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Expansion of penguin activity in maritime Antarctica, under ice thaw, increases the
chances of penguin feces affecting soil microbiomes. The detail of such effects
begins to be revealed. By comparing soil geochemistry and microbiome composition
inside (one site) and outside (three sites) of the rookery, we found significant effects
of penguin feces on both. First, penguin feces change soil geochemistry, causing
increased moisture content (MC) of ornithogenic soils and nutrients C, N, P, and Si
in the rookery compared to non-rookery sites, but not pH. Second, penguin feces
directly affect microbiome composition in the rookery, not those outside. Specifically,
we found 4,364 operational taxonomical units (OTUs) in 404 genera in six main phyla:
Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Chloroflexi, and
Bacteroidetes. Although the diversity is similar among the four sites, the composition
is different. For example, penguin rookery has a lower abundance of Acidobacteria,
Chloroflexi, and Nitrospirae but a higher abundance of Bacteroidetes, Firmicutes, and
Thermomicrobia. Strikingly, the family Clostridiaceae of Firmicutes of penguin-feces
origin is most abundant in the rookery than non-rookery sites with two most abundant
genera, Tissierella and Proteiniclasticum. Redundancy analysis showed all measured
geochemical factors are significant in structuring microbiomes, with MC showing the
highest correlation. We further extracted 21 subnetworks of microbes which contain
4,318 of the 4,364 OTUs using network analysis and are closely correlated with all
geochemical factors except pH. Our finding f penguin feces, directly and indirectly,
affects soil microbiome suggests an important role of penguins in soil geochemistry
and microbiome structure of maritime Antarctica.

Keywords: Antarctica, geochemical properties, network, penguin, ornithogenic soil, microbiome

INTRODUCTION

Antarctica is unique due to its isolation from other continents, extreme climate, minimum of
human activity, and indigenous organisms. Therefore, local habitats, home to microbes and
animals including penguins, are excellent ecological systems to study the interactions between
these different types of organisms. Over the past 50 years, the Antarctic Peninsula has experienced
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a major warming (Beyer, 2000; Vaughan et al., 2003; Steig et al.,
2009), and resulting ice thaw has caused emergence of a large
number of bare soil areas in summer (Pritchard et al., 2012;
Nicolas et al., 2017). The expansion of the ice-free zone will lead
to increased grounds for penguin activities and subsequently,
penguin colony expansion (LaRue et al., 2013; Younger et al.,
2015), although not an increase in penguin abundance. The
combination of increased bare land areas and expanded penguin
colonies will increase the likelihood of penguin affecting soil
microbiomes.

Soil microbiomes are sensitive indicators of global change and
integral part of biogeochemistry (Oyugi et al., 2006; Varin et al.,
2012; Santamans et al., 2017), particularly the biogeochemistry
of carbon and nitrogen (Kevin et al., 2014). The microbiome
structure supporting its functions seems to be associated with an
array of environmental factors in Antarctica, in a habit-specific
manner. Some known factors include soil surface vegetation
(Teixeira et al., 2010), organic carbon (OrC) (Tytgat et al.,
2016), moisture (Lavian et al., 2001), and phosphorus (Chong
et al., 2009; Roesch et al., 2012; Kim et al., 2014). Moreover,
animal (penguins) activities, such as trampling and feces, have
also been recognized to have a significant impact on soil
microbial communities (Wang et al., 2015; Santamans et al.,
2017). Animal feces could improve soil phosphorus (Zhu et al.,
2014), organic matter, nitrogen (e.g., NO3

−-N, and NO2
−-N)

(Legrand et al., 1998; Barrett et al., 2006; Aislabie et al., 2008).
Besides, penguins excrete organic nitrogen (OrN) and ammonia
into soils (Mizutani and Wada, 1988; Zhu et al., 2010; Crittenden
et al., 2015). Continued release of these C and N resources to
the exposed soils will result in changed soil geochemistry and
microbiome composition. For example, many nitrogen cycles
functional flora have been found in Antarctica (Tupas et al., 1994;
Eckford et al., 2002). The availability of nitrogen will further
drive the function of these nitrogen-utilizing flora and change
the composition of the entire flora (Pochana and Keller, 1999;
Guyonnet et al., 2017).

