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Abstract: Leptographium qinlingensis is a fungal symbiont of the Chinese white pine beetle (Dendroc-
tonus armandi) and a pathogen of the Chinese white pine (Pinus armandii) that must overcome the
terpenoid oleoresin defenses of host trees to invade and colonize. L. qinlingensis responds to monoter-
pene flow with abundant mechanisms that include the decomposing and use of these compounds
as a nitrogen source. Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that
plays a central role in both plants and animals through integration of nutrients, energies, hormones,
growth factors and environmental inputs to control proliferation, growth and metabolism in diverse
multicellular organisms. In this study, in order to explore the relationship between TOR gene and
carbon sources, nitrogen sources, host nutrients and host volatiles (monoterpenoids) in L. qinlingensis,
we set up eight carbon source treatments, ten nitrogen source treatments, two host nutrients and
six monoterpenoids (5%, 10% and 20%) treatments, and prepared different media conditions. By
measuring the biomass and growth rate of mycelium, the results revealed that, on the whole, the re-
sponse of L. qinlingensis to nitrogen sources was better than carbon sources, and the fungus grew well
in maltose (carbon source), (NH4)2C2O4 (inorganic nitrogen source), asparagine (organic nitrogen
source) and P. armandii (host nutrient) versus other treatments. Then, by analyzing the relationship
between TOR expression and different nutrients, the data showed that: (i) TOR expression exhibited
negative regulation in response to carbon sources and host nutrition. (ii) The treatments of nitrogen
sources and terpenoids had positively regulatory effects on TOR gene; moreover, the fungus was
most sensitive to β-pinene and 3-carene. In conclusion, our findings reveal that TOR in L. qinlingensis
plays a key role in the utilization of host volatiles as nutrient intake, overcoming the physical and
chemical host resistances and successful colonization.

Keywords: Leptographium qinlingensis; Target of Rapamycin gene; carbon sources; nitrogen sources;
host nutrition; terpenoids

1. Introduction

Bark beetle is a common pest that affects conifers [1,2], which is often associated with
specific fungi. These fungi live in the special structure (reservoir) of the bark beetle or
on the body surface [3,4]. In terms of killing host trees, there is an inevitable connection
between them that follows certain rules. First, it is observed that the trees killed by bark
beetles are stained [5,6], and symbiotic fungi can help bark beetles overcome the resistance
system of host trees [7]. The reason is that the bark beetles destroy the dredging cells, block
the resin tubes of host trees, kill epithelial cells, and disrupt the nutrient metabolism and
water-use efficiency of hosts, finally leading to the death of host trees [8–10]. At the same
time, the associated fungi provide more adequate nutrition for bark beetles and change the
nutrition of host trees, which is conducive to the development, settlement and excavation
of bark beetles [11,12]. In addition, these symbiotic fungi are also conducive to the chemical
communication of bark beetles [13,14].
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Chinese white pine beetle, Dendroctonus armandi Tsai and Li (Coleoptera: Curculion-
idae: Scolytidae), is the most harmful bark beetle species in the natural forest ecosystems in
Northwest China [15,16]. It has mainly invaded and endangered the healthy Pinus armandii
Franch grown in the Qinling Mountains for more than 30 years, resulting in the rapid
decline of the tree potential and resistance, consequently leading to the occurrence of other
diseases and pests [17,18]. It has become a major obstacle to the sustainable development
of the forest ecosystem and the construction of the ecological environment in the Qinling
Mountains. Controlling the invasion harm and population reproduction of D. armandi in
the forest ecosystem, especially the implementation of population density regulation, has
become an urgent theoretical and practical problem to effectively control the occurrence
and harm of D. armandi [16,19,20].

Leptographium qinlingensis strain Tang and Chen is a symbiotic fungus residing in
the adults of D. armandi [18]. When D. armandi invades the healthy host trees, L. qinlin-
gensis is inoculated into the sapwood tissues of the phloem and xylem of trees to jointly
endanger and utilize the nutrition of the host trees [20,21]. Furthermore, three toxins
(6-methoxymethyleugenin, maculosin and cerevisterol) synthesized by L. qinlingensis are
phytotoxic to the P. armandii seedlings [13]. In addition, inoculation with L. qinlingensis in-
creases the concentrations of monoterpenes and sesquiterpenes in the phloem and xylem of
the P. armandii seedlings [22–24]. These terpenoids play an important role in the settlement
of D. armandi on P. armandii.

Dendroctonus ponderosae carrying Grosmannia clavigera has caused a rapid, large-scale
decline of Pinus contorta in western North America [23,25]. Lodgepole pine also dies when
inoculated at a high density of pathogenic fungi, such as Leptographium longiclavatum,
without the beetles [23]. G. clavigera can survive independently and is induced by exposure
to the lodgepole pine phloem extract (LPPE) [26] or oleoresin terpenoids [24,27]. Therefore,
L. qinlingensis and G. clavigera belong to relative species.

