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Infection diseases are among the top global issues with negative impacts on health, economy, and society as a whole. One of the
most effective ways to detect these diseases is done by analysing the microscopic images of blood cells. Artificial intelligence (AI)
techniques are now widely used to detect these blood cells and explore their structures. In recent years, deep learning architectures
have been utilized as they are powerful tools for big data analysis. In this work, we are presenting a deep neural network for
processing of microscopic images of blood cells. Processing these images is particularly important as white blood cells and
their structures are being used to diagnose different diseases. In this research, we design and implement a reliable processing
system for blood samples and classify five different types of white blood cells in microscopic images. We use the Gram-Schmidt
algorithm for segmentation purposes. For the classification of different types of white blood cells, we combine Scale-Invariant
Feature Transform (SIFT) feature detection technique with a deep convolutional neural network. To evaluate our work, we
tested our method on LISC and WBCis databases. We achieved 95.84% and 97.33% accuracy of segmentation for these data sets,
respectively. Our work illustrates that deep learning models can be promising in designing and developing a reliable system for
microscopic image processing.

1. Introduction

Despite decades of efforts and research in controlling infec-
tion diseases, they are still among the most challenging
issues in public health. According to the World Health
Organization (WHO), infectious diseases are now the
world’s most deadly communicable disease and are ranked
as the 4th leading cause of human death. They are among
the top global problems with human, social, and economic
impacts across the globe. Therefore, the development of
robust systems for early diagnosis and investigating the
source of the epidemic are critical to address this global,
life-threatening issue.

One important part of the body’s immune system is
white blood cells (WBC). The white blood cells protect the
body against infectious diseases. There are five different

types of white blood cells, named as lymphocytes, mono-
cytes, eosinophils, basophils, and neutrophil. The number
of white blood cells, as well as their structure, is important
in the diagnosis of different infection diseases, such as
HIV, rubeola, poliovirus, and chickenpox [1, 2]. This test,
named as hemogram test, is done by evaluating the blood
cells under a microscope. However, due to the different types
of white blood cells and their complex structures, the study
of blood vessels manually is highly prone to error [3]. There-
fore, a lot of researchers have explored different techniques
to help with automatic detection of white blood cells with
high accuracy accurately.

In recent years, researchers have investigated and pro-
posed different computational intelligence techniques for
infection diseases diagnosis. These techniques include but
not limited to transfer learning and deep learning [4–6].
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Many researchers have focused on using these computa-
tional techniques to detect the white blood cells due to their
importance in diagnosing a variety of infectious diseases.
Most of these studies have focused on classification and seg-
mentation of the white blood cells. Given the importance of
detecting white blood cells, in this paper, we will first review
the prior literature on classification and segmentation of the
white blood cells. We will present a deep learning method
using convolutional neural networks to improve the prior
studies. One of our motivations to use convolutional neural
networks is because they do not require seeing the entire
object. Therefore, it can be a good choice to deal with cells
at the edge of the microscopic images as well. We use the
Gram-Schmidt algorithm to segment the nuclei in the
peripheral blood samples. Next, we use Scale-Invariant Fea-
ture Transform (SIFT) feature detection to extract the most
predictable features. To keep spatial neighbourhood depen-
dences, which are specifically important in processing image
data, we will use convolutional neural networks to learn con-
textual dependencies. For the classification purpose, we use
the weighted two-phase test sample sparse representation
method (WTPTSSR) that is an improvement of the method
two-phase test sample representation (TPTSR) method [7].
Our motivation to choose WTPTSSR over TPTSR is that this
approach keeps the locality information. Therefore, it could be
more appropriate for the image classification context.

The rest of this paper is organized as follows. In Section
2, we will review the different techniques that have been used
for image segmentation and classification. In Section 3, we
will describe our proposed method in two parts. First, we
will explain the segmentation and classification steps in
detail. Following that, the simulation experiments of
segmentation and classification phases will be discussed in
Section 4. Next, we will describe our experiments and will
report the results of our proposed method. Eventually, we
will provide a discussion on how our approach provides
insights in detecting white blood cells and how our method
can be further improved by future research.

