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Manipulation of a Nuclear Spin 
by a Magnetic Domain Wall in a 
Quantum Hall Ferromagnet
M. Korkusinski1, P. Hawrylak2, H. W. Liu3 & Y. Hirayama4

The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to 
be vanishingly small. This can be realized in a many electron system with degenerate ground states of 
opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain 
wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two 
with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-
body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of 
the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, 
through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase 
involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one 
electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The 
orthogonality of orbital electronic states is overcome by the many-electron character of the domain - 
the movement of the domain wall relative to the position of the nuclear spin enables the manipulation 
of the nuclear spin by electrical means.

There is currently a great interest in nuclear spintronics – developing means of storing and manipulating informa-
tion using nuclear spins in solids1–15. A major progress has been achieved recently by experimentally demonstrat-
ing electrical detection and manipulation of nuclear spins with spins of electrons in quantum Hall systems10–24. 
However, the microscopic mechanism behind the nuclear spin manipulation with electron spin is not well under-
stood and we fill this gap here.

The major problem in the manipulation of a nuclear spin (black) by the spin of an electron (red) in a given 
orbital (red) is the difference, ~103, in the energy required to flip the nuclear and electron spins simultaneously, 
as shown in Fig. 1(a). If the electron spin flips simultaneously with the change of the electron orbital, from blue 
to red as shown in Fig. 1(a), the difference in Zeeman energies, Δ​Ε​z, can be compensated by the difference in 
orbital energies. However, the two electronic orbitals, red and blue, need to be orthogonal and zeros in one of the 
orbital wavefunction make the amplitude of the hyperfine interaction vanish for some positions of the nuclei. If 
the transition between different orbitals (red and blue in Fig. 1(a)) represents schematically a transition between 
the degenerate many-body electronic states, for example, spin polarized (spin down) and unpolarized (spin up) 
domains in the two-dimensional electron gas (2DEG)10,14–16,19–29, the initial and final states are spatially separated 
by a domain wall and cannot both overlap with the nuclear spin. Hence the microscopic mechanism of the hyper-
fine coupling depends on the many-electron character of the domain wall separating the two electronic phases.

Model
To understand how these contradictions can be overcome we focus on a simple yet general model of a domain 
wall in a quantum Hall ferromagnet (QHF)25–29. For the simplest QHF at filling factor ν​ =​ 2, recently realized in 
InSb quantum wells19–21, the comparable cyclotron and Zeeman energies result in the degeneracy of spin up elec-
tron states of the lowest n =​ 0 Landau level (blue) and spin down electron states of the second n =​ 1 Landau level 
(red) as illustrated in Fig. 1(b). For the electron to occupy red and blue levels a finite number of electrons filling 
the lower energy green and blue states, filling factor ν​ =​ 2, is needed. Hence the many-body character of the 
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interaction of electronic and nuclear spins of the domain wall in a QHF which we treat exactly25,31–33, beyond the 
variational mean field description of the domain wall26–30. We hence model the ν​ =​ 2 state by Ne electrons con-
fined to a finite size quantum Hall droplet (QHD) in a perpendicular magnetic field B31–33. The electrons interact 
via the contact hyperfine interaction with a nuclear (impurity) spin 

���
Mat a position 

��
R. The single electron states are 

σn m, ,  with energies ε(nmσ), where n is the Landau level (LL) index, m the intra-LL quantum number, σ​ =​ ±​1 
the electron spin, and the electron Zeeman energy is comparable to the cyclotron energy, µ= ≈ ΩE g Bz B c (see 
Supplementary Material for details). We note that the orbitals σn m, ,  form rings, whose radii increase as m2  
within each LL. With σ

+ci  ( σci ) the electron creation (annihilation) operators on the orbital i ≡​ (n, m) and 
→
=

ˆ ˆ ˆ ˆM M M M( , , )x y z  the spin operator of the nuclear spin, the Hamiltonian of electrons and a localized nuclear 
spin M can now be written as31–33:
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The first term is the electron energy, the second term describes the electron-electron Coulomb interactions 
and the third term is the Zeeman energy Ez

IMP of nuclear spin. The last three terms describe the hyperfine inter-
action of the electron and the nuclear spin, with the matrix elements ϕ ϕ=