Here, we focused on the effects of penguin excreta on the
exposed soils of the rookery grounds. We previously found
that penguin rookery soils (ornithogenic soils) have different
microbiome composition from pristine soils and soils colonized
by human and seals (Wang et al., 2015). Santamans et al. (2017)
showed Gentoo penguin and Chinstrap penguin are sea-to-land
biotransporters of organic pollutants and trace metals which are
released through fecal discharge into the soil and increase their
content therein. Major change of microbiome components were
identified to the level of class, which include Clostridiaceae and
Bacillaceae of phylum Firmicutes and Actinomycetales of phylum
Actinobacteria and reflect a direct role of penguin feces (Barbosa
et al., 2016; Santamans et al., 2017) in microbiome composition
of ornithogenic soils.

It is established that penguin feces change soil geochemistry
which in turn affects the microbial composition (Santamans et al.,
2017). Given this establishment, more detailed effects of penguin
feces on important soil contents such as inorganic nitrogen
and phosphorus can be further examined, and detailed changes
in microbiomes between orthinogenic and non-orthinogenic
soils need to be further characterized. Here, we hypothesized

that besides direct inoculation of microbes, penguin feces can
change orthinogenic soil geochemistry, particularly inorganic
salts such as inorganic nitrogen, so as to impact microbial
communities. To test this hypothesis, we selected a penguin
rookery and its surrounding area in northern Ardley Island,
Fildes Peninsula which is typic of maritime Antarctica. Samples
were taken from one site in the middle of rookery and three
sites from the surrounding area. To show the effects of penguin
feces, all collected orthinogenic and non-orthinogenic soils did
not contain feces. We measured the geochemical properties
of the soil samples with nine metrics and analyzed bacterial
composition using 16S rRNA gene. Based on these analyses,
we further identified main geochemical factors shaping the
bacterial community structure through redundancy analysis.
Last, we used network analysis to extract modules of operational
taxonomical units (OTUs), which were then correlated with each
of the nine geochemical factors to determine the main shaping
factors.

MATERIALS AND METHODS

Study Sites and Sample Collection
Four study sites (QE1, QE2, QE3, and QE4) on the coastal
side of northern Ardley Island, Fildes Peninsula were selected
(Figure 1). The main inhabitant of the island is the Adélie
penguin (Pygoscelis adeliae). QE1 (62.21003◦S, 58.93053◦W)
was below the penguin rookery; QE2 (62.21023◦S, 58.92874◦W)
was in the middle of penguin rookery; QE3 (62.21124◦S,
58.92878◦W) was on the hillside at the edge of the penguin
rookery; and QE4 (62.21123◦S, 58.9293◦W) was on the hill
top without penguin activities. About 50 g of surface soil
(0–5 cm) in triplicate was collected from each site using a
sterile shovel and directly put into TWIRL’EM sterile sample
bags (Labplas Inc., Sainte-Julie, QC, Canada). The samples
were stored at −20◦C in the Great Wall Station (China)
for about 10 days before being transported in a cooler by

FIGURE 1 | Locations of the sampling sites on Ardley Island, Fildes Peninsula
in this study.
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air to the home laboratory for storage at −80◦C until DNA
extraction.

Soil Geochemical Property Analyses
We analyzed nine soil geochemical properties: moisture content
(MC), pH, OrC, OrN and five water-soluble nutrients including
NH4

+-N, NO3
−-N, NO2

−_N, PO4
3−_P, and SiO4

2−-Si
(Table 1). Samples were dried in an oven at 105◦C to constant
mass to measure MC, which was determined as proportion of
water loss from the wet soil wet (Schmugge et al., 2010). Soil
pH was measured by adding 10 ml of distilled water to 4 g of
soil and recording pH with a pH electrode (PHS-3C, Shanghai
REX Instrument Factory, Shanghai, China). OrC and OrN were
processed following Hu et al. (2012). The soils were freeze-dried
and ground into powder, then treated with 10% HCl and dried to
be analyzed on an element analyzer (EA3000, Euro Vector SpA,
Milan, Italy). The soils used to determine nutrients were also
freeze-dried and grounded, and then water was added at a ratio
of 1:10 (g/mL). After shaking once every 4 h for 48 h, a nutrient
auto-analyzer (QuAAtro, SEAL, Germany) relative standard
deviation < 5% (Liu et al., 2016) was used to determine other
physical and chemical properties.

