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Abstract 

Background: Plasmodium vivax apical membrane antigen‑1 (pvama-1) is an important vaccine candidate against 
Malaria. The genetic composition assessment of pvama-1 from wide‑range geography is vital to plan the antigen 
based vaccine designing against Malaria.

Methods: The blood samples were collected from 84 P. vivax positive malaria patients from different districts of 
Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain‑I (DI) region 
of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using 
DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 
and Network.5 resources.

Results: The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H‑14 and 
H‑5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinc‑
tions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the 
KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P‑value = 0.0001), 
while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of 
Fu and Li’s D* and F* tests indicate the evidence of population expansion and directional positive selection signature. 
The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of refer‑
ence pvama-1 sequence, the KP samples were identified to have 09 novel non‑synonymous single nucleotide poly‑
morphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped 
within the B‑cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism.

Conclusion: Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired 
from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strate‑
gies based on antigenic features of pvama-1.

Keywords: Plasmodium vivax, Apical membrane antigen‑1, Genetic diversity, Khyber Pakhtunkhwa, Pakistan

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Malaria is an acute febrile infectious disease caused by 
vector-borne apicomplexan parasites of the genus Plas-
modium. The P. vivax and P. falciparum are predominant 
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species responsible for malaria [1]. The P. vivax is most 
widely distributed human malaria parasite, endemic in 
tropical and subtropical countries of Asia, South Pacific, 
Central and South America, Middle East, and North 
Africa [2]. According to the latest WHO report, about 
229 million cases and 40,900 deaths occur due to malaria 
in 2019 [3].

Treatment and control of malaria have become a seri-
ous challenge due to drug resistance and lack of effective 
vaccines. The wide-range distribution, antigenic varia-
tion, relapsing and co-infection led to a collective inter-
est towards the development of effective vaccine against 
P. vivax [4]. The implementation of RTS,s/AS01 vaccina-
tion was started in three African countries during 2019 
and considered effective against malaria to date. Fur-
thermore, the R21/Matrixs-M vaccine was tested among 
children in Bukina Faso and reported to meet the WHO’s 
goal up to 77% against malaria [5]. Several antigens of 
Plasmodium species such as apical membrane antigen-1 
(AMA-1), Circumsporozoite proteins (CSP), Merozoite 
surface proteins (MSP) and Duffy binding protein (DBP) 
are reported as potent malarial vaccine candidates’ tar-
gets [6].

The genetic composition assessment of vaccine can-
didates’ loci is indispensable in modern-age to plan an 
effective vaccination strategy. There are ample of studies 
suggesting the AMA-1 of Plasmodium species as promis-
ing malaria vaccine candidate antigens [7]. The AMA-1 is 
a type-I integral membrane protein with molecular size 
of 83 kDa, mainly expressed in the merozoite and sporo-
zoite stages of Plasmodium parasites [8, 9]. The main 
biological function of AMA-1 is not well known so far, 
however the stage-specific expression and localization 
suggest its crucial role during invasion of erythrocytes 
and hepatocytes by malarial parasites [10–12]. The pro-
tein consists of cysteine rich ectodomain having three 
separated domains (i.e. Domain I, II, and III), a conserved 
cytoplasmic region and a transmembrane domain [13]. 
The ectodomain of the protein is highly immunogenic 
and evokes natural immune responses among patients 
infected by P. falciparum and P. vivax [14–17]. Further-
more, the protein AMA-1 reported to elicit the antibody 
production that effectively halt the invasion of erythro-
cytes by malarial parasite and confers protective immune 
responses [18]. This suggesting the AMA-1 as a leading 
malarial vaccine candidate.

The domain-I of AMA-1 exhibits high level genetic pol-
ymorphism and this region appears to be a major target 
of anti-AMA-1 protective antibodies [19–22]. It is there-
fore noteworthy to monitor genetic variations of the vac-
cine candidate antigens among global malaria pathogenic 
isolates circulating in endemic areas, in order to design 
effective vaccine [23]. Several studies about antigenic 

variation of Plasmodium vivax ama-1 (pvama-1) have 
been conducted in malaria endemic countries [24–28]. 
However, limited studies are reported about pvama-1 
genetic features from Pakistan. Particularly, no study till 
date is reported from remote malaria endemic regions of 
Khyber Pakhtunkhwa (KP) province of Pakistan. The cur-
rent study was therefore designed to evaluate the genetic 
composition of pvama-1 among P. vivax isolates col-
lected from widespread KP regions of Pakistan (Fig. 1).