�� ��⁎J J R R( ) ( )ij i j0
31. Finally, the term 

ε σ∆ i( ) accounts both for the interactions with the positive background and removal of the finite-size effects. This 
correction is chosen by ensuring that the Coulomb exchange energy is uniform across the QHD and by balancing 
the total negative charge of the system by an equivalent number of positive charges (see Supplementary Material 
for details). For clarity, we restrict here the single-particle spectrum to two lowest Landau levels, shown in 
Fig. 1(b). The lowest Landau level (LLL) orbitals ε(n =​ 0, m) are drawn in green and blue, while the second 
Landau level (2LL) orbitals ε(n =​ 1, m) are drawn in red and black. With the quasi-degeneracy of the LLL spin up 

Figure 1.  (a) Left: Schematic view of the electron and nuclear spin interaction. The red curve represents the 
charge density of a single spin-down electron orbital, while the nuclear spin is marked in black. Right: The 
simultaneous flipping of nuclear spin and electron spin involving the electron orbital transition, from blue 
to red, spin, to match the nuclear and electron spin Zeeman energies. (b) The red and blue single-particle 
electronic states realized in a two-dimensional quantum dot with weak parabolic confinement in a large 
perpendicular magnetic field, with the cyclotron energy Ωc comparable to the Zeeman splitting Ez due to the 
large electronic Lande factor.
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orbitals ε(n =​ 0, m, ↑​) (blue in Fig. 1(b)) and the 2LL spin down orbitals ε(n =​ 1, m, ↓​) (red), the energy to flip the 
spin and change LL orbitals of one electron is comparable with the energy to flip the nuclear spin. However, we 
have not one but Ne electrons, with the spin-down LLL completely filled, and the quasi-degenerate orbitals of 
spin-up LLL and spin-down 2LL populated partially.

Construction of spin domain states
We start by constructing two states, shown in Fig. 2(a). The SP state on the left, | 〉 = ∏ | 〉=

−
↓

+SP c GS( )m
Ne

m0
/2 1

1  is com-
pletely spin polarized, while the UP state | 〉 = ∏ | 〉=

−
↑

+UP c GS( )m
Ne

m0
/2 1

0  on the right-hand side of Fig. 2(a) is the 
spin-unpolarized configuration, a finite-size ν​ =​ 2 QHD, where | 〉 = ∏ | 〉=

−
↓

+GS c( ) 0m
Ne

m0
/2 1

0  is the spin down polar-
ized reference QHD. The two states have different total spin projections: 2Sz =​ −​80 for SP , 2Sz =​ 0 for UP , and 
total angular momenta = ∑ −L n mz n m

occ
, . Flipping the spins in state UP  and transferring them to the 2LL gen-

erates states with intermediate total Sz and Lz. These configurations represent domains of spin-down electrons in 
the center and spin-up electrons at the edge of the QHD, with a clear domain wall separating them, as depicted in 
the top panel of Fig. 2(a). We vary 2Sz from 0 to −​80 and for each domain wall configuration Sz, Lz, states 
S L k, ,z z  are expanded in two-, four-, and more electron-hole pair excitations:
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and the electronic part of the Hamiltonian (1) is diagonalized in this basis. Here, S L,z z  denotes the HF 
spin-domain configuration. As evident from the second term of Eq. (2), the two-electron-hole pair excitations are 
formed by flipping the spin of one electron in the spin-down domain without changing its orbital quantum num-
ber m, while flipping the spin of another electron from the spin-up domain in the same manner.