DNA Extraction and PCR Amplification
Genomic DNA was extracted from 0.25 g soil samples
using MO BIO PowerSoil DNA Isolation Kit following
manufacturer’s instructions. The purity and concentration of
DNA extracts were detected on an agarose gel, and the qualified
samples were selected for subsequent experiments. The v3-
v4 region of 16S rRNA gene was amplified using primers
806R (′5-GGACTACNNGGGTATCTAAT-3′) and 341F (5′-
CCTAYGGGRBGCASCAG-3′). All PCR reactions were carried
out in 30 µL reactions, including 15 µL of Phusion R© High-
Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA,
United States), 0.2 µM of forward and reverse primers and
10 ng template DNA. The PCR amplification cycle was: initial
denaturation at 98◦C for 1 min, followed by 30 cycles of
denaturation at 98◦C for 10 s, annealing at 50◦C for 30 s, and
elongation at 72◦C for 30 s, with a final extension of 72◦C
for 5 min. PCR products were mixed with equal volume of
1X loading buffer (containing SYB green) and loaded onto 2%
agarose gel for detection. Samples with a bright main strip
between 400 and 450 bp were chosen for purification with
Gene JET Gel Extraction Kit (Thermo Scientific, Waltham, MA,
United States).

Sequencing and Data Analysis
16S rRNA gene amplicons were sequenced on an Illumina
MiSeq platform, and 250-bp paired-end reads were generated.
Clean tag reads were obtained by removing barcode and primer
sequences, trimming end bases and filtering low-quality bases.
After quality control with Qiime (version 1.7.0) (Caporaso et al.,
2010), chimeras were detected by (UCHIME Algorithm) (Edgar
et al., 2011) and the Gold database, and finally the chimeric
sequences were removed (Haas et al., 2011) to obtain effective
Tags. The entire effective tags of all samples were clustered
using the Uparse software (Version 7.0.1001) (Edgar, 2013), and TA
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the sequences were clustered into an OTU at a 97% identity.
Meanwhile, the most frequent sequence for an OTU was selected
as the representative sequence of the OTU. The species were
annotated and analyzed on the representative sequence of the
OTUs using Qiime and the SSU rRNA database (Quast et al.,
2013) of SILVA (Wang et al., 2007) to obtain the taxonomic
information and calculate abundance at each classification level
in all the samples. Finally, all samples were normalized at the
same sequence depth (51,249 reads), for the subsequent alpha
and beta diversity analysis. The raw reads were deposited into the
NCBI Sequence Read Archive (SRA) database (accession number:
SRP120443).

Statistical analyses of the alpha diversity of soil samples,
Chao1, Good’s coverage, ACE, and Shannon’s index (H’), were
performed using Qiime software (version 1.7.0) (Caporaso
et al., 2010). The species accumulation box-plot was plotted
using the R software (version 3.2.4) (R Development Core
Team, 2008) to check if the samples were sufficient. A linear
discriminant analysis effect size (LEfSe) method was used
to identify the significantly different bacterial taxa between
sampling sites (Segata et al., 2011), which was also verified with
one-way ANOVA followed by Tukey’s test. The relevance of
environmental factors associated with the distribution patterns
of bacterial communities of the samples was analyzed by
Bray–Curtis distance-based redundancy analysis (db-RDA) using
the R package vegan (Dixon, 2003). To find associations
between geochemical parameters and specific microbial modules
(subnetworks of OTUs), we used network analysis, following
Guidi et al. (2016). Specifically, we first correlated each OTU
with seven of nine geochemical parameters using sparse partial
least square (sPLS) (Shen and Huang, 2008) as implemented
in the R package mixOmics (Rohart et al., 2017). The global
scale-free network of OTUs based on relative abundance (raised
to the ninth power) from all the samples was constructed,
and modules were identified using the R package WGCNA
(Langfelder and Horvath, 2008). Modules, represented by
the first principal component, were then correlated with
geochemical parameters across all samples using Spearman
correlation.