Methods
Study design, samples collection and DNA purification
The current study was approved from ethical review 
committee of Abdul Wali Khan University Mardan 
(AWKUM/Biochem/Dept/Commit/ECR/18). Blood sam-
ples were obtained from 100 consented patients tested 
positive for P. vivax using microscopy and rapid diagnos-
tic test, while examined in different hospitals and private 
sector laboratories from Mardan, Swat, Buner, Hangu, 
Swabi, Kohat, Bannu, Timergara and Peshawar districts 
of KP province, Pakistan (Fig. 1). The region have an aver-
age annual rain fall of 384  mm during the two malaria 
seasons from March to May and from August to Novem-
ber. The mean temperature in the region ranges from 20 
to 40 °C. The blood samples from the patients were col-
lected prior to treatment, spotted on filters, air-dried, 
and kept in individual sealed plastic bags at ambient tem-
perature until use. The genomic DNA was extracted from 
the spotted blood samples using a QIAmp blood kit (Qia-
gen, CA, USA) according to manufacturer’s instructions. 
The DNA samples were stored at − 20 °C.

PCR amplification and DNA sequencing of pvama‑1 DI
A DNA fragment flanking the DI region of pvama-1 was 
amplified by polymerase chain reaction (PCR) using the 
specific primers and amplification conditions as reported 
previously [21, 29]. The resulted PCR products were ana-
lyzed on 1.5% agarose gel, purified, and cloned into the 
T&A vector (Real Biotech Corporation, Banqiao City, 
Taiwan). Ligation mixture was transformed into Escheri-
chia coli DH5α competent cells, and positive clones were 
selected by colony PCR. The nucleotide sequence of 
cloned insert was analyzed by automatic DNA sequenc-
ing with M13 forward and reverse primers (Genotech 
Inc., Daejoen, Korea). The raw data was filtered for qual-
ity assessment using DNASTAR Lasergene package.

DNA polymorphism analyses
The DNA sequences data generated in the current study 
was analyzed in comparison with reference pvama-1 
sequence i.e. Sal-I (AF063138) and Genbank-deposited 
pvama-1 sequences from China Myanmar Boarder 
(KX495505–KX495577), Iran (KF422636.1–KF422681.1), 
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Korea (KM230319.1–KM230384.1), Myanmar 
(FJ157248.1–FJ157285.1), Papua New Guinea (PNG) 
(KC702402.1–KC702501.1), Sri Lanka (EF218679.1–
EF218701.1), Venezuela (EU346015.1–EU346087.1), 
Thailand (FJ784891.1–FJ784990.1), and India 
(EU282774.1–EF025196.1). The comparative sequences 
analyses were performed using MEGA4 software suite 
[30] to identify and evaluate the polymorphic loci.

Functional prediction of nsSNPs
The BepiPred-2.0 [31] server was used for prediction of 
Linear B-cell epitopes of pvama-1 with a threshold score 
of ≥ 0.5. The higher BepiPred score predicts higher bind-
ing affinity of epitopes with immune receptors. The non-
synonymous SNPs (nsSNPs) mapping within the top 
predicted epitopes of pvama-1 was checked. The intrinsi-
cally unstructured regions (IURs) and RBC binding sites 
within the pvama-1 have previously been characterized 
[25, 32]; and their annotation features were adopted in 
current study to check the nsSNPs mapping within these 
motifs of pvama-1. Additionally, the positive selection 
sites in B-cell epitopes were identified via the maximum 
likelihood method of Codeml [33] implemented in Easy-
CodeML [34].

Statistical and population genetic analyses
The DnaSP v6.12 software package [35] was used to esti-
mate parsimony informative sites, total number of muta-
tions, pairwise nucleotide diversity (π), segregating sites 
(S), haplotypes (H) composition of the sequences, haplo-
types diversity (Hd), recombination (R) between adjacent 
nucleotides per generation and the minimum number 
of recombination events (Rm). Additionally the linkage 
disequilibrium (LD) was estimated between the various 
polymorphic sites based on the  R2 index via DnaSP [35]. 
The Tajima’s D, Fu and Li’s D* and F* indices were cal-
culated via a sliding window method using DnaSP. The 
population genetics statistical analyses, including pair-
wise fixation index (Fst), analysis of molecular variance 
(AMOVA), haplotype frequencies, and nucleotide diver-
sity based on Nei’s net distance (DA) were computed 
using Arlequin v3.5 [36]. The haplotype networking anal-
ysis and plot were generated using PopArt software [37].