Since the discovery of the Target of Rapamycin (TOR) protein in yeast cells, it has
also been found in other eukaryotes such as fungi, Drosophila, plants and mammals. The
function of the TOR signaling pathway is conservative among these eukaryotes, and TOR
signaling is important for organism growth and development [28]. Rapamycin (Rap) is a
large intracyclic ester immunosuppressant derived from Streptomyces hygroscopicus [29]; it
can directly act on the TOR protein and inhibit its activity, so as to reduce the pathogen’s
immune response [30]. In medicine, rapamycin is often used in the clinical treatment of
allograft rejection [31,32]. In an in-depth study of the role of Saccharomyces cerevisiae, it was
found that Rap can bind to and inhibit FK506-binding protein [33,34], irreversibly inhibit
the G1 phase of the cell cycle, and control cell growth [35,36]. There are two TOR protein
(70% homology) encoding genes in S. cerevisiae [37]. TOR1 or TOR2 gene can also change in
the FKBP protein function-deficient strain of S. cerevisiae with Rap resistance. Knockout
of TOR1 or TOR2 gene and Rap treatment inhibit the growth of yeast cells [38]. Therefore,
TOR1 and TOR2 are considered to be the targets of the FKBP Rap complex that can inhibit
TOR activity [39].

TOR is a key regulator of eukaryotic cell growth and has a large molecular weight
(about 280 kDa). It is a highly conserved Serine/Threonine (Ser/Thr) protein kinase from
yeasts to mammals [40] and belongs to the phosphatidylinositol kinase-related kinases
(PIKKS) family [41]. The TOR signaling pathway is involved in regulating the initiation and
extension of translation, ribosome production, protein biosynthesis, amino acid transport,
and the transport of a variety of metabolic enzymes in eukaryotes [42,43]. It has also
been found that TOR regulates intracellular metabolism, stress response, autophagy and
other signaling pathways, which can affect the growth and development of fungi [44].
TOR proteins of all eukaryotic species have similar domains, and the HEAT repeats, FAT,
FRB, kinase and FATC are arranged from the N-terminal to C-terminal, respectively. The
N-terminal is composed of two HEAT repeat motifs. Heat repeats can form a pair of
antiparallel interactions α- Helix, and HEAT repeats are the regions where the TOR complex
subunit binds [45]. The FAT domain at the center and the FATC domain at the end of the
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C-terminal are members of the PIKK family. The interaction of these two domains may be
involved in regulating kinase activity [46]. The conserved C-terminal FATC domain, as the
“rapamycin target” of the kinase, is important for its own regulation and is considered to
contain a peripheral membrane anchor [47]. The FRB domain is the binding region of the
FKBP Rap complex. All Rap resistance caused by TOR mutation is the destruction of FRB
domain [48].

Target of rapamycin complex1 (TORC1) is a highly conserved protein kinase complex
and can be used as a central controller in response to environmental cues [49]. In various
input signals, amino acids are effective activators and can promote a variety of anabolic
reactions [50]. The TORC1 exists universally in various eukaryotes, but there are two kinds
of TORC1 and TORC2 (target of rapamycin complex2) in yeasts [51]. TORC1 is composed
of TOR, Raptor and LST8, and is sensitive to rapamycin (because there is an FRB subunit in
TOR, which is the binding site of rapamycin) [52,53]. Moreover, TORC1 is mainly regulated
by nutrient and energy utilization and participates in the process necessary to regulate
protein translation and cell growth [54]. The mutation of LST8 can affect cell growth
and development but has no lethal effect on cells. It can stabilize the structure of TOR
kinase [55].

In S. cerevisiae, TORC1 promotes cell growth in response to the availabilities of nitrogen
and amino acids [56]. The regulation of the chromatin state is an effective strategy to quickly
and reversibly control cell growth in response to the fluctuational environmental conditions;
the chromatin state globally stimulates protein expression by activating ribosome biogenesis
and protein translation through the AGC family kinase Sch9 [57]. This Sch9 kinase is similar
to the S6 kinase (S6K1/2) in mammals and is directly phosphorylated by the TORC1 on the
vacuolar membrane [58]. On the contrary, TORC1 inhibits the degradation of large proteins
through the phosphorylation of Atg13 to prevent its association with the Atg1, thereby
inhibiting the induction of macrophages [59]. It is proposed to show that TORC2 may have
a direct impact on nuclear and chromatin function [60,61], and it is necessary for chromatin-
mediated gene silencing and sub-telomere heterochromatic domain assembly [62,63].

The purpose of this study is to explore the expression patterns of the TOR gene in
the symbiotic fungus L. qinlingensis of D. armandi, as well as the physiological roles of the
TOR gene in helping bark beetle overcome host resistance. This study also provides new
insights into the underlying molecular mechanism of L. qinlingensis infection in P. armandii.

2. Materials and Methods
2.1. Tested Strain

The tested strain in this study is Leptographium qinlingensis (NCBI Taxonomy ID:
717526), which was isolated from the blue transformed woody part of P. armandii after
being invaded by D. armandi and was deposited at the College of Forestry, Northwest A&F
University (Yangling, Xi’an, China).

