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Abstract: Cylindrical magnetic nanowires are promising materials that have the potential to be used
in a wide range of applications. The versatility of these nanostructures is based on the tunability
of their magnetic properties, which is achieved by appropriately selecting their composition and
morphology. In addition, stochastic behavior has attracted attention in the development of neuro-
morphic devices relying on probabilistic magnetization switching. Here, we present a study of the
magnetization reversal process in multisegmented CoNi/Cu nanowires. Nonstandard 2D magnetic
maps, recorded under an in-plane magnetic field, produce datasets that correlate with magnetore-
sistance measurements and micromagnetic simulations. From this process, the contribution of the
individual segments to the demagnetization process can be distinguished. The results show that the
magnetization reversal in these nanowires does not occur through a single Barkhausen jump, but
rather by multistep switching, as individual CoNi segments in the NW undergo a magnetization
reversal. The existence of vortex states is confirmed by their footprint in the magnetoresistance and 2D
MFM maps. In addition, the stochasticity of the magnetization reversal is analysed. On the one hand,
we observe different switching fields among the segments due to a slight variation in geometrical
parameters or magnetic anisotropy. On the other hand, the stochasticity is observed in a series of
repetitions of the magnetization reversal processes for the same NW under the same conditions.

Keywords: magnetic nanowires; magnetization reversal processes; magnetoresistance; magnetic
force microscopy

1. Introduction

The excellent response of cylindrical magnetic nanowires (NWs) to external stimuli
(magnetic, electrical, or mechanical), coupled with their interesting static and dynamic
magnetic properties, arises from their high aspect ratio and curved geometry [1]. As
such, cylindrical NWs are promising three-dimensional (3D) building blocks for a range of
diverse fields [2], including biomedical applications [3,4], spin-based nanoelectronics [5,6],
and neuromorphic devices [7,8]. An in-depth understanding of the magnetic states in these
nanostructures is thus essential for the implementation of cylindrical nanowires in new
3D technologies. Recently, engineering cylindrical magnetic nanowires leads to unique
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magnetic configurations and magnetization reversal processes. Particularly appealing are
multisegmented nanowires where the proper design of the geometry of the segments and
their compositions present many opportunities in magnetic domain configuration and
spin dynamics [9,10]. The magnetic properties of these NWs as well as the magnetization
reversal process [11–13] are tunable through (i) their magnetic material properties (such as
magnetocrystalline anisotropy), (ii) the length/diameter ratio of the nanostructure, and
(iii) the multilayered induced properties. Moreover, the magnetization reversal can by
controlled by alternating the anisotropy or the geometry along the nanowire length [14,15].

Controlling magnetization reversal in each segment creates the opportunity to employ
multisegmented nanowires for nanobarcoding [16], shift registers, and magnetic storage
applications such as racetrack memories [17]. In this scenario, understanding the specific
mechanism that triggers the magnetization reversal process of complex nanostructures is
crucial for the development of applications that require precise control of magnetization
switching. With this aim, several techniques offer access to local magnetization and its
dynamics [18], such as magnetic force microscopy (MFM) [19], magneto-optic Kerr effect
(MOKE) [20], Lorentz microscopy [21], holography [22], X-ray magnetic circular dichroism
coupled with photoemission electron microscopy (XMCD-PEEM) [23], or magnetotransport
measurements [24], which are used to investigate the spin configuration of individual
nanostructures and their dynamics, and are largely supported by micromagnetic modeling.

In this paper, we present ordered arrays of multilayered Co85Ni15/Cu cylindrical
NWs synthesized by electrodeposition into nanoporous templates of alumina [25,26]. This
technique constitutes an inexpensive, reproducible, and scalable method that allows for
its easy implementation in novel applications. The magnetic configuration of these NWs
with alternated Co85Ni15 and Cu segments is explored under the application of an external
magnetic field by magnetoresistance (MR) measurements, advanced MFM imaging, and
micromagnetic modeling. A multistep magnetization reversal process is observed in these
NWs. In addition, the stochasticity of the magnetization process is analyzed.

2. Materials and Methods

Nanowires fabrication: Co85Ni15/Cu NWs were grown by pulsed electrodeposition
inside the nanopores of anodic aluminum oxide (AAO) membranes [27,28]. The membranes
were previously synthesized by hard anodization on high-purity Al foils using oxalic acid
(0.3M) as an electrolytic bath with a constant temperature constant of 0 ◦C [9].