2. Related Work

The diversities of the white blood cells make their detection
very challenging. Many researchers have investigated differ-
ent techniques in this domain. These studies mostly relied
on image classification and segmentation to detect the white
blood cells and investigate their structures. Otsu’s threshold-
ing method is used recurrently in the circular histogram to
segment the white blood cells [8] by Wu et al. In this paper,
Otsu’s method is applied to components H and S of the HSI
color model. Gautam and Bhadauria improved the contrast
of the blood microscopic image and used Otsu’s threshold-
ing for the segmentation of the white cell nucleus [9].
Mohapatra et al. did the preprocessing step by applying the
median filter on the images in order to eliminate possible
noises and used K-means clustering in the Lab color model
to divide pixels of the blood microscopic images [10]. K
-means clustering and the Lab color model for segmentation
of the white cells nuclei have been also explored [11, 12].
Theera-Umpon used c-means fuzzy clustering and morpho-

logical operators to segment white cell nuclei [13]. Pan et al.
used ELM classifications to extract white blood cells via
utilizing visual simulations [14]. They demonstrated that
ELM has equivalent performance compared to the SVM
and can find efficient samples actively and train the
classification model in real time, without the need to adjust
the parameters.

Ko et al. [15] provided a step-by-step integration method
for nucleus segmentation based on the mean-shift clustering.
They also used GVF (extreme learning machine) active
curve to segment the cells’ cytoplasm. Hamghalam et al.
used a combination of Otsu’s thresholding method and a
snake method-based active curve to segment the nucleus
and the cytoplasm in the white blood cells [16]. Rezatofighi
et al. proposed a new method for the segmentation of white
blood cell nuclei based on Gram-Schmidt orthogonality
[17]. They further improved their work by proposing an
active curve for cytoplasmic segmentation [18].

For microscopic image edge detection, Nakib et al. [19]
used a microcanonical annealing approach to optimize their
criterion function through benchmarking two-dimensional
exponential entropy. In [20], genetic algorithms and wavelet
were used to automatically estimate the number of thresh-
olds for multilevel thresholding of the histogram. They
examined their approach of different images, including
microscopic blood images. The detection process is designed
to detect the ovals in blood images and extract the best of the
ovals with DE algorithm. They used the Gram-Schmidt
orthogonality algorithm to segment the white blood cells.
In order to characterize and extract the types of white blood
cells, which could have five different types, the SIFT algo-
rithm and deep convolutional neural network were used.
The deep convolutional neural network they used consists
of three layers of convolution and two full layers of pooling.
To address the small data size, they used WTPTSSR algo-
rithm [21].

3. The Proposed Method

In this section, we will first outline the segmentation process,
which is primarily based on Gram-Schmidt orthogonality.
We will then do the classification process, using Scale-
Invariant Feature Transform (SIFT) feature detection and
convolutional deep neural network.

3.1. Segmentation. We used Gram-Schmidt orthogonality to
segment the nuclei in the peripheral blood samples. To do
that, we first extracted a three-dimensional vector for each
pixel based on their RGB components. Subsequently, the
weight vector has been calculated, to tune the network for
the input data set. To extract the area of interest, we used
the idea presented in [22]. That is, we calculate the inner
product of the weight vector w and the pixel feature vectors
(Figure 1). This way, the purple area of the original image
will have the highest brightness intensity, whereas the rest
of the image will darken.

The Gram-Schmidt process takes a finite linearly
independent set S = fv1,⋯, vkg for k < = n and will gener-
ate an orthogonal set S′ = fu1,⋯, ukg to span the same
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k-dimensional subspace of Rn as S. To do that, a projection
operation is defined as follows:

projvu =
<u, v >
<u, u >

u = <u, v >
u

<u, u >
, ð1Þ

where <u, v > represents the inner product of operator v on
vector u.

Given this definition, the Gram-Schmidt orthogonality
method will be as follows [19]:

u1 = v1,

e1 =
u1
u1k k ,

u2 = v2 − projv2u1 ,

e2 =
u2
u2k k ,

u3 = v3 − projv2u1 − projv3u2 ,

e3 =
u3
u3k k ,

uk = vk − 〠
k−1

j=1
projvkuj

,

ek =
uk
ukk k :

ð2Þ

Using this method, the wk vector will be used for the set
S = fv1,⋯, vng. Subsequently, the maximum projection on
vk and orthogonal to other vectors in the set is calculated
as below:

wk = vk − 〠
k−1

j=1
projvkv j : ð3Þ

Eventually, we can do the segmentation based on appro-
priate thresholds that are chosen with respect to the histo-
gram of the result. Given that the platelet areas are smaller
than the nucleus, we can remove the small pieces and the
remaining part will only include the nucleus. To eliminate
the effect of the color difference and the nucleus illumination
intensity between image samples, three different weighting

vectors are calculated for each image. Eventually, we will
apply the “AND” reasoned action on the three resulting
images to get the segmentation phase results. This process
is illustrated in Figure 2.