The tested strain was inoculated on solid PDA medium for induction. After dark
culture for 7 d, holes were drilled along the edge of the colony with a 1 cm punch, and then
purified on a new MEA (0.83% malt extract powder and 0.75% technical agar, overlaid with
cellophane, and the pH was adjusted to 5.5.) medium for subsequent experiments [26].

2.2. Main Materials

The main reagents, primers and sources used in this study were shown in Table 1.

2.3. TOR Gene Cloning

The TOR (Target of Rapamycin) amino acid sequence of the relative species (G. clavig-
era: a fungal associate of D. ponderosae) of L. qinlingensis and S. cerevisiae in the NCBI can
be downloaded (https://www.ncbi.nlm.nih.gov (accessed on 14 January 2022)). Based
on these sequences, the degenerate primers were obtained by the j-CODEHOP software
(http://4virology.net (accessed on 14 January 2022)). EF1 was selected as the reference
gene to normalize transcript levels of TOR gene in L. qinlingensis, as it has been proven
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as the most stable reference gene in previous studies. Therefore, the synthesis of gene
fragment sequence primers and qRT-PCR primers were referred as to the previous re-
port [21]. The purified mycelial cultures of L. qinlingensis were conducted for total RNA
extraction, and then the first-strand cDNA synthesis, PCR amplification, and sequencing
were essentially performed.

Table 1. Description of the main reagents and primers used in this study.

Key Reagents Reagent Source

Total RNA Extractor (Trizol) Sangon Biotech (Shanghai) Co., Ltd.
DH5 α Competent cell Sangon Biotech (Shanghai) Co., Ltd.
HiScript® III 1st Strand cDNA Synthesis Kit (+gDNA wiper) Vazyme Biotech Co., Ltd.
HiScript® III RT SuperMix for qPCR (+gDNA wiper) Vazyme Biotech Co., Ltd.
ChamQ Universal SYBR qPCR Master Mix Vazyme Biotech Co., Ltd.
TreliefTM SoSoo Cloning Kit Ver.2 Tsingke Biotechnology Co., Ltd.
E.Z.N.A. Gel Extraction Kit Omega Bio-Tek Co., Ltd.
DMSO/turpentine Moklin Biotechnology Co., Ltd.
(+)-α-pinene/(−)-α-pinene Shanghai Aladdin Bio-Technology Co., Ltd.
(−)-β-pinene/(+)-3-carene Shanghai Aladdin Bio-Technology Co., Ltd.
(+)-limonene/mix-monoterpene Shanghai Aladdin Bio-Technology Co., Ltd.
P. armandii Franch Northwest A&F University (Yangling, China)
P. tabuliformis Carr Northwest A&F University (Yangling, China)
Gene (Primer)
TOR: Fragment amplification

F: GGAACTTCTCCCGGGTCATG Sangon Biotech (Shanghai) Co., Ltd.
R: GGTGGCCATCCTGTGGCACG Sangon Biotech (Shanghai) Co., Ltd.

q-PCR F: TCTCCTTAACATTGAGCACCG Sangon Biotech (Shanghai) Co., Ltd.
R: ATAGCCAAACACCTCCACC Sangon Biotech (Shanghai) Co., Ltd.

EF1: Fragment amplification
F: GCTGCTGTCCGTGTTGAA Sangon Biotech (Shanghai) Co., Ltd.
R: GGTTGTAGCCGACCTTCTT Sangon Biotech (Shanghai) Co., Ltd.

q-PCR F: CTTGGTGGTGTCCATCTTGTT Sangon Biotech (Shanghai) Co., Ltd.
R: CCGCTGGTACGGGTGAGTT Sangon Biotech (Shanghai) Co., Ltd.

2.4. Nutritional Treatments
2.4.1. Medium Types

(1) Carbon Sources

In order to explore the effects of different carbon source treatments on the physiological
phenotype and TOR gene expression of L. qinlingensis, 8 media were set up as follows [24,26]:
CK: 1% glucose, 0.67% amino free yeast, pH = 5.5; Processing group: replaced glucose
with sucrose/maltose/fructose/lactose/amylum/sorbitol/mannitol, other conditions were
the same.

(2) Nitrogen Sources

In order to investigate the effects of different nitrogen sources on the physiological
phenotype and TOR gene expression of L. qinlingensis, 16 media were set up (6 inorganic
nitrogen sources, 4 organic nitrogen sources and 2 host nutrients) as follows [24,26,27]: CK:
0.3% NH4NO3, 0.17% amino free yeast, 0.1% potassium hydrogen phthalate, 1% maltose,
pH = 5.5; processing group: replaced NH4NO3 with (NH4)2C2O4/NH4Cl/(NH4)2HPO4/
(NH4)2SO4/(CO(NH2)2), other conditions were the same.