The magnetic nanowires were deposited inside alumina pores using an electrolyte:
0.178 M CoSO4·7H2O + 0.01 M CuSO4·5H2O + 0.095 M NiSO4·6H2O + 0.16 M H3BO3 +
0.06 M C6H8O6. The pH value was kept constant at about 3.0. Different potentials were
used during nanowire growth: −1.2 V for 60 s for the NiCo layer and −0.6 V for 30 s for
the Cu layer, both versus a Ag/AgCl reference electrode. The resulting multisegmented
nanowires with a length of between 7 and 9 µm and diameter of about 100 nm were formed
by 700 nm long CoNi segments separated by 30 nm Cu layers (see Figure 1).

For MR and MFM measurements, the AAO membrane was removed, and NWs were
dissolved and deposited onto a Si/SiO2 substrate by spin coating.

Magnetic Force Microscopy: Atomic force microscopy (AFM) and MFM images were
recorded using a Nanotec scanning probe microscopy system controlled by WSxM soft-
ware [29]. The probe used was a Nanosensors PPP-MFMR. The measurements were carried
out in amplitude modulation mode, with the phase-lock-loop (PLL) feedback on, thus
recording the magnetic signal as the oscillation frequency shifted with respect to the free
oscillation frequency. Variable field MFM (VF-MFM) was used to collect nonstandard 2D
MFM maps [30].
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Figure 1. (a) AFM and (b) MFM image of an individual Co85Ni15/Cu nanowire. Scale bar = 2 µm.
(b) Magnetoresistance curves of a nanowire that is under a current of 0.5 mA. Forward direction
corresponds to the field applied from −60 to +60 mT, and backward from +60 to −60 mT). Arrows
indicate positions of some jumps in magnetization reversal.

Magnetoresistance measurements: Individual nanowires were electrically contacted in
order to perform MR measurements. An electrical contact of Cr (10 nm)/Au (180 nm)
was patterned on each end of the nanowire placed on a Si/SiO2 substrate. The distance
between the two contacts was ~2.5 µm. Additional information about the preparation and
fabrication of the electrodes is available in Ref. [31]. The NW was placed between two
coils, parallel to the direction of the applied magnetic field. We set an electric DC current
of 0.5 mA flowing through the nanowire (i.e., current density of 6.4 × 1010 A/m2). An
external field was applied in both directions to the NW, where the field was swept between
±138 mT, in increments of 1 mT, recording the resistance for each field value.

Micromagnetic modeling: A micromagnetic model of a representative part of the ex-
perimental NWs was created using mumax3 [32]. Three Co85Ni15 segments of 98 nm in
diameter and lengths of 694, 710, and 700 nm were spaced by nonmagnetic layers (simulat-
ing the Cu interspaces) with thicknesses of 34 and 26 nm, aiming to introduce symmetry
breaking and to reproduce the slight variations in the real parameters of the NWs. The
material parameters used were a saturation polarization of 1.6 T, exchange stiffness of
2.6 × 1011 J/m, magnetocrystalline uniaxial anisotropy of 3.5 × 105 J/m3 with the magne-
tocrystalline easy axis at 68◦ with respect to the NW axis, which corresponded to an hcp
structure [14,20,33]. Additional simulations with different anisotropy easy axis directions
(between 65◦ and 70◦ with respect to the NW axis) and geometry (symmetric wire with
all three CoNi segments of 700 nm and Cu spacers of 30 nm) were also performed (see
Supplementary Materials).
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3. Results and Discussion
3.1. Multilayered Nanowires

We characterized the isolated NWs after releasing the NWs from the alumina mem-
brane and depositing them onto a Si/SiO2 substrate. Figure 1 shows the topography and
the MFM image of an isolated multisegmented nanowire. As deduced from the MFM
bright/dark contrast at the NW edges (the well-known dipolar contrast), the magnetization
of the NW core pointed in the axial direction due to the high shape anisotropy, which
counteracted the transversal magnetocrystalline anisotropy. Moreover, the contrast along
the nanowire length was due to the nonuniform magnetization of each CoNi segment
separated by a Cu spacer layer. The MFM images revealed complex magnetic configura-
tions in each magnetic segment; in some cases, they were compatible with the existence
of a configuration of one vortex or two vortices with different chiralities, as previously
observed [14,23].