The number of such low energy excitations quickly grows with size of the system. For example, for Ne =​ 80 
electrons, of which 40 are the spin-polarized LLL background, 20 are in the spin up domain D↑​, and 20 in the spin 
down domain D↓​, there is one fundamental domain configuration, 202 =​ 400 two-pair excitations, and 

=( )20
2 36100

2
 four-pair excitations. The exact wavefuntions S L k, ,z z  (Eq. 2) in the finite electron-hole number 

Figure 2.  (a) The spin-polarized configuration involving two Landau levels (left), the spin-unpolarized ν​ =​ 2 
configuration (right) and the spin-domain configuration (top). (b) The energy of the Ne =​ 80 electron quantum 
Hall droplet as a function of the total spin projection Sz. The spin-unpolarized ν​ =​ 2 and fully spin-polarized 
configurations (black dashed line) are degenerate. The black, red and blue lines denote respectively the energies 
of the HF configuration and states containing two-pair and two- and four-pair configurations while the green 
symbols shows results of variational calculation. The arrows mark the highest energy barrier state.
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pair approximation may be contrasted with variational, spin and angular momentum non-conserving wavefunc-
t i on 2 5 – 2 9 θ θΨ = ∏ + ϕ

↓
+

↑
+

↓
+c e c c[cos( ) sin( ) ] 0m m m m

i
m m0 1, , 0, , 0, ,m  p ar am e t r i z e d  by  t h e  p s e u d o s pi n 

θ ϕ θ ϕ θ=M̂ m( ) [(sin(2 )cos( ), (sin(2 )sin( ), cos(2 )]m m m m m  which varies slowly on the magnetic length scale27.

Energy spectra of spin domain states
In the following, we present results of model calculations for the QHD with Ne =​ 80, confining energy 
Ω = . Ry0 0210 , cyclotron energy Ω = . Ry1 346c , = .Ry 4 78 meV, the effective Bohr radius aB =​ 12.15 nm, and the 
characteristic length lh =​ 1.219aB.

Figure 2(b) shows the energies of the domain-wall configurations as a function of the total spin projection Sz, 
from total =S2 0z  ν​ =​ 2 configuration UP  to total 2Sz =​ −​80, fully spin-polarized, configuration SP , with  
the Zeeman energy yielding degeneracy of the spin polarized and unpolarized states. The energies of single  
HF spin-domain configurations (black lines), HF+​ two-pair (red lines), and HF+​two+​four-pair excitations  
(blue lines) are shown. Increasing spin polarization increases the spin-polarized domain in the center at  
the expense of the spin-unpolarized domain at the edge of the QHD. The energy of the two domains increases 
with spin polarization −​2Sz, reaches its maximum at ⁎S2 z  marked in Fig. 2(b) by black arrows, and then decreases. 
The critical value ⁎S2 z  depends on the amount of correlations: it shifts from = −⁎S2 20z  for HF to = −⁎S2 16z   
with two- and four-pair excitations included. The variational ground state energies as a function of S2 z ,  
shown in green in Fig. 2(b), compare very well with energies obtained in exact diagonalization with  
four-pair excitations included. The energy of the ⁎S2 z  state is the energy barrier needed to flip Sz  spins. The  
domain wall character of the = −⁎S2 16z  state is illustrated by the spatial dependence of the expectation  

Figure 3.  (a) The local spin polarization S m( )z  in the state with = −⁎S2 16z  as a function of the orbital 
quantum number m and as a function of the number of pair excitations admixed into the state: zero (black), two 
pair (red), and two and four pairs (blue). (b) The effective Knight field Bz

KNIGHT experienced by the nuclear spin 
as a function of the position of that spin within the quantum Hall droplet. The spin is positioned in the 
maximum of the lowest-Landau level orbital with quantum number m. Black line corresponds to the HF-
configuration spin domain state = −⁎S2 16z , while the result denoted by the red line accounts for the two- and 
four-pair excitations.



www.nature.com/scientificreports/

5Scientific Reports | 7:43553 | DOI: 10.1038/srep43553

value of the electron spin, = −↑
+

↑ ↓
+

↓
⁎ ⁎s m S c c c c S( ) 2 2z z m m m m z0, , 0, , 1, , 1, , , on orbital m. Figure 3(a) shows  

how electron spin projection rotates from down in spin polarized phase to up in unpolarized phase. In  
the HF approximation (black) we see an abrupt change of spin orientation, inclusion of electron-hole pair  
excitations leads to a finite width of the domain wall centered on the (n, m) =​ (1, 7) and (n, m) =​ (0, 8)  
orbitals. The domain wall leads to effective Knight magnetic field B R( )z

KNIGHT  seen by nuclear spins: 
σ ϕ= = − ∑ ∑ = −σ σ= =

− +⁎ ⁎B R S R c c S( ) 2 16 ( ) 2 16z
KNIGHT

z n m
N

nm n m n m z0
1

0
/2 1 2

, , , ,e , shown in Fig. 3(b) in different 
levels of approximation. The effective Knight field is large in a spin polarized domain in the center of the QHD, 
and decreases to zero towards the spin unpolarized domain. Interestingly, we find that the domain wall in the 
Knight shift is much broader than what might be expected from the electron spin alone, shown in Fig. 3(a).