Note: 4 organic nitrogen sources were treated in the same way as inorganic nitrogen,
host nutrient medium (10% P. armandii, 10% P. tabuliformis), other conditions were consistent.

2.4.2. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Biomass in
Liquid Culture

First, 100 mL liquid medium was placed into a 250 mL triangular flask, two fungal
cakes were inoculated in each bottle and cultured in a shaking table at 28 ◦C and 120 r/min
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for 7 d. The mycelium was filtered and collected and washed with tap water 3 times, dried
it at 80 ◦C to constant mass, and then the dry mass (biomass) of the mycelium was weighed.
Five repetitions per treatment were prepared.

2.4.3. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Growth Rate on
Solid Medium

First, 1.5% agar was added to make solid medium. Before inoculation, each medium
was overlaid with cellophane. One fungal cake (1 cm in diameter) was inoculated in the
center of the medium and incubated at 28 ◦C in the dark for 15 d, The colony diameter was
measured every 5 d by the cross method, and the average growth rate of mycelium was
calculated. Five repetitions per treatment were prepared.

2.4.4. Effects of Different Nutritional Treatments on the L. qinlingensis TOR Gene Expression

In the super clean workbench, the mycelium cultured for 15 d on solid medium was
gently scraped with tweezers into the RNA enzyme-free 1.5 mL centrifuge tubes and
then placed at −80 ◦C for subsequent total RNA extraction and gene expression analysis.
Five repetitions per treatment were prepared.

2.5. Terpenoid Treatments
2.5.1. Medium Types

Different terpenoids (concentrations of 5%, 10%, and 20% for each terpenoid treatment)
were prepared in different medium formulations as follows [24,26]: CK: 5% DMSO, 0.83%
maltose, 0.75% agar, pH = 5.5; processing group: replace DMSO with (±)-α-pinene/(−)-β-
pinene/(+)-3-carene/(+)-limonene/turpentine/mix-monoterpene, other conditions were
the same.

(±)-α-pinene ((+)-α-pinene: (−)-α-pinene = 1:1), monoterpene mixture ((+)-limonene:
(+)-3-carene: (±)-α-pinene: (−)-β-pinene = 5:3:1:1).

2.5.2. Effects of Different Terpenoid Treatments on L. qinlingensis Mycelial Growth Rate

First, 200 µL of the above different terpenoids were added to the MEA medium
overlain with cellophane, respectively, and spread evenly with spreader, connecting it
to one fungal cake, and then cultured in the dark for 15 d, and the colony diameter was
measured every 5 d to determine the average growth rate of mycelium. Five repetitions per
treatment were prepared.

2.5.3. Effects of Different Terpenoid Treatments on the L. qinlingensis TOR Gene Expression

The specific methods, operations and precautions used were the same as the Section 2.4.4
in nutritional treatments.

2.6. Statistical Analysis

The mycelial biomass, mycelial growth rate, and TOR gene expression level were statis-
tically analyzed in this study. Five repetitions were set for each treatment, and 3 repetitions
were measured to take the average values. The relative expression of TOR gene after qRT-
PCR was calculated by 2−∆∆CT, the 2−∆∆CT value was (log2) transformed and subjected
to one-way analysis of variance (ANOVA), and Tukey’s honest significant difference test
(HSD) was also used to compare treatment differences. Excel 2019 (Microsoft Office), SPSS
23.0 (IBM SPSS Statistics, Chicago, IL, USA) and SigmaPlot 12.5 software (Systat Software
Inc, San Jose, CA, USA) were used for statistical analyses and plotting, respectively.

3. Results
3.1. Sequence Similarity and Phylogenetic Analysis of TOR Gene in Fungi Species
3.1.1. Sequence Similarity of TOR Gene

The amino acid sequence (greater than 300aa) derived from the verified TOR gene
of L. qinlingensis was compared with other fungal TOR proteins in the NCBI by BLASTp
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search to obtain the similarity between the TOR protein sequence of L. qinlingensis and the
homologous protein sequence from other fungi species. The results were shown in Table 2.

Table 2. Amino acidic identity of the TOR gene from L. qinlingensis, with the relative sequences in
other fungi.

Gene
Blastp Matches in Gene Bank

Identity%
Species Accession No.

TOR2-kinase Ophiostoma piceae EPE03876.1 93.35
TOR-kinase Sporothrix brasiliensis XP_040620360.1 92.75
TOR-kinase Grosmannia clavigera XP_014169801.1 88.22
TOR-kinase Sporothrix insectorum OAA65494.1 88.22

TOR2-kinase Fusarium culmorum PTD02212.1 84.89
TOR2-kinase Fusarium graminearum PCD20916.1 84.89
TOR2-kinase Colletotrichum chlorophyti OLN94152.1 85.50
TOR2-kinase Fusarium oxysporum KAG7412775.1 84.59

TOR-kinase-like Trichoderma longibrachiatum PTB77317.1 85.50
TOR 2-kinase Colletotrichum tanaceti TKW85705.1 85.80
TOR 2-kinase Colletotrichum incanum KZL74444.1 85.50
TOR-kinase Trichoderma parareesei OTA01228.1 85.50