Results
Genetic polymorphic features of KP pvama‑1
The 416  bp sequences of pvama-1, flanking the DI 
domain were amplified from genomic DNA of 84 P. 
vivax positive samples. The sequences data spanning the 

Fig. 1 Map of Khyber Pakhtunkhwa (KP), Pakistan. The different districts from where the samples are collected have been marked
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322–737 nucleotide positions of the reference pvama-1 
sequence i.e. Sal-I (AF063138). The analyses identified 
a large numbers of single nucleotide polymorphisms 
(SNPs) in KP samples. Among these, the 68 were nsS-
NPs, i.e. causing amino acid substitutions, including 53 
dimorphic, 10 trimorphic, 3 tetramorphic, and 2 pen-
tamorphic nsSNPs. The two pentamorphic amino acid 
changes observed were R112K/T/E/S and S228D/N/R/K. 
The ten trimorphic amino acid substitutions include 
the N132D/G, A141E/G, E145A/G, K190E/Q, T191K/P, 
A199T/V, S209G/C, P210S/L, P223L/S, and V233L/P. 
While the three tetramorphic amino acid changes are 
K120R/S/G, E189N/K/G, and E227V/K/G. These amino 
acid substitutions were observed at varied frequencies 
in the KP samples. Among the 68 nsSNPS, 59 have pre-
viously been reported in literature for P. vivax isolates 
from different geographical origin. However, the rest of 
9 nsSNPs were found specific to KP samples set of this 
study. These nsSNPs were observed at low frequencies, 
i.e. 1.1 to 1.19%. Few nsSNPs, including K120R, N132D, 
L140I, A141E, K190E, E227V, and S228D were com-
monly observed in KP samples, as well as in some other 
continental pvama-1 sequences with high frequency of 
3.8–100% (Table  1). The KP pvama-1 DI showed over-
all haplotype diversity (Hd) of 0.978 ± 0.008 (Additional 
file 1: Fig. S1). A total of 62 segregating sites (S) and 67 
mutations were identified for the samples. The Fu and Li’s 
D* and F* test and Tajima’s D were calculated to check 
the deviation from neutrality, and to identify whether 
natural selection have shaped the genetic composition of 
the pvama-1 D1 region. The Fu and Li’s D* and F* tests 
results were found significantly negative for KP samples 

data (Table  2). The Tajima’s D value was negative, i.e. 
− 1.490, however not significant (P > 0.10). The difference 
between dN/dS ratio for pvama-1 DI region was also 
found negative (− 0.05413 ± 0.02) in case of KP samples 
set.

Haplotype networking analysis
Total 57 haplotypes were identified for the 84 KP samples 
sequences of pvama-1 DI  (Additional file  2:  Table  S1). 
The H-14 haplotype was identified with high frequency 
and shared among samples collected from six different 
KP districts including, Kohat, Hungo, Buner, Swat, Tim-
ergara and Bannu. The H-5 haplotype was identified as 
second predominant haplotype shared among samples 
collected from five different KP districts (i.e. Mardan, 
Swat, Hungo, Bannu and Kohat). The H-3 haplotype 
was also identified with highest frequency among sam-
ples collected from Swat, Mardan, Peshawar and Bannu 
districts. The pairwise AMOVA inferred genetic dis-
tances among haplotypes. The H-53, i.e. predominant in 
Peshawar samples, was identified as distinct and showed 
significant genetic differentiation against the H-6 and 
H-55. The H-6 and H-55 were identified with high fre-
quency in samples collected from Mardan and Peshawar 
regions respectively. The majorly shared haplotypes of KP 
samples collected from different districts appeared on 
share nodes of network plot, however, some haplotypes 
from Timergara, Peshawar, Kohat and Hungo samples 
occupied distinct nodes in the network plot, inferring 
their distinctive features (Fig.  2). The size of each node 
in haplotype network plot indicates the frequency of 

Table 1 The nsSNPs identified in KP, Pakistan P. vivax samples in comparison to the reference pvama-1 sequence SalI (AF063138)

a The common nsSNPs identified in KP and other P. vivax samples deposited in Genbank, NCBI
b Novel nsSNPs identified only in case of newly sequenced KP, Pakistan samples analyzed in the current study
c nsSNPs mapped within the predicted B-cell epitopes

