China CDC Weekly

Perspectives

Advancements in Defining and Estimating the Reproduction
Number in Infectious Disease Epidemiology

Kangguo Li'% Jiayi Wang'? Jiayuan Xie'’ Jia Rui'’s Buasiyamu Abudunaibi'’ Hongjie Wei'?
Hong Liu'% Shuo Zhang Qun Li*; Yan Niv**; Tianmu Chen'**

The reproduction number (R)
fundamental metric in the examination of infectious

s€rves as a

disease outbreaks, epidemics, and pandemics. Despite
an array of available methods for estimating R, both
newcomers and established public health professionals
often encounter difficulties in comprehending the
circumstances for their use and their constrictions.
Consequently, this review intends to offer elementary
guidance on R’s selection and estimation approaches.
To facilitate our review, we executed an extensive
search on PubMed and Web of Science applying the
following search approach: [“Basic Reproduction
Number/classification”(Mesh)] AND [“Basic
Reproduction ~ Number/prevention and  control”
(Mesh)] OR [“Basic Reproduction Number/statistics
and numerical data”(Mesh)]. Our search parameters
were restricted to articles published from January 2013
to January 2023. This search rendered a total of 7,094
articles, of which we selected 60 that met our inclusion
standards for further analysis.

CONCEPTUAL UNDERSTANDING OF R:
AN ANALYSIS

R is a fundamental measure that indicates the
average number of infections or cases resulting from
contact with an infected individual, thus serving as an
important gauge of the transmissibility of infectious
diseases. There are three types of R: basic reproduction
number (R,), effective reproduction number (R.4), and
real-time or time-varying reproduction number (R,). R,
is utilized for evaluating the transmissibility of new
pathogens or variants when they emerge (/). However,
R4 and R, are employed to assess the effectiveness of
public health and social measures (PHSMs), providing
valuable insights for policymakers and public health
officials (Figure 1) (2—4).

Ry, also known as the basic reproduction number,
signifies the mean number of secondary infections
attributed solely to a single infected individual within a
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susceptible population (5-7). It proves instrumental in
predicting the probability and magnitude of disease
outbreaks, plus the vaccination threshold required to
establish herd immunity (7,8). Various factors like the
frequency of contact among the population, sanitary
practices, and seasonal changes may alter R, further (9).
Altering the transmission rate (53), the recovery rate (v
or inverse of the mean infection period), or the contact
rate substantially influences the estimated value of R,
(10). It is essential to account for any pre-existing
immunity within the given population while
calculating R,. Presently, there exists no standardized
method for determining and reporting Ry, addressing
the issue of its variability (17).

The concept of Ry is similar to R, and often
confused by researchers. The major distinction lies in
the fact that Ry is suitable for establishing a baseline
for PHSMs or exposed populations, representing the
actual immunity of the population (72). As a result,
R4 is usually smaller than Ry, because it primarily relies
on not only the transmissibility of pathogens but also
the levels of immunization within the population (73).

Anne Cori et al. (/4) provided a more detailed
breakdown of R,, dividing it into the case reproduction
number (R,) and the instantaneous reproduction
number (R)). R, represents the average number within
R, and reflects the transmissibility at a given time
point. On the other hand, R; represents the average
number within R, calculated under the assumption of
no change after a specific time point, making it easier
to estimate in real-time (/5). R, estimates the spread of
pathogens by monitoring and tracking data that
evolves over time during the course of an outbreak
(16). R, is also an important parameter for describing
the epidemiological characteristics of a disease and
evaluating the effectiveness of PHSMs (Figure 1)
(17-18). The values of R, vary due to factors such as
changes in immunity and interventions across different
populations, including interventions that impact
personal contact networks (79-20). In practice,
researchers must choose whether the main R, index to
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FIGURE 1. Comparison of application scenarios for various reproduction number methods.
Abbreviation: DBM=definition-based method; NGM=next-generation method; FSE=final-size equation; GIBM=generation

interval-based method.

be obtained is R, or R;, and then select the appropriate
modeling methods accordingly. Overall, both R, and R;
represent the average number of individuals who are at
risk of infection at a specific time (t), with R, focusing
on the attributes of infected individuals at the time ¢
and being more widely used, while R; emphasizes the
temporal attribute at time t if the situation remains
unchanged.  Consequently, if  the  disease
transmissibility declines at a particular point, R; will
transition from high to low, while R, will smoothly
decrease (21).