TOR 2-kinase Colletotrichum aenigma XP_037171942.1 85.50
TOR 2-kinase Colletotrichum asianum KAF0318508.1 85.50
TOR 2-kinase Colletotrichum shisoi TQN71010.1 85.80

TOR-kinase-like Trichoderma reesei XP_006964956.1 85.50
TOR 2-kinase Colletotrichum siamense XP_036488359.1 85.50
TOR 2-kinase Colletotrichum viniferum KAF4919045.1 85.50
TOR 2-kinase Colletotrichum camelliae KAH0430715.1 85.50
TOR 2-kinase Colletotrichum incanum OHW92381.1 85.50

3.1.2. Phylogenetic Analysis of TOR Genes from Fungi Species

As shown in Figure 1, the phylogenetic tree of the TOR gene with the known amino
acid sequences and other fungal TOR protein sequences was established by the Maximum
likelihood method (Tree model: LG + G + I, −ln L = 42,370.551, G = 2.04).
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model LG + G + I (−lnL = 42,370.551, G = 2.04). The TOR amino acid sequence of L. qinlingensis
are underlined.

According to the analysis of amino acid sequence similarity and phylogeny, the
TOR gene of L. qinlingensis has the highest similarity (>90%) with Ophiostoma piceae and
Sporothrix brasiliensis. In the current study, L. qinlingensis has high similarity and homology
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(>50%) with Phyalemoniopsis curvata, Fusarium beominiforme, Colletrichum chlorophyti and
Grosmania clavigera.

3.2. Nutritional Treatments
3.2.1. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Biomass in
Liquid Medium

The results were shown in Figure 2. In Figure 2A: fructose (a) > maltose (b) > amylum
(c) > glucose (d) > mannitol (e) > lactose/sorbitol (f) > sucrose (g), there were significant
differences among carbon source treatments (p < 0.01), and fructose supply (0.2877) was
significantly greater than sucrose treatment (0.0077). Figure 2B: NH4Cl (a) > NH4NO3 (b) >
(NH4)2HPO4/(NH4)2C2O4 (c) > (NH4)2SO4 (d) > (CO(NH2)2) (e), there were significant
differences among inorganic nitrogen source treatments (p < 0.01), and NH4Cl treatment
(0.3080) was significantly greater than (CO(NH2)2) treatment (0.0085). Figure 2C: asparagine
(a) > peptone (b) > acid hydrolyzed casein (c) > tryptone (d) > P. armandii/P. tabuliformis (e),
there were significant differences among organic nitrogen and host nutrition treatments
(p < 0.01), and asparagine supply (0.2097) was significantly greater than P. tabuliformis
treatment (0.0463). However, P. armandii addition is slightly higher than P. tabuliformis
addition, but there is no significant difference between them.
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Overall, under the liquid culture conditions, the response of L. qinlingensis to inorganic
nitrogen was better than others, and NH4Cl (0.3080) > fructose (0.2877) > asparagine
(0.2097) > P. tabuliformis (0.0463). Therefore, the mycelial biomass under inorganic nitrogen
treatments was greater than carbon, organic nitrogen and host nutrition sources.

3.2.2. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Growth Rate in
Solid Medium

The results were shown in Figure 3. In Figure 3A: maltose (a) > amylum (b) > sorbitol
(c) > lactose/mannitol (d) > sucrose (e) > fructose (f) > glucose (g), there were significant
differences among carbon source treatments (p < 0.01), and maltose treatment (0.1398)
was significantly greater than glucose treatment (0.0524). Figure 3B: (NH4)2C2O4 (a) >
NH4Cl (b) > (NH4)2HPO4 (c) > (NH4)2SO4 (d) > NH4NO3 (e) > (CO(NH2)2) (e), there
were significant differences among inorganic nitrogen source treatments (p < 0.01), and
(NH4)2C2O4 supply (0.1288) was significantly greater than (CO(NH2)2) supply (0.0000).
Figure 3C: asparagine (a) > peptone (b) > tryptone (c) > P. tabuliformis/acid hydrolyzed
casein (d) > P. armandii (e), there were significant differences among organic nitrogen and
host nutrition treatments (p < 0.01), and asparagine treatment (0.1370) was significantly
greater than the supply of P. armandii (0.0888).
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In general, under the solid culture conditions, the response of L. qinlingensis to organic
nitrogen was better than others, and maltose (0.1398) > asparagine (0.1370) > (NH4)2C2O4
(0.1288) > P. armandii (0.0888). Thus, the mycelial growth rate under carbon source treat-
ments was greater than inorganic nitrogen, organic nitrogen and host nutrition sources.