RESULTS

Geochemical Properties of Soils Affected
by Penguin Excreta
Our results showed penguin feces dramatically changed soil
geochemistry of the rookery area compared to that of three
other sites. First, the rookery (QE2) site has the highest
values of eight of nine geochemical factors: MC, organic
C, organic N, NH4

+-N, NO3
−-N, NO2

−-N, PO4
3−-P, and

SiO4
2−-Si (Table 1). Interestingly, the lowest values of NH4

+-
N, NO3

−-N, NO2
−-N, and SiO4

2−-Si were detected at QE3.
For example, the NH4

+-N concentrations in the QE2 samples
ranged from 82.49 to 104.64 µg/g, which was much higher
than those in the other samples (1.77–15.60 µg/g), while the
concentrations of SiO4

2−-Si in the QE2 soils were from 49.50
to 62.79 µg/g, which were also much higher than those at the

other sites (1.06–9.36 µg/g). Furthermore, we also observed
some geochemical heterogeneity among the other three non-
rookery sites. Specifically, six geochemical properties (MC,
NH4

+-N, SiO4
2−-Si, NO3

−-N, NO2
−-N and PO4

3−-P) were
also different among the three surrounding sites (QE1, QE3,
and QE4) (one-way ANOVA, p < 0.05). The values of the
six geochemical factors at QE1 were higher than those at QE3
and QE4. For example, the PO4

3−-P concentrations at QE1
(1.77–2.62 µg/g) was just lower than those at QE2 (13.84–
17.56 µg/g), but higher than those at QE3 and QE4 (0.30–
0.54 µg/g).

Bacterial Diversity and Community
Composition Changed by Penguin Feces
A total of 1,213,123 raw reads were obtained, which produced
785,534 Effective Tags after a series of treatments, averaging
65,461 valid sequences per sample. There are more than 1,500
OTUs in each sample; QE3.2 (the second sample of the site
QE3) contains the most OTUs (2,734) and QE4.1 the least
(1,592). The Good’s coverage estimator of the OTUs in the
samples ranged from 0.990 to 0.996 (Table 2), indicating that the
sequences sufficiently covered most of the bacterial diversity in
all samples. The Shannon, Chao1, and AEC values at QE4.1 were
the lowest among the 12 samples. The species accumulation box-
plot (Supplementary Figure S1) saturates with all 12 samples,
indicating the species diversity of the study sites should be well
represented by these samples.

To examine how penguin excreta affect soil microbiomes,
we first looked at the general microbiome structure. Among
the 12 samples, all OTUs are mapped to more than 40
phyla, the most enriched phyla based on relative abundance
include Proteobacteria (33.36%), Actinobacteria (19.88%),
Gemmatimonadetes (15.21%), Acidobacteria (9.17%),
Bacteroidetes (7.56%), Chloroflexi (7.23%), Verrucomicrobia
(1.77%), and Firmicutes (1.48%) (Figure 2). At the class level,
the most abundant classes are: unidentified_Gemmatimonadetes
(15.21%), unidentified_Actinobacteria (10.21%), Betaproteobac-
teria (11.20%), Gammaproteobacteria (9.66%), and
Alphaproteobacteria (8.49%). All these classes have
more than 50,000 reads. Forty-nine of the top 100
genera (total reads > 269) belong in Proteobacteria,
25 Acidobacteria, and 10 Bacteroidetes (Figure 3). The
most abundant is Gemmatimonas (32,949 reads, phylum
Gemmatimonadetes), followed by Rhodanobacter (17,357
reads, phylum Proteobacteria), Sphingomonas (8,135 reads,
phylum Proteobacteria), Oryzihumus (7,670 reads, phylum
Actinobacteria) and Haliangium (7,359 reads, phylum
Proteobacteria).

Besides the overall community composition, we also
compared the effects of penguin activities on the soil diversity.
Based on the LEfSe results, 26 taxa showed LDA score (Linear
Discriminant Analysis) greater than 4 (the cutoff for significance
test) in the 12 samples (Figure 4). QE2 has most taxa, 14 of
26 (54%), more abundant than at other sites, which included
classes, orders, and families of three phyla Proteobacteria,
Firmicutes, and putative Acidobacteria. Interestingly, the
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phylum Firmicutes and its family Clostridiaceae are only
enriched in QE2, which is generally of penguin origin (Barbosa
et al., 2016; Santamans et al., 2017). Other sites usually have
enriched taxa typical of soils, such as Acidobacteria at QE1
and QE3. Furthermore, we examined the dominant genera of
Clostridiaceae and found two are highly enriched at QE2 than
others: Tissierella and Proteiniclasticum (one-way ANOVA,
P < 0.05; Supplementary Table S1). The abundance of
Proteiniclasticum at QE2 is 2.5–9.9 times those at three other
sites, and the abundance of Tissierella in QE2 is 1.7–13.6
times that of other sites. Another enriched non-Firmicutes
genus is Rudaea (Gammaproteobacteria; Xanthomonadales;