Additionally, magnetoresistance curves were acquired in nanowires, which we electri-
cally contacted for this purpose. A detailed description of the magnetoresistance setup is
explained in the Methods section. Figure 1b shows experimental MR curves obtained from
sweeping the field from −60 to +60 mT and vice versa. The resistance depended on the
relative orientation of the magnetization with respect to the flow of electrons. A decrease
in the resistance was expected as the axial projection of the magnetization vector to the
current direction decreased, changing from parallel to antiparallel to the current direction.
At least two small jumps were observed in each direction (at different absolute values
of the magnetic field in the interval from 17 to 33 mT) prior the main jump in resistance,
which indicated an irreversible realignment of the magnetization parallel to the nanowire
axis (the resistance increased until saturation was reached). As mentioned in the Methods
section, the distance between electric contacts was around 2.5 µm, which corresponded to
three full CoNi segments interspaced by Cu layers. The jumps in the resistance suggested
that the magnetization reversal process was not simultaneously taking place in every in-
dividual CoNi segment, but rather varied from one CoNi segment to other. Thus, these
features in the magnetoresistance curves can be associated with the magnetization process
of single segments.

3.2. Magnetization Reversal Process Imaging by Advanced MFM

MFM is a well-established imaging technique that allows the direct visualization of the
magnetization reversal processes of nanoscale systems. The advanced VF-MFM mode used
to obtain the 2D magnetic maps is a reliable method to directly image the magnetization
reversal processes in elongated nanostructures, and reproduces hysteresis loops of single
elements [30]. During the measurements, the same line is repetitively scanned over the
long direction of a single nanowire under a varying magnetic field (see sketch in Figure 2a).
The field was applied parallel to the X scan direction, which was parallel to the nanowire
under study. In these 2D mode MFM images, the magnetic field is swept between two
saturating field values. In the image obtained, the vertical direction always corresponds
to the MFM contrast at same position of the nanowire, whereas the horizontal direction
corresponds to the MFM contrast along the nanowires for each value of the applied field.

Although the standard MFM contrast contains qualitative information, because it does
not obtain direct information about the magnetization vector, the 2D MFM maps provide
quantitative information about the switching fields and a breakthrough in high spatial
resolution. From the data in Figure 2b, it is possible to determine the nucleation field of
the vortex in different CoNi segments, the switching field for the core magnetization, and
some information about the evolution of the magnetization in the shell of the NW. Figure 2c
illustrates some of these configurations and events that occurred in the different regions
(marked as I to VI in Figure 2b) of the 2D MFM experiments. For instance, the close to
saturation state (regions I and VI in Figure 2b) of the NW is shown in I in Figure 2c. As
the magnetic field decreased, vortex closure configurations nucleated in some segments
(region II). In region III, a single or multiple vortex configuration was expected. In region IV,
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we observed a change in the magnetic state of the first segment of the NW (the one on the
left). This change could be attributed to the reversal of the shell magnetization compatible
with the skyrmion tube configuration [34]. After the switching of the core all along the NW
(between regions IV and V), most of the segments presented a vortex closure configuration
at the edges. Two 2D images are shown in Figure 3a,b, each with a different sweep direction
of the magnetic field (from + to −57 mT and vice versa). From these images, one can
observe that the magnetization reversal process in these nanowires does not show a single
Barkhausen jump. Before the main switching field, there were some changes in the MFM
signal of different CoNi segments due to the nucleation of a vortex closure or single or
multiple vortex states followed by their transformation to skyrmion tubes (see Figure S1 in
Supplementary Materials). Significantly, those changes did not simultaneously occur in all
the magnetic segments.

Figure 2. (a) Sketch of 2D mode acquisition process; (b) 2D MFM map corresponding to a variation
of the field between −9 and +37 mT. (c) Sketch of the magnetic configuration expected for segments
in the regions named as I to VI in (b) illustrated using mumax3 data.