3.2.3. Effects of Different Nutritional Treatments on the L. qinlingensis TOR Gene Expression

The results were shown in Figure 4. In Figure 4A: lactose (a) > sucrose (b) > sorbitol
(c) > mannitol (d) > fructose/maltose/amylum (de) > glucose (e), there were significant
differences among carbon source treatments (p < 0.01), and lactose (30.3634) was signifi-
cantly greater than glucose (0.7819). Figure 4B: (NH4)2C2O4 (a) > NH4NO3/(NH4)2HPO4
(b) > (NH4)2SO4/NH4Cl (bc) > (CO(NH2)2) (c), there were significant differences among
inorganic nitrogen source treatments (p < 0.01), and (NH4)2C2O4 treatment (6.8893) was
significantly greater than (CO(NH2)2) treatment (0.0000). Figure 4C: P. armandii (a) > pep-
tone/asparagine (b) > acid hydrolyzed casein (bc) > P. tabuliformis/tryptone (c), there were
significant differences among organic nitrogen and host nutrition treatments (p < 0.01), and
supply of P. armandii (8.4987) was significantly greater than tryptone treatment (0.4178).
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Broadly, under the solid culture conditions, the expression of TOR gene in L. qin-
lingensis was highly responsive to the carbon source treatment, and lactose (30.3634) >
(NH4)2C2O4 (6.8893) > P. armandii (8.4987) > tryptone (0.4178). In short, the expression
level of TOR gene in L. qinlingensis was highest under carbon source treatments, higher
than inorganic nitrogen, host nutrition and organic nitrogen source treatments.

3.3. Terpenoid Treatments
3.3.1. Effects of Different Terpenoid Treatments on L. qinlingensis Mycelial Growth Rate in
Solid Medium

As shown in Figure 5, under 5% terpenoid concentration: β-pinene (a) > α-pinene/3-
carene/limonene (b) > turpentine (c) > DMSO (d) > mix-monoterpene (e), there were signif-
icant differences among 5% concentration treatments (p < 0.01), and β-pinene (0.0950) was
significantly greater than mix-monoterpene (0.0614). Under 10% terpenoid concentration: β-
pinene (a) > α-pinene/3-carene (b) > limonene (c) > turpentine (d) > mix-monoterpene (e) >
DMSO (f), there were significant differences among 10% concentration treatments (p < 0.01),
and β-pinene treatment (0.1390) was significantly greater than DMSO treatment (0.1112).
Under 20% terpenoid concentration: DMSO/mix-monoterpene (a) > 3-carene/limonene (b)
> α-pinene (c) > β-pinene/turpentine (d), there were significant differences among 20%
concentration treatments (p < 0.01), and DMSO treatment (0.1108) was significantly greater
than turpentine treatment (0.0804).
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Figure 5. Effects of different terpenoid treatments on mycelial growth rate. Mycelial growth rate is
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(p < 0.01, Tukey’s HSD test). Showing 5%, 10% and 20% concentration treatment, 7 biological
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According to data from Figure 5, we can find that, under 5% concentration treatment,
the mycelial growth rate of L. qinlingensis was higher than the CK group (DMSO treatment),
except that mix-monoterpene was lower than the CK group. Under 10% concentration
treatment, all treatment groups were higher than the CK group. Under 20% concentration
treatment, except that mix-monoterpene was consistent with the CK group, the other
treatment groups were lower than the CK group, indicating the occurrence of the inhibitory
effect. In general, under the three terpenoid concentration treatments, the mycelial growth
rate of L. qinlingensis was weak under 5% terpenoid treatment. With an increase in terpenoid
concentration, the growth rate of mycelium reached the highest under 10% terpenoid
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treatment and decreased significantly after 20% terpenoid treatment. However, the mycelial
growth rate under 20% terpenoid treatment was still higher than 5% terpenoid supply.

3.3.2. Effects of Different Terpenoid Treatments on the L. qinlingensis TOR Gene Expression

As shown in Figure 6, under 5% concentration: 3-carene (a) > turpentine (b) >
limonene/mix-monoterpene/β-pinene (bc) > α-pinene/DMSO (c), there were significant
differences among 5% concentration treatments (p < 0.01), and 3-carene supply (2.0788) was
significantly greater than DMSO treatment (2.0788). Under 10% concentration: 3-carene
(a) > β-pinene (ab) > turpentine (b) > limonene/α-pinene/mix-monoterpene/DMSO (c),
there were significant differences among 10% concentration treatments (p < 0.01), and
3-carene supply (41.6659) was significantly greater than the DMSO group (0.8343). Under
20% concentration: 3-carene (a) > β-pinene (b) > mix-monoterpene (c) > α-pinene (cd) >
turpentine (d) > DMSO (de) > limonene (e), there were significant differences among 20%
concentration treatments (p < 0.01), and 3-carene supply (16.8437) was significantly greater
than limonene treatment (0.3118).
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Based on Figure 6, we can conclude that, under 5% concentration treatment, the
expression of TOR gene in L. qinlingensis was higher in the treatments of 3-carene and
turpentine than the CK treatment, but there was no significant difference in other treatment
groups. Under 10% concentration treatment, except for 3-carene and turpentine, supply
of β- pinene was also higher than the CK group. Under 20% concentration treatment,
except for the results that are consistent with those of 10% concentration treatment, mix-
monoterpene treatment also showed a higher effect on the L. qinlingensis TOR expression
than the CK group.