Rhodanobacteraceae) is extremely abundant at QE2 that its
abundance is 7.0–22.5 times of that of other sites (one-way
ANOVA, P < 0.05; Supplementary Table S1).

To further assess the effects of penguin feces on microbiome
structure, we compared penguin-derived phylum Firmicutes
and soil phylum Actinobacteria in abundance and composition.
Consistent with LEfSe results, we found both Firmicutes and
its order Clostridiaceae are significantly more abundant at
QE2 than other sites, while Actinobacteria is not (Figure 5).
Statistical results of one-way ANOVA with Tukey’s test are
provided in Supplementary Table S2. In composition, there
are 23 families of Firmicutes have been identified, including

TABLE 2 | Summary of the 12 samples in the present study.

Sample name No. of clean tags No. of effective tags No. of OTUs Shannon Chao1 ACE Good’s coverage

QE1.1 82,782 78,780 2,710 8.815 2,681.668 2,798.553 0.990

QE1.2 75,053 72,538 2,486 8.598 2,423.440 2,487.779 0.991

QE1.3 76,868 73,621 2,447 8.629 2,405.640 2,513.767 0.991

Average 78,234 74,980 2,548 8.681 2,503.583 2,600.033 0.991

QE2.1 60,284 55,877 2,212 8.314 2,173.320 2,211.856 0.993

QE2.2 69,581 63,223 2,381 8.612 2,336.016 2,346.260 0.992

QE2.3 69,046 64,234 2,476 8.390 2,451.780 2,500.181 0.991

Average 66,304 61,111 2,356 8.439 2,320.372 2,352.766 0.992

QE3.1 68,205 65,597 2,724 9.196 2,708.029 2,700.096 0.991

QE3.2 77,374 75,416 2,734 9.116 2,659.524 2,762.330 0.991

QE3.3 61,353 59,308 2,326 8.961 2,299.130 2,348.941 0.993

Average 68,977 66,774 2,595 9.091 2,555.561 2,603.789 0.992

QE4.1 56,092 55,203 1,592 7.912 1,467.725 1,528.680 0.996

QE4.2 68,107 64,624 2,611 9.154 2,565.547 2,594.912 0.992

QE4.3 60,340 57,113 2,584 9.056 2,554.120 2,567.884 0.992

average 61,513 58,980 2,262 8.707 2,195.797 2,230.492 0.993

FIGURE 2 | The top10 abundant phyla in the 12 soil samples in the study.
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FIGURE 3 | The phylogenetic tree of the top 100 genera. The colors of the branches represent the corresponding phyla. The outer bar plots represent the relative
abundance of each genus.

Clostridiaceae and Gracilibacteraceae, which are two most
abundant of all families (Figure 6). Interestingly, some families
in the QE2 samples form their own clusters based on abundance,
and they are close to QE3 samples but well separated from
QE1 and QE4 samples. Soil phylum Actinobacteria has 43
identified families, which also formed their cluster separated
from three other sites (Supplementary Figure S2). Although
Actinobacteria is not different among the sites in total abundance
(Figure 5 and Supplementary Table S2), there are some
families such as Microbacteriaceae and Pseudonocardiaceae
which are either more or less abundant at QE2 than other sites,
respectively.