METHODOLOGY FOR CALCULATING R

Implementation of the Direct Method:

The direct method is used to estimate R by
analyzing a clear transmission chain multiplying the 3
with the transmission probability per contact (p),
contact rate (c), and infectious period (D) (11,22):

B =pe
Ry = BD = pcD

The direct method is applicable to distinct scenarios
that involve a minimal number of case generations
within a brief time frame, or small sample sizes during
the early phase of an epidemic or outbreak. This allows
researchers the potential to separately calculate R for
transmission  chain, analyze the

each possible
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distribution of R, and evaluate the contributions of
different transmission chains to the spread of the
disease. However, the direct method might be prone to
bias resulting from small sample sizes and is subject to
limitations related to the lack of time variation.
Moreover, challenges regarding underreporting and
fragmented data in real-time evaluations present
potential issues (23).

Implementation of the Indirect Method
Methodology Based on Definitions: The definition-
based method (DBM) is an indirect approach used to
estimate the R value. This method is applied to various
dynamics models, including the
Susceptible-Infectious-Recovered (SIR) model, the
Susceptible-Exposed-Infectious-Recovered (SEIR)

transmission

model, the Susceptible-Infectious-Recovered-Cross
immune (SIRC) model, and the Susceptible-
Infectious-Recovered-Susceptible (SEIS) model

(24-28). Taking the SIR model as an example:
ds BSI

EzbrN_W_drS
dl  BSI

Pl A
dR

— =~/—-d.R
77 d,

The secondary infections generated by an infected
individual per unit of time are represented as SS/N,
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which corresponds to the inflow process. On the other
hand, the recovery or natural death of an infected
individual per unit of time is denoted as v + 4,, which
corresponds to the outflow process. Thus, we can
calculate R4 as follows:
Inflow process BS 1 BS
Ry = Outflow process N y+d (v+d)N

Ry refers to the R when nearly the entire population

is susceptible, which means S is approximately equal to
N:

__B
d.+y

Ry

The DBM calculates R by expressing it as a function
of model parameters. This approach proves valuable in
the advanced stages of an epidemic as it yields results
with significant explanatory power. However, its
applicability is limited to single-host and single-kinetic
models, thus restricting its use in multi-host or co-
kinetic models. The DBM incorporates both the
disease’s natural history and demographic parameters,
rendering it meaningful for predicting and preventing
outbreaks. Moreover, it is renowned for its simplicity,
ease of comprehension, and minimal hardware or
software requirements.

Methodology Based on Next-Generation: The next-
generation method (NGM) serves as a prevalent
approach for the estimation of R. This method utilizes
the maximum eigenvalue of the next-generation matrix
within a dynamic model following the method
proposed by Van den Driesschie and Watmough
(29-33). NGM is frequently applied across a range of
dynamic models including, but not limited to, the SIR
and SEIS models (25). Furthermore, it delivers
quantitative accounts of secondary infections and can
estimate the percentage of undetected cases across
diverse outbreak scenarios (29,34). Compartments
within these dynamic models are differentiated based
on their infectivity. The ‘x-group’  signifies
compartments possessing infectivity, whereas the ‘y-
group’ denotes compartments devoid of infectivity.
The equations corresponding to these groups are
presented below:
% =E(x,y)— Vi(x,y)i=l,...,n

dyj

dr

F; represents the newly infected individuals in
compartment 7, V; represents individuals who transit to
other compartments. To illustrate NGM, we will

=Gj(x,y)j=1,...,m
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continue using the SIR model as an example. In the
SIR model, where n and m are 1 and 2, respectively,
and with x = I and y = (S, R), the corresponding

equations are as follows:

_BSI
h="§
Vi=~yl+dl

BSI

Gl=b,N—W—d,S

Gy =~yI—dR
Taking derivatives of F and V to I, one obtains the
Jacobi matrix: = $S/N, and V= +d,. And Ry is the
real part of the leading eigenvalue of the next-
generation matrix (Fv) 25:

8
_ F ~ BS
Rao=olFv') =2 = =
7 V) Y T T
B
fo=37

Nevertheless, the application of the NGM method

to multi-group or multi-host compartmental models
exhibits certain limitations. This method exclusively
ascertains the stability threshold of a disease-free
equilibrium, displaying a deficiency in
explanatory power. Employing smaller data sets during
the initial phases of an epidemic may result in the
omission of pivotal information. Over time, there has
been a noted enhancement in the quality and
dependability of the NGM results. Hence, researchers
must modify their methodologies based on specific
scenarios. For instance, when studying diseases such as
hand, foot, and mouth disease, it might be plausible to
exclude certain factors like the short disease duration,
mobility of patients, and spatial structure.
Equation for Determining Final Size: The final-size
equation (FSE) is a valuable tool for comprehending
the relationship between the outcome of an epidemic
and Ry, while taking into account the proportions of
susceptible and recovered individuals. In the SIR
model, the calculation formula is as follows:

explicit

S,
=%

R, = Soo
07 1= Sy

Where S, and S, represent the initial and final
proportions of susceptible individuals.

ESE is often employed in the SIR model to ascertain
the ultimate scale of an epidemic (35). With its precise
data output and straightforward equation form, it is
well suited to facilitate initial estimates following the
conclusion of an epidemic. Nonetheless, its use is
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model-specific and necessitates fresh derivation for
application for other models, which can prove
challenging for complex dynamic models.

It has been definitively established that the FSE
possesses a unique solution in three mean field models,
namely homogeneous, pairwise, and heterogeneous.
Moreover, linearizing the FSE facilitates the
transformation of optimal vaccination issues into
simpler knapsack problems, yielding practical insights
for decision-makers and the general public when
considering vaccination strategies (36-37). However, a
gap exists with respect to the availability of an R
package incorporating displacement or interaction for
the calculation of R, using the FSE approach (38).
Methodology Based on Generation Intervals: The
method based on generation interval is frequently
utilized to estimate R, in the field of epidemiology.
This approach leverages the concept of the generation
gap, defined as the duration between the infection of a
primary case and the consequent infection of secondary
cases. This method streamlines the natural history of
the illness by concentrating on the distribution of time
intervals among generations. Within this framework,
two key indicators are emphasized: the generation
interval (GT) and the serial interval (SI). GT signifies
the duration between infection incidents in an
infector-infected pair, whereas SI symbolizes the time
from symptom onset in these pairs (39). Accurate
estimation of GT becomes demanding as it is
dependent on an exhaustive investigation of contact
history (40). In comparison, SI's determination is less
challenging as symptoms can be readily detected
during field epidemiological ~surveys (41). By
quantifying the relationship between generations using
SI, researchers can estimate R,, R, and R, (42—44).

Several R (version 4.3.0, R Core Team, Vienna
Austria) packages, namely EpiEstim, EpiNow2, and
RO, currently facilitate the computation of
regeneration numbers based on GT or SI (15,45-46),
thereby significantly lowering the barrier to their
utilization. We have developed an
application for users unfamiliar with the R language,
particularly grassroots disease control staff. This
application, called Reproduction Number Calculator,
enables access to these R packages without
necessitating knowledge of programming (available at
https://toolbox.ctmodelling.cn/). However, it is crucial
to acknowledge the method’s inherent limitations.
Inaccuracies may arise if the assumed distribution of
intergenerational times does not accurately reflect the
dynamics of the disease (42). This uncertainty in

interactive
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distribution  can  potentially  result in  an
underestimation of R's uncertainty (/5). Oversights
related to group immunity and infection staging can
create bias when estimating Ry (42). Further, the
generation interval-based method comes with specific
demands and limitations, such as a need for clear
transmission chains, comprehensive and timely data,
and an accurate intergenerational time distribution
assumption. These factors may limit its utility in
certain scenarios.

In conclusion, the generation interval-based method
provides valuable insights into disease transmission
dynamics and facilitates the estimation of R,, Rcﬁ and
R,. However, researchers should exercise caution in
interpreting the results and consider the assumptions
and data requirements associated with the method.

CONCLUSION

Choosing the correct approach to R estimation is
critical in epidemiological research. Each model
introduces its own unique strengths and weaknesses.
The desired R, dictated by disease characteristics and
accessible data, must be thoughtfully considered by
researchers to identify the most fitting calculation
method. This systematic strategy guarantees that the
estimation procedure corresponds with the existing
conditions and provides trustworthy outcomes.
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