By extracting the signal of the stray field along the profiles marked in the 2D MFM
maps for both field sweep directions, a nonconventional (local) hysteresis loop was recre-
ated. These curves do not correspond to a hysteresis loop of the whole nanowire, but
provide the quantitative value of the switching field. In our particular case, these two
hysteresis loops were influenced by the magnetic reversal process of the first segment (the
one at the left edge, data shown in Figure 3c) and the last segment (the one at the right
edge, data shown in Figure 3d) of the nanowire. In Figure 3c, a clear intermediate step is
observed between the complete reversal of the magnetization for each direction of the loop
(around −25 and +28 mT), while Figure 3d shows small steps (around −24 and +24 mT).
These intermediate steps occurred at different fields (which could be either before or after
reaching the coercive field) as can be seen from the loops as well as from the 2D MFM mode
measurements (Figure 3a,b), where some inner segments also exhibit a single jump during
the magnetization reversal.
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Figure 3. (a,b) The 2D modes MFM images corresponding to NW measured by MFM in top panel of
(a). Scale bar is 2 µm. The reconstructed hysteresis curves (measured along the profiles marked in
(a,b)) are presented in (c,d).

Successive 2D MFM measurements were carried out varying the speed and magnetic
field amplitude (Supplementary Materials) and extracting local MFM contrast along the
same lines in subsequent measurements. Although the switching field value obtained from
the 2D MFM images (Figure 3a,b) remained nearly constant for the same segment, small
variations in the reversal process of each segment were observed. Figure 4a shows a series
of four 2D MFM images corresponding to the magnetization reversal of the same nanowire
under the same conditions (same sweeping fields and initial magnetic state). The main
features were observed in all the MFM images recorded by sweeping the in-plane magnetic
fields between 8 and −29 mT. We concluded that although the reversal process in each
CoNi segment (and thus in the whole NW) was almost reproducible, there were small
variations in the nucleation fields. The data in Figure 4b obtained from the dashed (upper
series) and straight (bottom series) lines marked in Figure 4a demonstrate the existence of
slight differences between segments and events. The five curves show similar switching
fields, although the nucleation and the magnetization reversal processes vary slightly
between events.

This stochastic behavior is in good agreement with the series of magnetoresistance
curves (Figure 4c) successively obtained under the same conditions. The presence of
several small jumps in the MR curves before the realignment of the magnetization in the
NW axis could be explained by the differences in the magnetization reversal processes for
the different CoNi segments of the NW, as shown in additional 2D MFM images in the
Supplementary Materials. In the Supplementary Materials, we show that slight variations
in the length of the segments induced small changes in each reversal field.
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Figure 4. (a) A series of 3D MFM images obtained by sweeping the in-plane magnetic field from 8 to
−29 mT. (b) Profiles obtained along the dashed lines (upper panel) and solid lines (bottom panel).
The average switching field is marked by a dashed pink line. (c) Successive magnetoresistance curves
measured under the same conditions.

3.3. Micromagnetic Modelling

To better understand the magnetization reversal process, micromagnetic modeling
was performed (see the Methods section) by sweeping the magnetic field from positive
to negative saturation along the NW axis. The magnetization components in the x and
z directions (MX and MZ, respectively) are shown in Figure 5 in order to distinguish the
different configurations. In Figure 5a, we present the evolution of the MZ component while
the field was applied parallel to the NW axis. The MZ component is shown because the
MFM signal was mainly sensitive to the perpendicular component of the stray field. In
Figure 5b, we show MX at the cross-section of the central part of one of the segments (see
the blue line in Figure 5a) for two different field values showing configurations close to
that of the vortex (left image) and skyrmion (right image).

Figure 5. Micromagnetic simulations of a tri-segment nanowire following hysteresis cycle with field
applied parallel to NW axis. Nanowire consisted of three CoNi segments spaced between Cu layers
(a) Magnetization in the z direction of a nanowire at different magnetic field values. (b) Cross-sections
of the segments are marked in blue in (a) for fields of 0 and −130 mT.

In these images, with the field sweeping from positive to negative values, at 36 mT,
we observed that one of the segments remained saturated, while the other two segments
presented a single vortex configuration. Although these structures still presented a high
net axial magnetization, a strong reduction in the Mx component was observed because
the magnetization of the vortex shell was mainly perpendicular to the axial direction (see
Figure 5b at 36 mT). The next magnetization step (from II to III) presented the formation
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of a domain structure of a pair of vortices in the central segment (see image III) with
opposite chiralities (rotational sense). Increasing the in-plane magnetic field, the two-
vortex configuration was annihilated, and the single vortex states of the outer segments
evolved to a skyrmion tube (see image IV). In this configuration, the x component of the
shell magnetization became parallel to the in-plane magnetic field. Note that the core
magnetization of the whole NW was still pointing to the right as in the initial state (see
Figure 5b at −130 mT). The MZ in the skyrmion tube was smaller than in the vortex state, in
agreement with the decrease in the MFM signal observed in the experiment (see Figure S1 in
Supplementary Materials) [34]. After applying a more negative value of field, the complete
reversal of the segment cores occurred (compare image IV and image V). In image VI, we
observed the existence of closure domains (vortex configuration) at the edges of the NW.