Geochemical Parameters in Structuring
Microbiome Composition
It has been established by the two previous sections that penguin
feces change both soil geochemistry and microbiome structure.
Here, we attempted to explore the association between them.
First, we performed db-RDA analysis and found the 12 samples
are well separated: QE2 is different from the other three sites
along the first principal component RDA1 (Figure 7 and Table 3).
Interestingly, no two sites are close to each other; QE2 and QE4
have similar distribution along the second principal component
RDA1, although no significant factors are included in this
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FIGURE 4 | The LDA score distribution histogram is to search for Biomarker (Segata et al., 2011), which has a statistically significant difference between group and
group, at all classification levels, and used the LDA score distribution histogram to show the species with LDA score larger than 4 in the present study.

component (Table 3). All nine factors are included in the first
component, with the effects of pH and the other eight appear
to be in opposite directions, although pH is a component
of RDA1, it was not significantly correlated with the overall
microbiome composition (r2 = 0.39, P < 0.118). Based on the
correlation with the first principal component RDA1 (Table 3),
MC (r2 = 0.89, P < 0.001) was the most significantly correlated
with the bacterial community composition in the study sites,
followed by PO4

3−-P (r2 = 0.88, P < 0.001) and NH4
+-N

(r2 = 0.85, P < 0.003), which are most similar in structuring
these study sites and followed by OrC (r2 = 0.78, P < 0.005),
NO3

−-N (r2 = 0.77, P < 0.003), OrN (r2 = 0.74, P < 0.005),
NO2

−-N (r2 = 0.71, P < 0.005) and SiO4
2−-Si (r2 = 0.63,

P < 0.017).
To further analyze the association between the microbiome

and geochemical factors, we built a global co-occurrence
network of OTUs and identified and extracted the modules
of microbes which show high correlations with geochemical
factors. A total of 21 modules which contain 4,318 of the

4,365 OTUs identified (Supplementary Table S3); the
largest modules have 444 OTUs, and the smallest has 48
OTUs. These correlations confirmed the db-RDA results:
the effects of pH and eight other factors are different
(Figure 8). Specifically, among the 21 modules, three
modules show strong positive correlation with all non-
pH factors, and one shows a negative correlation; one
module shows a positive correlation with pH. As MC is
identified by RDA as most explanatory, we extracted the
yellow module (Figure 8), these OTUs of this module
indeed show high correlation between MC and module
membership (Supplementary Figure S3). Among the OTUs
of high degree (a metric of connectivity to immediate
neighbors) and clustering coefficient are some Clostridium
species, such as Clostridium sensu stricto and Clostridium
sordellii and others in the family Clostridiaceae_1 of the
order Clostridiales (Supplementary Table S4). Others hub
taxa include g__Rhodanobacter, f__Chitinophagaceae, and
g__Gemmatimonas.
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FIGURE 5 | The relative abundance of the penguin-origin phylum Firmicutes (A) and its family Clostridiaceae and the soil phylum Actinobacteria (B), and the ratios of
Firmicutes and Clostridiaceae to Actinobacteria (C) the 12 samples from the four study sites.

DISCUSSION

Our study expands recent work which showed penguin feces have
effects on microbiome composition of Antarctic ornithogenic
soils (Santamans et al., 2017). Furthermore, we demonstrate

the effects are both direct and indirect. Directly, penguin
feces will change the soil microbiome composition through
microbe loading, as observed by the presence of penguin-
derived taxa (Barbosa et al., 2016) in ornithogenic soils, as
previously observed (Wang et al., 2015; Santamans et al.,
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FIGURE 6 | The families of Firmicutes of the 12 samples from the four study sites.

2017). Indirectly, the geochemistry of ornithogenic soils is very
different from non-ornithogenic soils, as observed in other
studies (Mizutani and Wada, 1988; Teixeira et al., 2010, 2013;
Santamans et al., 2017). The correlations between different
modules of soil microbes and geochemical factors are identified
in this study.

We first observed in this study there is a direct effect of
microbe loading to ornithogenic soils by penguin feces, as 23
families of Firmicutes of penguin origin (Barbosa et al., 2016),
particularly Clostridiaceae is much more abundant in penguin
rookeries than other sites. In contrast, typical soil phyla such
as Actinobacteria shows comparable abundance between the
rookery site and non-rookery sites. Although Firmicutes and
Bacteroidetes consist of more than 90% of all phylogenetic
types and are both dominant bacterial divisions in the
animal’s gut (Leser et al., 2002; Eckburg et al., 2005; Ley
et al., 2005; Ley, 2006; Barbosa et al., 2016), our results
show Firmicutes is more abundant in ornithogenic soils in

Antarctica, as found by Santamans et al. (2017). To provide
further details on the family Clostridiaceae, we identified
two genera, Tissierella and Proteiniclasticum, to be about
10-fold more abundant at the rookery than other sites.
Besides Clostridiaceae of Firmicutes, we also found a non-
Firmiculate Rudaea (Gammaproteobacteria; Xanthomonadales;
Rhodanobacteraceae) being 15-fold more abundant in the
rookery than other sites.