3.2. Classification

3.2.1. Scale-Invariant Feature Transform. Scale-Invariant
Feature Transform (SIFT) feature detection has been used
for feature extraction [23]. SIFT is based on the image
gradients and is invariant to scaling and rotation [24]. It
is rotation-invariant, which means even if the image is
rotated, we can achieve the same result. It is scale-
invariant which means changing the image scale will not
affect the results. In addition, this method shows a high
degree of resistance to other complex forms of transforma-
tion and illumination changes. SIFT extracts key points
and feature vectors in three steps, presented in the follow-
ing section [23].

Step 1. At this step, the incoming image is alternately
convolved by Gaussian functions to obtain the smoothed
samples of the original images. Then, the smoothed images
are subtracted from each other to get the images of Differ-
ence of Gaussians (DOG).

Step 2. Next, the resulting DOG images are examined, and
the maximum and minimum local points are selected as
the key point. The maximum and minimum local points
are the points that have the maximum or minimum values
in both dimensions and scales compared to their neighbours.
This feature ensures that the key points and the extracted
feature vector remain invariant to the scale changes.

Step 3. Once the key points and the scales of each point are
calculated in Step 1 and Step 2, the feature vectors for each
key point will be calculated. First, the gradient image is
calculated, which will be used to extract the key points. Sub-
sequently, the direction of the region around the central
pixel will be set on the gradient rotation of the central pixel.
At this point, the gradient image is sampled for the 16 ∗ 16
regions around the central pixel of the gradient rotation.
This step ensures that the extracted feature vector is invari-
ant to rotation.

Next, the samples in a region are quantized in 8 main
directions. The 16 × 16 region around the central pixel is
divided into 16 regions of 4 × 4, and the histogram of
gradient direction is calculated in each of these regions.
Eventually, these sixteen 8-dimensional histograms form
the final 128-dimensional feature vector [24].

3.3. Convolutional Neural Networks. In natural images, the
values of pixels in a spatial neighbourhood have a high spa-
tial dependency on each other and this dependence is inde-
pendent from the neighbourhood location in the image [25].
To keep these dependencies and also to make the model
invariant to spatial transformation, a convolutional neural
network convolves a set of filters (F = f f1, f2,⋯, f Nkg) on

u3

w3 v3

v1 v2

u2

u1

Figure 1: The relationship between the vector w3 and the vectors
v1, v2, and v3 in the three-dimensional space.
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the input image and will result in the two-dimensional
named as z in the following equation:

z = f k ∗ x: ð4Þ

These filters are learned from the input data and their
gradients using a back propagation algorithm. To calculate
the feature map units, the convolutional filters are transmit-
ted through a nonlinear active function such as sigmoid
function or Rectified Linear Unit function. Subsequently, a
pooling layer is applied on the output of the feature map
units, to make it invariant to the transmissions. Pooling
action P could be done using maximizing or averaging of
feature map unities of the neighbourhood G:

PG =maxi∈Ghi: ð5Þ

For the pooling phase, we used the maximum pooling
method. This technique is used more often for the pooling
phase as it takes care of negative values and does not blur
the output units [26]. The result of the pooling layer will
be sent to a regular fully connected network. In the last layer
(the output layer), softmax activation is often used; however,
in our work, we used the WTPSSR method instead of soft-
max function. The WTPTSSR method is a sparse method
that will be described in detail in the next section. Subse-
quently, the whole network is trained using back propaga-
tion of the network error, which is calculated based on
crossentropy of the last layer output.

c = −〠
Nc

c

ycloglog bycð Þ: ð6Þ

The convolution network considered in this paper has
the convolution layer and two max-pooling layers. Weight
filters in the convolution layers are 3 ∗ 3, and zero padding
is not considered in the layers.

3.4. Weighted Two-Phase Test Sample Sparse Representation.
The weighted two-phase test sample sparse representation
method (WTPTSSR) is an improvement of the method
two-phase test sample representation (TPTSR) method [7].
The TPTSR method represents the test samples as a linear
combination of the training samples. It then calculates the
M nearest neighbours for each test sample based on the
training samples that are most appropriate for the corre-

sponding test sample. However, this method loses the local
information, while in a lot of cases, locality is very important
and holds a high recognition ratio [4]. The WTPTSSR
method was presented to address this problem [27, 28].
WTPTSSR is identical to TPTSR, except that it adds locality
on the l2 regularization. The steps of the WTPTSSR methods
are as follows:

(1) Input: A ∈ Rm×N training sample matrix, where N is
the number of training samples and m is the number
of features of each sample, and y ∈ Rm×1 is the pilot
sample

(2) Columns A and Y are normalized to have normal-
ized l2 norms

(3) TheM nearest neighbours for test samples are deter-
mined based on the equation below:

X = AT ∗ A + t ∗WT ∗W
� �−1 ∗ AT ∗ y, ð7Þ

where W is a diagonal matrix and a local adaptor that pen-
alties the distance between y and each pilot sample and is
calculated as follows [29]:

W = diag dist y, a1ð Þ, dist y, a2ð Þ,⋯dist y, anð Þ½ �ð Þ
dist y, a1ð Þ = y − aij jj jk,

ð8Þ

where k is the local adaptor parameter. Note that if k = 0, the
method will be transformed to TPTSSR. Then, the following
equation will be calculated for all the training samples:

coni = y − aixij jj j2: ð9Þ

Subsequently, M pilot samples with the lowest coni
value will be selected and construct matrix A:

(4) In the next step, we will solve the linear equation
(10), to calculate linear combination of the M train-
ing samples:
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Figure 2: Segmentation of white cells using the Gram-Schmidt algorithm.
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X = ATA + γI
� �−1

AT y, ð10Þ

where γ is a positive constant and I is the identity matrix
Since each of theM selected samples belongs to the same

class, the degree of collaboration between each class needs to
be determined [30]. Assume that ti is a sample of the ith

class represented by ai1, ai2,⋯, aiti. Using the following
equation, we will examine the degree of collaboration
between training samples of the ith class in representing y
pilot sample:

coni = y − 〠
ti

j=1
aij x

i
j

�����
�����

�����
�����
2

: ð11Þ

(5) Note that smaller coni represents a greater contribu-
tion to the test sample. Therefore, the class of pilot
sample y is determined as the class that gives the
lowest value of collaboration

In the next section, we will present how our model
worked on LISC and WBCis databases. We will also com-
pare our model with four other baseline methods.

4. Results and Experiments

4.1. Segmentation Results. To assess the segmentation, we
compare the similarity between manual and automatic
segmentation. Higher similarity metric indicates more
accurate segmentation. Similarity is calculated using the
below equation:

TS =
AAutomaticU AManual

max AAutomatic, AManualð Þ × 100, ð12Þ

where AAutomatic is the area of the automated segmented core
and AManual is the area of the manually segmented core.

4.2. RDE Criterion. The relative distance error criterion
(RDE) is used to assess the extracted segments [26, 31].
Assume that e1, e2,⋯:enT are the E pixels and t1, t2,⋯:tnT
are the T pixels, where E is the boundary of the image
obtained from automated segmentation and T is the bound-
ary of the image from manual segmentation. nE and nT are
the number of segmented pixels in E and T boundaries,
respectively. With these assumptions, RDE is defined
according to the following equation:

RDE = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nE

〠
nE

i=1
d2ei

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nt
〠
nt

j=1
d2t j

vuut0@ 1A, ð13Þ

where dtj and dej parameters are defined based on equation

(14), and distanceðei, tjÞ indicates the Euclidean distance
between ei and tj.

dei =min distance ei, t j
� �

∣ j = 1, 2,⋯nt
� �

: ð14Þ

4.3. OR, UR, and ER Criteria. Qp indicates the number of
pixels result from the manual segmentation that are not
found in the automatic segmentation. UP represents the
number of pixels that result from automated segmentation
and are not found in the manual segmentation. DP repre-
sents the number of pixels in the manually segmented object.

The OR, UR, and ER criteria, which, respectively,
indicate oversegmentation, subsegmentation, and error

Table 2: The confusion matrix when HoG descriptor is applied.

Predicted class
True class

Basophil Eosinophil Lymphocyte Monocytes Neutrophil Accuracy

Basophil 45 4 0 5 1 81%

Eosinophil 5 24 1 7 2 61%

Lymphocyte 1 2 56 2 0 91%

Monocytes 13 9 2 22 2 45%

Neutrophil 0 2 0 1 54 94%

Table 1: Numerical results of core segmentation.

Evaluation metrics
Hamghalam et al. [16] Salem [34] The proposed method

LISC data set Sharks WBCis data set LISC data set Sharks WBCis data set LISC data set Sharks WBCis data set

Ts 93.20 89.64 87.9 91.3 96.49 97.33

RDE 2.73 4.54 5.3 3.87 1.98 1.49

OR 0.076 0.084 0.103 0.066 0.062 0.052

UR 0.081 0.083 0.089 0.071 0.071 0.065

ER 0.179 0.194 0.24 0.156 0.128 0.134
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ratio, are calculated according to equations (15), (16), and
(17) [3, 13, 32, 33].