1 cR112K/T/E/S 15 L140Ia 29 cV170A 43 E201G 57 cN226D

2 cP113S 16 A141Ea 30 cM171T 44 cM203T 58 cE227Va

3 cG117Rb 17 N142D 31 cA172T 45 cG204D 59 cS228Da

4 cD118N 18 cK144T 32 V184A 46 cR206G 60 N231Db

5 cQ119H 19 cE145A/G 33 K188N 47 cS209Gb 61 V233L/P

6 cK120Ra 20 cK148Q 34 E189N/K/G 48 cP210S/La 62 Y234Hb

7 cF126S 21 cD149N 35 K190Ea 49 cA212Vb 63 L235S

8 cN130K 22 cM153T 36 T191K/P 50 cN214S 64 N238Db

9 cA131T 23 I159T 37 C192R 51 cR215T 65 cR240C

10 cN132D/Ga 24 A160T 38 H193Y 52 cV218L 66 cN241D

11 cD133N 25 L161V 39 M194V 53 cF221L 67 cD242E

12 cH134R 26 C162Rb 40 Y196Hb 54 cK222N 68 cW243R

13 cS136T 27 A166P 41 S198P 55 cP223Lb

14 T139A 28 A167P 42 A199T/V 56 cK225E
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a particular haplotype. The length of the line between 
nodes is proportion to the number of nucleotide substi-
tutions composing the haplotypes.

Functional impact assessment of nsSNPs
The functional impact of the nsSNPs (Table  1) was 
assessed with respect to amino acids substitution in the 
unstructured/disordered regions, i.e. IURs, RBC bind-
ing region and B-cell epitopes of pvama-1. The IURs 
regions are considering important in vaccine design-
ing and diagnosis. The analysis unveiled that two SNPs 
i.e., M171T, V172T mapped within the IURs motifs of 
pvama-1 DI domain. Four SNPs i.e. R240C, N241D, 
D242E and W243R are mapped within the RBC binding 
sites of pvama-1. Likewise, 40 nsSNPs, including four 
novel nsSNPs, i.e. found in newly sequenced KP samples, 
were mapped within the top predicted B-cell epitopes of 
pvama-1 (Table 1). The B-cell epitopes were additionally 
examined for positive selection using the four site-spe-
cific models implemented in Easy CodeML [33], i.e. M0—
one-ration vs. M3—discrete, M1a—nearly neutral vs. 
M2a—positive selection, M7 (β) vs. M8—β & ω > 1, and 
M8a—β & ω = 1 vs. M8—β & ω = 1. The likelihood ratio 
test (LRTs) was implemented to identify the site-specific 
positive selection with > 99% posterior probability. Total 
15 residues were predicted underlined positive selection 

with P ≤ 0.05 in the pvama-1 D1 domain region. These 
include the R112K, K120R, N130K, A131A, N132D, 
L140L, A141E, E145A, E189E, K190K, H193Y, P210P, 
E227E, S228S, and V233V. Among these, the nine SNPs, 
i.e. the R112K, K120R, N130K, A131A, N132D, E145A, 
P210P, E227E, and S228S are mapped within the B-cell 
epitopes.

Recombination and linkage disequilibrium (LD) analyses
The KP samples sequences along with global sequences 
showed decline of LD index  R2 with the increase of 
nucleotide distance which speculate high meiotic recom-
bination events across the pvama-1 region. The R value 
for KP samples were observed higher compare to China-
Myanmar boarder, Korean, and Sri Lankan samples, 
while lower than the Myanmar samples sequences pre-
viously deposited in Genbank [21, 22, 24–26, 38–41]. 
The higher R value for isolates sequences from differ-
ent regions depicts the opportunity of high multiclonal 
infections, cross fertilization and recombination [32]. 
The higher values of recombination and rapid LD decay 
as observed in case of some geographical samples spec-
ulating the recombination as a possible factor to pro-
voke genetic diversity (Table 3). However, in case of KP 
samples slow LD decay across the nucleotide distance 

Fig. 2 The Network plot of KP, Pakistan samples based on pvama-1 DI sequences. The circle represents each haplotype, and the size of each circle 
is proportional to the number of samples holding that specific haplotype. The lines connecting the haplotypes reflect the distance of relatedness 
between haplotypes. The colors indicate the samples groups collected from different districts of KP, Pakistan
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in pvama-1 DI region was observed that inferring low 
nucleotide diversity (Additional file 3: Fig. S2).