In short, the expression of TOR gene in L. qinlingensis in the treatment group was
higher than the CK group at all concentrations. The difference was that the expression of
TOR was lower at 5% terpenoids. At the concentration of 10% terpenoids, the expression
of TOR reached the maximum. The expression of TOR in the 3-carenen treatment was
much higher than other treatment groups. The expression of TOR decreased sharply at 20%
terpenoids, but the overall level of TOR expression was still higher than 5% terpenoids.
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3.4. The Relationships between Different Nutrients and TOR
3.4.1. Relationships between Carbon Source, Host Nutrition and TOR

Combined with Figures 2A, 3A and 4A, after treatments of fructose, maltose and amy-
lum, the mycelial biomass and growth rate of L. qinlingensis were higher, but the expression
of TOR was lower in L. qinlingensis, suggesting that TOR showed a negatively regulatory ef-
fect with the carbon source as the sole nutrition. Similarly, in Figures 2C, 3C and 4C, when
the P. armandii and P. tabuliformis were applied as the host nutrition, the mycelial biomass
and growth rate of L. qinlingensis were low, whereas the expression of TOR was high in
L. qinlingensis. Therefore, these results revealed that TOR expression showed negative
regulation during carbon source and host nutrition treatments.

3.4.2. Relationship between Nitrogen Source and TOR

Integrating Figure 2B,C, Figure 3B,C and Figure 4B,C, we can conclude that either
inorganic nitrogen ((NH4)2C2O4, NH4Cl, and NH4NO3) or organic nitrogen (asparagine
and peptone) were the sole nutrient treatment, the mycelial biomass and growth rate of
L. qinlingensis were higher, and the expression of TOR was also higher in L. qinlingensis. It
is indicated that the TOR gene in L. qinlingensis may play a positive regulatory role in the
nitrogen source treatments.

3.5. Relationship between Terpenoids and TOR

Based on Figures 5 and 6, the data showed that, with the continuous increase in
terpenoid concentrations (from 5% to 20%), the mycelial growth rate of L. qinlingensis in-
creased, reached peak value, and then decreased, but after the treatment of 20% terpenoids,
the growth rate of L. qinlingensis was still higher than the supply of 5% terpenoids, while
the expression of TOR is consistent in L. qinlingensis. However, when terpenoids were
treated as the sole nutrition, the expression of TOR showed a positive correlation with the
increased terpenoids. It was further concluded that TOR could operate in L. qinlingensis
to consume the host volatiles (such as terpenoids) as nutrition in order to overcome host
resistance and to successfully colonize trees.

4. Discussion

In this study, the L. qinlingensis cultures were treated with the different nutrient ele-
ments and host-driven monoterpenoids, including carbon sources, nitrogen sources, host
nutrition and terpenoids. Through comprehensive analysis by measuring the mycelial
biomass, mycelial growth rate and TOR gene expression level in L. qinlingensis, we obtained
that, under any nutrient treatment, the mycelium showed a positive growth effect. However,
at different levels, there are differences in the mycelial biomass and growth rate of L. qinlin-
gensis, which is consistent with the view of previous reports by Jüppner et al. [36,37,64],
that is, TOR is highly conserved and responsive to nutrition in all eukaryotes, regulating
cell cycle for growth. This process plays an important and ancient role in adapting to
nutritional conditions, and the TOR signaling pathway is the main channel of these nutrient
signals [37,65,66].

By analyzing the relationship between different nutritional treatments and TOR ex-
pression, we found that there was a negative regulation on TOR expression after carbon
source and host nutritional treatments. In addition, we wonder why the mycelium of
L. qinlingensis grew well, but the expression of TOR is low at the molecular level, which
is in contradiction with the fact that TOR is the key factor that regulates carbon source
and promotes cell growth and metabolism [41]. This is because carbon and nitrogen are
two basic nutrient sources of all cellular organisms, which provide precursors for energy
metabolism and metabolic biosynthesis [52]. In S. cerevisiae, different sensing and signaling
pathways have been described to regulate gene expression in response to the quality of
carbon and nitrogen sources [67,68]. However, in the study on the adoptive regulation of
the amino acids in S. cerevisiae, the regulatory role of carbon catabolism repression (CCR)
was clarified. When carbon and nitrogen sources exist at the same time, carbon is used as
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the corresponding basis for regulating the nitrogen source in order to regulate the TOR
signaling pathway, and the mechanism of CCR regulating amino acid osmotic enzyme was
determined [49,66,68]. In our study, only a single carbon source treatment was set up; thus,
there was a “false” negative regulation of TOR.