OR =
Qp

UP +DP
, ð15Þ

UR =
Up

UP +DP
, ð16Þ

ER =
Qp +UP

DP
: ð17Þ

Table 1 illustrates the numerical results of the proposed
method for nucleus segmentation in comparison with the
methods proposed in [16, 34]. As mentioned earlier, in LISC
(Leukocyte Images for Segmentation and Classification) and
WBCis (Wight Blood Cell Images for Segmentation) data-
bases, the evaluation parameters are only calculated for
white blood cells.

4.4. Classification Results. We used 260 samples of images
containing 720 × 576 pixels, all of which are colored images,
to detect blood cells that contain 5 different classes. In

Table 1, the results of the proposed procedure are applied
to 260 white cell images such as neutrophil, basophil, mono-
cyte, eosinophil, and lymphocyte. Tables 2 and 3 are the
confusion matrix where HoG descriptor and SIFT are used
along with CNN to extract features, respectively. In
Table 4, we compare the accuracy of the proposed method
against four baseline models. In Table 5, we compare how
different classification techniques, namely, SVM, WTPSSR,
and distance classification, perform. Note that the same fea-
ture extraction method (the combination of CNN and SIFT)
is used for this comparison.

5. Conclusion

Infection diseases remain a major public health issue
globally. One of the effective ways to detect several life-
threatening infectious diseases is using white blood cells. In
this paper, we present an approach to detect different types
of white blood cells in microscopic images. We used the
Gram-Schmidt process for the segmentation step, and for
the classification, we used the Scale-Invariant Feature
Transform (SIFT) technique along with a convolutional
deep neural network. In the classification phase, instead of
using a softmax classification method, we utilized a sparse
method which improved accuracy of our model to 97.14%.
While our work provides promising results, there are some
areas for further improvement that future research should
explore. The first limitation of our work, like many other
researches in this domain, is lack of a benchmark to evaluate
and compare our results. Future research should create a
benchmark for this domain and analyse how different
methods would work in a single data set comparatively.
Second, we did not have access to a large enough data set.
Increasing the data sample size as well as the variety of the

Table 4: Comparing the accuracy of the proposed method in detecting the white blood cells with four baseline methods.

Reference Segmentation method
Classification

method
Sample
size

Accuracy

The proposed method Gram-Schmidt orthogonalization WTPSSR 260 97.14%

The proposed model by Rezatofighi et al. [17]
Gram-Schmidt orthogonalization and

snake
SVM 400 86.10%

The proposed model by Zhang et al. [26] Histogram threshold Distance classifier 199 92.46%

The proposed model by Balki et al. [6] Entropy threshold and iterative threshold Distance classifier 71 90.14%

The proposed model by Horne et al. [2]
Gram-Schmidt orthogonalization and

snake
LVQ 400 94.10%

Table 5: Comparing the accuracy of the proposed approach when
using different classification methods (the segmentation is done
using SIFT and convolutional deep neural network across these
models).

Feature extraction
method

Classification
method

Sample
size

Accuracy

CNN + SIFT WTPSSR 260 97.14%

CNN + SIFT SVM 260 78.5%

CNN + SIFT Distance classifier 260 81.2%

Table 3: The confusion matrix when SIFT and CNN descriptors are applied.

Predicted class
True class

Basophil Eosinophil Lymphocyte Monocytes Neutrophil Accuracy

Basophil 53 0 2 0 0 81%

Eosinophil 0 35 2 2 0 61%

Lymphocyte 0 1 58 1 1 91%

Monocytes 0 2 3 42 2 45%

Neutrophil 0 2 0 1 54 94%
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sample images could also greatly increase the accuracy and
generalizability of the model. To increase the data set size
and variety with the aim to increase the data independency
and the classification accuracy, one potential solution would
be to collect databases available in different health centres.
Creating such a data set as the benchmark in this domain
could be a very big step towards developing methods with
higher accuracy and, more importantly, will improve the
generalizability of the findings. Lastly, to apply our proposed
model on a more complex data set, we can enhance the deep
convolutional neural network by increasing the number of
layers and the dimension of each layer to meet the complexity
of a more complicated system.

Data Availability

The image data used to support the findings of this study
have been deposited in the WBCis repository (https://
github.com/zxaoyou/segmentation_WBC).
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