Nucleotide diversity across pvama‑1 in context of global 
isolates
The sequences of KP isolates (n = 84) were compared to 
the global pvama-1 sequences deposited in Genbank. 
The values of K and π observed for KP sequences were 
more or less similar to previously reported sequences 
from Iran and India, however different from the rest of 
global sequences (Table 2). The fixation index Fst statis-
tic was used to assess the genetic differentiation across 
pvama-1 DI region among KP samples collected from 
different districts as well as in context of global sam-
ples. The pairwise analysis inferred genetic distinction of 
samples collected from Swabi district compare to rest of 
the KP regions. The top Fst differentiation was detected 
between the Bannu and Swabi isolates (Fst = 0.16258, 
P-value = 0.00977), followed by Swabi and Kohat 
(Fst = 0.12932; P-value = 0.04199) samples. The low-
est Fst was estimated between Swat and Bannu samples 
(Fst = − 0.07427, P-value = 0.96973), followed by Swat 
and Hungo samples (Fst= − 0.06635, P-value = 0.89551) 
(Fig.  3A). The negative Fst is consider zero, depicting 
no genetic distinction between the population groups. 
The highest pairwise net number of nucleotide variation 
(DA) and mean pairwise differences (πxy) was observed 
between Bannu and Swabi samples, i.e. congruent to the 
Fst result (Fig. 3B). In context of global samples, marked 
genetic distinction inferred for KP samples compare 
to India, Iran, Thailand, Sri-Lanka, Korea, Venezuela, 
Myanmar, PNG, and China-Myanmar. Highest pair-
wise genetic differentiation was observed between KP 
and Korean samples (Fst = 0.40915). The Korean sam-
ples showed significant genetic distinction in pairwise 

comparison to rest of the global samples as well. Mean-
while, least genetic differentiation was observed among 
KP, Iranian, and Indian samples (Fig.  3C). The highest 
within population genetic differentiation (π) was found 
for Korean samples followed by South East Asian samples 
(Fig.  3D). Pearson correlation plot showed relationship 
among KP, Sri Lanka, Iran, India and Myanmar samples, 
congruent to pairwise Fst (Additional file 4: Fig. S3). The 
plot showed correlation among the populations in hierar-
chical order. However, the Korean samples showed high 
genetic distinction in term of Fst value, probably due to 
geographical separation (Additional file 5: Fig. S4).

AMOVA test determines the degree of regional vari-
ations and homogeneity within and among the isolates. 
We employed the AMOVA test to determination the 
genetic variation at single and multiple loci due to varia-
tion within a population group as well as between popu-
lation groups. The AMOVA analysis depicted that genetic 
diversity in KP samples mainly arose due to within group 
differentiation i.e. 100.24%, instead of among groups 
genetic differentiation (− 0.24%). Likewise, higher vari-
ance component was noticed within the population 
group i.e. 3.67534 as compare to among populations 
(Table 4). Overall, the AMOVA test results inferring less 
genetic variation among KP isolates, collected from dif-
ferent wide-spread districts of KP region of Pakistan.

Discussion
The comprehensive knowledge about the antigenic vari-
ants in Plasmodium parasites is perquisite to design 
effective vaccine strategies workable in different endemic 
regions [42]. The current study aimed to analyze genetic 
composition of pvama-1, a leading malaria vaccine can-
didate antigen, among P. vivax isolates collected from dif-
ferent districts of KP, Pakistan.

The southern and northern regions of KP province of 
Pakistan are distinct with respect to geographical and 
environmental perspectives. However, limited genetic 
diversity of P. vivax across pvama-1 DI domain was 
identified in the current study, suggesting no significant 
genetic heterogeneity among the P. vivax isolates from 
southern to northern KP regions. The low genetic diver-
sity across the DI domain of pvama-1 in KP regions might 
arose due to low endemicity of Plasmodium genotypes, 
as the low endemic region is generally characterized with 
limited parasitic genetic diversity [43, 44]. The low trans-
mission and endemicity of P. vivax in the KP, Pakistan 
might have been provoked due to active malaria control 
programs in these regions from last several years. The 
pairwise genetic analyses unveiled more or less homo-
geneous genetic composition of KP samples to South/
Central Asian samples from India and Iran regions. This 
might be due to close geographical contacts among these 