For the host nutrition treatment, we used the phloem sawdust of P. armandii and P. tab-
ulaeformis to make different medium types. The results were that the mycelial biomass and
mycelial growth rate of L. qinlingensis showed a positive response. It can be concluded that
the pathogenic fungi can successfully infect and colonize in P. armandii and P. tabulaeformis.
In addition, under solid culture conditions, the mycelial growth rate of L. qinlingensis in
P. tabuliformis treatment was faster than the P. armandii supply. As the first host of the fungus,
the results were surprising. We thus speculated that there may exist novel mechanisms
conducive to this situation. However, under host nutrition treatment, the expression of
TOR was low in L. qinlingensis, and this was different from the characteristics of mycelial
growth. Therefore, we propose that when the host phloem sawdust was treated as the sole
nutrition treatment, there was no coordination of other substrates, and the key regulatory
elements on the promoter of TOR gene failed to be activated; therefore, it showed a negative
regulatory role.

TORC1 plays a central role in controlling cell growth. Nutrients activate evolutionarily
conserved TORC1 through different molecular mechanisms. Nitrogen is an essential
macro-nutrient element for the synthesis of amino acids, nucleotides and other cellular
components [54]. In eukaryotes, there are two ways to activate the TORC1: (i) in cells, the
amino acids and other nutrients stimulate their activity through Rag/Gtr GTPase, triggering
the signal of Rag/Gtr dependent TORC1 activating amino acid uptake [67]; (ii) in yeast cells,
TORC1 reacts to nitrogen sources through a potential mechanism and can sense and absorb
several different nitrogen sources. The quality of nitrogen sources is defined by their ability
to promote cell growth and glutamine accumulation, which is directly related to the ability
to activate the TORC1 determined by Sch9 phosphorylation [57,58]. The preferred nitrogen
source stimulates rapid and sustained Sch9 phosphorylation and glutamine accumulation.
Inhibition of glutamine synthesis can reduce the activity of TORC1 and cell growth. Poor
nitrogen sources stimulated rapid but transient Sch9 phosphorylation. Gtr1 deletion can
prevent the transient stimulation of TORC1 but does not affect the sustained activity
of TORC1. Therefore, nitrogen sources and Gtr/Rag activate TORC1 through different
mechanisms [67]. In our study, during different carbon source and host nutrition treatments,
mycelial growth and TOR expression of L. qinlingensis tended to be similar after nitrogen
source treatment, which showed positive regulation. However, whether the TORC1 in
L. qinlingensis follows rule (i) or (ii) as above, or whether it has its own unique regulation
mechanism, needs to be further studied in future.

Insects can choose autonomously their own host, but trees as sessile organisms cannot
avoid these insects. Therefore, as a long-lived static organism, conifers must resist the
attacks of different and multiple attackers in their life. Consequently, conifers produce
a variety of compounds resistant to diseases and pests [69]. Plant secondary chemistry
is determined by both genetic and environmental factors [11]. When invaded by insects
or pathogens, a large number of the secondary metabolites [9], such as terpenes, will
be synthesized and released. Terpenes are organic compounds used to resist invasion
and bring toxicity to insects and pathogens [23,26]. Especially in conifers, with such a
large number of terpenoids and phenols, they will be resistant to various herbivores and
microorganisms. Therefore, the content of terpenoids is usually used to measure the
strength of plant disease resistance [15,24,70].

For this reason, in order to explore the relationship between the TOR gene and monoter-
penoids, we designed a culture medium containing six monoterpenoids. Under the treat-
ments of three concentrations of terpenoids [15,24], the mycelial growth of L. qinlingensis
was positively correlated with the expression of TOR (see Figures 5 and 6). With the con-
tinuous increase in terpenoid concentration, the mycelial growth first increased and then
decreased, and the expression of TOR was consistent with this growth rate. The results
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showed that the expression of TOR in L. qinlingensis was positively correlated with the
concentration of monoterpenoids. In summary, our results showed that terpenoids could
induce the expression of TOR in the phytopathogenic fungus to promote the growth of
mycelial organisms, overcoming the host physiological resistance, and then assisting the
pathogens to invade and colonize successfully into trees.

5. Conclusions

Through different types of nutritional treatments to explore the expression patterns
and roles of the TOR gene in L. qinlingensis, we obtained that the TOR gene is highly
conserved in L. qinlingensis. When treated with single carbon source and host nutrition, the
TOR gene was active and mycelia growth was also accelerated; however, under nitrogen
source treatment, the mycelia grew slowly, and the expression of TOR was weak in L. qin-
lingensis. In order to explore the potential mechanism of the TOR gene in helping fungus
overcome host resistance, we used host-volatile monoterpenoids in the main components
to treat the L. qinlingensis. The results showed that the mycelial growth rate and TOR
expression showed a synchronous trend, and that they were promoted at low concentration
and inhibited at high concentration, reaching the optimum at 10% terpenoids; moreover,
the fungi were highly sensitive to both β-pinene and 3-carene. In conclusion, our findings
reveal that the fungal TOR gene can help L. qinlingensis to enhance its growth ability to
overcome the physical and chemical host resistances and to colonize successfully into
host trees.
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