These micromagnetic results highlight that the reconstruction of loops through 2D
MFM maps consistently evidences a transformation of a topologically nontrivial magnetic
states in the segments of the wire, such as the formation and annihilation of vortex structures
and their transformations. Moreover, the modeling shows that the complexity of dynamical
transformations and magnetization techniques in multilayered nanowires strongly requires
the concurrence of diverse advanced techniques for an unambiguous analysis of the reversal
process. Here, the coalescence of nonstandard 2D MFM imaging, MR measurements, and
micromagnetic modeling demonstrates that the magnetic reversal mechanism is sensitive to
the specific properties of the magnetic segments; thus, distinctions in the vortex nucleation
and evolution are observed. However, in the simulations, we observed different switching
fields for the segment cores, while in most of the experiments, it seems that the cores
simultaneously reversed in all the segments. Some exceptions are shown in Figure S1 in the
Supplementary Materials. Notice that by repeating the 2D MFM imaging under the same
conditions, we observed slight differences in the magnetization reversal process, indicating
stochastic behavior.

Differences between the simulations and the experimental results could be attributed
to the geometric asymmetry of the experimental nanowires, i.e., nonhomogeneous CoNi
lengths and Cu layers thicknesses, as well as small compositional changes in the crystalline
structure (thus affecting the anisotropy direction) along the length of the nanowire. Note
also that only three segments were modeled; thus, the strength of dipolar coupling respon-
sible for parallel alignment was diminished. To clarify the importance of experimental
inhomogeneity, additional simulations were carried out (see Figure S2 in the Supplemen-
tary Materials) varying the anisotropy or the geometry. The results demonstrate the strong
influence of those parameters on the magnetization process.

4. Conclusions

Cylindrical multilayered CoNi/Cu nanowires were grown by electrodeposition in
alumina membranes. The magnetoresistance and MFM experiments allowed us to gain
access to the initial stages of the local demagnetization processes. Magnetoresistance mea-
surements showed small jumps in the NW resistance, which suggest that the magnetization
reversal does not occur in a single step. Small reversible changes are followed by a large
irreversible jump.

VF-MFM imaging and micromagnetic modeling were performed to study the magne-
tization changes under an applied magnetic field parallel to NW axis. The results show
intermediate steps in the magnetization reversal, mainly due to the evolution of the mag-
netic moment of the shell before the magnetization switching of the core of the segments.
This is because the magnetization of all the CoNi segments does not simultaneously reverse;
instead, several segments undergo switching of their magnetization at different magnetic
field values, ascribed to the slight variations in the specific morphology and composition of
each segment. Moreover, stochasticity was observed in the nucleation process of vortices
and their evolution with the magnetic field, as deduced from the series of magnetic imaging
and magnetoresistance measurements performed under the same conditions. Importantly,
we observed slight variations in the switching field, not only through the comparison of
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different segments (owing to the difference in either geometry or composition) but also
by comparing successive repetitions (and thus due to the stochastic behavior). The combi-
nation of the MFM technique and micromagnetic modeling allowed us to attribute small
jumps in MR measurements to different nucleation fields of vortex structures, while a large
jump was associated with a NW core reversal. We envisage that the simple fabrication
process and stochastic dynamic properties that we demonstrated here make them a feasible
scalable source for low power computation in future 3D neuromorphic nanodevices based
on nanowires. Particularly, these applications can benefit from diverse reversal modes
and tailoring strategies reported in the literature of the last decade and the development
characterization techniques in 3D nanomagnetism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12121968/s1, Figure S1: Nonstandard 2D MFM images of
a single NW for an applied magnetic field of (a) ±47 mT and (b) ±28 mT; Figure S2: (a) Sketch of
two simulated CoNi/Cu NWs with different segments and Cu layer lengths. (b) Hysteresis loops
of NWs with different anisotropies (68◦ and 65◦ with respect to NW axis) and geometries as shown
in (a). (c) Zoom of hysteresis loops of NWs with anisotropy at 65◦ and different geometries.
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