Table 3 Recombination events estimation in pvama-1 
(Domain‑1) region in KP, Pakistan and global P. vivax samples

Ra recombinant parameter between adjacent sites,  Rb recombinant parameter 
for the whole region, Rm minimum number of recombinant events

Country/region Ra Rb Rm

Pakistan 0.0892 37 5

China Myanmar 0.0506 21 5

Iran 0.0846 35.1 6

Korea 0.0022 0.9 2

Myanmar 0.1940 8.6 6

PNG 0.0513 21.3 5

Sri Lanka 0.0154 6.4 4

Venezuela 0.0381 15.8 4

Thailand 0.0879 36.5 5

India 0.1210 50.2 6



Page 8 of 11Ullah et al. BMC Infectious Diseases          (2022) 22:807 

Fig. 3 Pairwise population genetics analyses. A The graph represents the average number of pairwise differences (πxy), between the KP, Pakistan P. 
vivax samples population groups collected from different districts (Green above diagonal); within‑population group πxx (orange diagonal) and the 
net number of nucleotide differences between population’s groups (Nei distance DA) (blue below diagonal) based on pvama‑1 DI gene variants. 
B The graph represents the average number of pairwise differences (πxy) between KP, Pakistani samples in context of global samples (Green above 
diagonal); within‑population group πxx (orange diagonal) and the net number of nucleotide differences between population’s groups (Nei distance 
DA) (blue below diagonal) based on pvama-1 DI variants. C Heat‑map plot of pairwise Fst based on pvama-1 gene sequences of KP, Pakistan 
samples groups collected from different districts. D Heat map of pairwise Fst distinction between KP, Pakistan P. vivax samples groups based on 
pvama-1 gene sequences in context of worldwide sequences deposited in Genbank, NCBI.

Table 4 AMOVA‑based genetic differentiation analysis across the pvama-1 (domain‑1) in KP, Pakistan samples

Local Fst = − 0.00242
a d.f: degrees of freedom

Source of     variation d.fa Sum of squares 
deviation (SS)

Estimates of variance 
components

Percentage of total variance 
contributed by each component

P-value

Among populations 8 28.742 − 0.00888 Va − 0.24% P = 0.50556

Within populations 75 275.650 3.67534 Vb 100.24% P = 0.50556

Total 83 304.393 3.66646
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countries. The excess of segregating sites and significant 
negative Fu and Li’s D* and F* tests results indicate an 
excess of rare alleles in KP samples that might result from 
selective sweep. Additionally these results indicate excess 
of singleton mutations emerging from rapid population 
growth and directional selection. More or less similar 
data pattern was observed for Myanmar isolates [21]. The 
directional selection lead towards fixing beneficial alleles 
in the population and causes reduce genetic diversity 
[45]. However, the negative value (− 0.05413 ± 0.02) of 
dN/dS ratio for KP isolates data predicted the scenario of 
purifying and negative selection [37, 38].

The analyses of KP samples in context of global samples 
inferred unique genetic features and 9 KP samples-spe-
cific nsSNPs were identified in the newly sequenced sam-
ples. The genetic polymorphisms identified in the current 
study were further analyzed with respect to their possi-
ble functional consequences in the predicted RBC bind-
ing sites, B-cell epitopes, and IURs regions of pvama-1. 
Several nsSNPs were found to be located at the predicted 
RBC-binding sites, B-cell epitopes and IURs region of 
pvama-1. The nsSNPs mapped at the B-cell predicted 
epitopic motifs indicating a high degree of positive selec-
tion across the B-cell epitopes region of pvama-1. Like-
wise, several pvama-1 SNPs were detected in pvama-1 
IURs region. The IURs play an important role in molec-
ular recognition, assembling and protein modification 
[46]. The pvama-1 IURs are indispensable for attachment 
and invasion of the parasite into RBCs [47]. The protein 
structure affected by amino acid changes due to these 
nsSNPs may affect the physicochemical perspectives of 
the P. vivax AMA-1 protein that might help the parasite 
to escape from host protective immunity.

Conclusion
The partial DNA sequencing and analyses of pvama-1 
DI domain unveiled limited genetic diversity of pvama-
1 across the KP regions. This somehow suggested that 
pvama-1 based vaccine against P. vivax might be promis-
ing to effectively combat and contribute in malaria eradi-
cation throughout the KP province of Pakistan.
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