitory effects of coumarins
against a non-a-CA are demonstrated. In a small series of mono-
and di-substituted coumarins incorporating various substituents
(OH, amino, Me, CF3, ketone, ethyl ester, etc.) and diverse substi-
tution patterns, we demonstrate micromolar inhibition against
PfaCA, a pathogen enzyme from the malaria provoking parasite P.
falciparum. The SAR for obtaining effective PfaCA inhibitors is
rather obvious, with the most effective compound having no sub-
stituents on the lactone ring and OH, amine or ketone groups in
positions 6, 7 or 8 of the second ring. The study thus confirms
that g-CAs possess esterase activity and that coumarins effectively

Table 1. Inhibition data of hCA I and II and protozoan enzyme PfaCA with cou-
marins 1–14 and acetazolamide (AAZ) as standard drug by a stopped-flow CO2

hydrase assay17.

Name Structure

Ki (mM)
a

hCA I hCA II PfaCA

1c 160.0 (3.1)b 600.0 (9.2)b 69.4

2c 192.0 683.0 17.3

3c 263.5 690.6 20.4

4c 393.5 513.1 74.4

5c 489.8 625.2 90.5

6c 646.3 485.7 27.6

7c 939.6 733.5 56.3

8c 516.5 558.9 35.8

9c 948.9 646.2 25.5

10c 137.0 296.5 46.9

11c 748.9 875.6 455.0

(continued)

Table 1. Continued.

Name Structure

Ki (mM)
a

hCA I hCA II PfaCA

12c 181.8 758.4 54.8

13c 900.1 961.2 311.0

14c 469.7 786.2 334.3

AAZ – 0.25 0.012 0.17
aMean from 3 different assays, by a stopped flow technique (errors were in the
range of ± 5–10% of the reported values).
bData from ref.1, using a different incubation time.
cIncubation time of 6 h.
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inhibit this enzyme. Elaboration of the simple coumarin scaffolds
investigated here may probably lead to more effective, presum-
ably nanomolar PfaCA inhibitors, which might constitute interest-
ing anti-malarial drug candidates.
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