We also observed significant indirect effects of penguin
feces on microbiome composition through soil geochemistry.
These effects are most manifest in the study by Santamans
et al. (2017), in which they find that OrC, OrN, and
particularly trace metals are increased by penguin feces in
Antarctica. Here, we showed the key inorganic nutrients,
particularly elevated PO4

3−_P, NH4
+-N are from penguin

feces. Most importantly, we identified 21 modules showing
specific correlation with different geochemical factors. This
highlights the differential nutrient needs of different taxa in
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FIGURE 7 | Distance-based redundancy analysis showing correlations between the bacterial communities and environmental factors of the 12 samples from the
four study sites.

the microbiome. High MC in the rookery site may be due to
rich organic matter in the feces which alleviates soil weathering
to improve soil water retention capacity (Harrysson Drotz
et al., 2009). However, the relationship between soil moisture
and organic content is complicated and often dependent
on the timing of feces dropping being before and after
soil thaw (Orchard and Corderoy, 1983; Wu et al., 2017).
Among all explanatory factors, soil moisture is the main
driver of soil C and N transformations in soils, because
it affects microbial activity and survival, and a decrease
in water content results in a decrease in the connectivity
between the substrates and microorganisms (Chenu et al.,
2014). Lavian et al. (2001) provided evidence that both activity
and the composition and substrate utilization of the microbial
community appeared to change substantially across the moisture
level.

Besides the elevated content of PO4
3−-P and NH4

+-N,
the high content of NO3

−-N and NO2
−-N may be due to

nitrification from ammonia by some of the soil microbes.
Coincidentally, the abundant Rudaea at the rookery site is
capable of nitrification (Dong et al., 2016). On the other hand,
pH and other geochemical factors have opposite effects in
structuring the ornithogenic soil microbiomes. The role of pH
has been found to be ubiquitously dominant in many types
of microbiomes (Fierer and Jackson, 2006). One possibility for
such a role is this may be a consequence of the increased
fermentative metabolism linked to microaerophilic of anoxic
conditions generated by the high oxygen demand associated
with increased organic matter availability in penguin-affected
soils (Lavian et al., 2001). Therefore, a functional analysis
of these highly enriched taxa is needed to elucidate the
process.

In this study, we found that penguin feces can impact
ornithogenic soil microbiomes directly by microbe dropping
and indirectly by changing soil geochemistry. Loading of
microbes is manifest in Firmicutes and its class Clostridiaceae
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FIGURE 8 | The correlation between the 21 identified modules with nine geochemical factors. The modules are indicated with colors as names. MC, moisture
content; OrC, total organic carbon; OrN, total organic nitrogen. The red-to-green scale represents the correlation coefficients.

TABLE 3 | A Monte Carlo permutation test of relationship between environmental factors and bacterial community composition.

RDA1 RDA2 r2 Pr (>r)

MC 0.9867 −0.162551 0.8864 0.001 ∗∗∗

pH −0.912169 −0.409815 0.3898 0.118 NS

OrN 0.983909 0.17867 0.7409 0.005 ∗∗

OrC 0.994916 0.100713 0.7808 0.005 ∗∗

NH4
+-N 0.999281 −0.037924 0.8479 0.003 ∗∗

SiO4
2−-Si 0.961419 −0.275087 0.6267 0.017 ∗

NO3
−-N 0.927653 −0.373443 0.7661 0.003 ∗∗

NO2
−-N 0.99995 0.010012 0.7091 0.005 ∗∗

PO4
3−-P 0.996001 −0.089347 0.8796 0.001 ∗∗∗

∗Correlation is significant at the 0.05 level. ∗∗Correlation is significant at the 0.01 level. ∗∗∗Correlation is significant at the 0.001 level. NS, not significant.
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which contains two abundant genera. Penguins feces also
cause changes in ornithogenic soil geochemistry, which
has a high correlation with different modules of soil
microbiomes. These altered microbiomes may in turns have
significant functional effects on soil geochemistry structure in
the rookery, which will be implicated in the biogeochemistry in
maritime Antarctica.
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