Spin domain states interacting with a nuclear spin
Let us now discuss the electronic spin flip. We are interested in the energy to flip one electron spin in the domain 
wall state S2 z, i.e., the difference of energies corresponding to S2 z and Sz +​ 2 configurations. This energy difference 
is smallest close to the critical value of = −⁎S2 16z  in this illustration, close to the top of the energy barrier. Hence 
the degeneracy of the domain wall states at the top of the energy barrier, not the degeneracy of the two electronic 
domains, gives the electron spin flip energy commensurate with the energy needed to flip the nuclear spin, thus 
enabling the flip-flop process between the electron and the nuclear spins. In Fig. 4 we switch from the initial state 
= −⁎S2 16z , depicted schematically in the right-hand diagram of Fig. 4(b), to the final state = −S2 14z

f , corre-
sponding to one electron spin flip Fig. 4(a). The final state, depicted schematically in the left-hand diagram of 
Fig. 4(b), is also a domain-wall state, but with the domain wall shifted by one orbital towards the center of the 
QHD. In this transition, the energy of the electronic system decreases, as shown in Fig. 4(a). As a result, the 
energy of nuclear spin, residing at position R, is increasing with its spin rotating up, as depicted schematically in 
Fig. 4(b). The probability of this flip-flop process is given by the matrix element of the electron-nuclear interaction 
part of the Hamiltonian (1):
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′ ′
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Figure 5 shows the reduced amplitude ϕ + − −⁎I m J R M M M M4 ( )/( ( ) [ ( 1) ( 1)])R m Z z0
2

0
2  as a function of 

the position =m R l/2R h
2 2 of the nuclear spin. If the domain wall is restricted to HF configurations shown in 

Fig. 4(b), the only spin flip which converts the = −⁎S2 16z  configuration to the = −S2 14z
f  configuration can 

Figure 4.  The energies of the electronic quantum Hall droplet as a function of the total spin projection 
close to the critical value of = −⁎S2 16z . Arrows indicate the initial and final state involved in the flip-flop 
transition between the electrons and the nuclear spin, discussed in the text, and visualized schematically in 
panel (b).
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take place at the domain wall boundary m =​ m* with amplitude given by ϕ ϕ= ⁎
⁎

⁎I R R R( ) ( ) ( )J
m m4 0 1

20
2

. We note 
that this amplitude is exactly zero at the orbital corresponding to the center of the domain wall (mR =​ m* =​ 7). This 
results from the orthogonality of the single-particle orbitals corresponding to the initial occupied and final empty 
electronic state. As the nuclear spin moves away from the domain wall the tail of the wavefunction leads to finite 
transition probability. Figure 5 shows the amplitude of the electron-nuclear spin flip-flop as a function of position 
R of the nuclear spin. The black line gives the amplitude calculated for the HF single spin-domain configurations 
only. As we add the correlations (blue line), we see that the amplitude is also zero when the nuclear spin is placed 
at the center of the domain wall, but the amplitude is significantly enhanced for all other positions of the nuclear 
spin due to electronic correlations, i.e., transitions within the width of the domain wall are contributing.

Summary
We presented here a microscopic theory of hyperfine coupling of a nuclear spin with the spins of electrons in a 
domain wall of a quantum Hall ferromagnet. We showed that the energy of the electronic spin transition in the 
domain wall can be brought down to the energy needed to flip the nuclear spin while the amplitude, related to 
the movement of the domain wall, is enhanced by electronic correlations. This understanding opens the way 
towards predictive theories of nuclear spin manipulation with electron spin, accounting for material parameters, 
improved treatment of electron-electron interactions, spin–orbit coupling and strong coupling between many 
nuclear and electron spins30,31.
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