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ARTICLE INFO ABSTRACT

Keywords: The recently known coronavirus, SARS-CoV-2, has turn into the greatest global health challenge, affecting a large
Aptamer number of societies. The lack of specific treatment and gold-standard diagnostic system has made the situation
Probe more complicated. Efforts have led to production of several diagnostic kits that are associated with limitations
Therapy . . . . . L

Coronavirus such as inadequate sensitivity and accuracy. Aptamers as multipotent biological probes could be promising
COVID-19 candidates to design sensitive and specific biosensors. Although few studies have introduced specific aptamer
SARS types of coronavirus, they may help us select the best approach to obtain specific aptamers for this virus. On the
MERS other hand, some of already-introduced aptamers have shown the inhibitory effects on coronavirus that could be
SARS-CoV-2 applied as therapeutics. The present study has provided a systematic overview on use of aptamer-based bio-

sensors and drugs to diagnose and treat coronavirus.

1. Introduction
1.1. Coronavirus and importance of the study

Coronaviruses (CoVs) are respiratory viruses that can cause in-
fections (e.g. common cold and pneumonia) in mammals and birds.
There are six types of CoVs (HCoVs) that may affect the humans: HCoV-
229E, HCoV-0C43, HCoV-NL63, HCoV-HKU1, SARS-CoV and MERS-
CoV. The causes of two major outbreaks in the first two decades of the
contemporary century belong to the beta CoVs including Severe Acute
Respiratory Syndrome Coronavirus (SARS-CoV) that was an epidemic in
2002-2003, and the Middle East Respiratory Syndrome Coronavirus
(MERS-CoV), that has been epidemic since 2012. The latest onslaught of
beta CoVs subfamily has been conducted by SARS-CoV-2 since
December 12, 2019. COVID-19, the disease of this fighter virus, is now a
vigorous threat to global health security [1].

World Health Organization (WHO) is concerned about the global
public health and high-risk health systems since there are currently no
specific vaccines or drugs to prevent or treat COVID-19 [2]. However,
many efforts are being made to tackle this spiked virus.

The important bottlenecks for the management of COVID-19 are
diagnostics and therapeutics. The common diagnostic test for COVID-19

is real-time reverse transcription polymerase chain reaction (RT-PCR)
[3]. Regarding some reports the one-step rRT-PCR assays based on
specific TagMan probes have had a detection limit as few as 4 to 10
copies of RNA template per reaction [4,5]. However most of these tests
show low sensitivity and specificity, so they do not work well enough to
be routinely used. Thus, it is critical to invent new potent diagnostic
tools.

The other traditional laboratory-based assays like virus culture,
enzyme-linked immunosorbent assay (ELISA), western blotting, and
serological antibody detection methods require virus isolation or DNA/
RNA extraction that make them time-consuming and increasing the
probability of virus spreading. These techniques also require expensive
laboratory equipment and expert operators. These constrictions raise the
response time and expenses which impact the quality of patient care [6].

Unlike the common laboratory assays, biosensors can produce
quantitative signals proportional to the analyte concentration by the
interaction of chemical or biological receptors with targets. Antibodies
are applied as detector elements in the most viral biosensors. However,
nucleic acids are recently recruited as the receptors which transduce
signals to detect targets. DNA biosensors could detect a great variety of
molecules with high affinity and specificity [7].
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1.2. Diagnostic aptamers for viral infections

Aptamer, one of the novel DNA receptors, is a single-stranded folded
RNA or ssDNA that can bind and detect various nucleic and non-nucleic
acid molecules with high affinity and specificity. The application of
aptamer probes for virus detection has increased in recent years.
Aptamers could detect any viral infection markers, including viral genes,
proteins, and antibodies. By applying some approaches, aptasensors can
discriminate infected host cells from uninfected ones or active from
inactive viral forms [8].

1.3. Therapeutic aptamers for viral infections

The highly mutated characteristic of viral genomes can lead to
variability, and escaping from the host immune response makes most of
drugs inefficient. Aptamers are novel potent candidates, which can treat
viral infections by modulating the immune response, inhibiting the vi-
ruses penetrating the cells, or disrupting the replication enzymes.
Furthermore, a variety types of modifiers, drugs and dyes could easily
conjugate the aptamers without altering their primary properties to in-
crease their in vivo stability and bioactivity [8].

1.4. Aptamer strengths and weaknesses

Despite the eligibility and the effects of aptamer as a diagnostic
candidate for COVID-19, as well as their considerable advantages over
similar molecules such as siRNA and monoclonal antibodies [8], there
are some challenges toward the widespread use of aptamers for thera-
peutic purposes. The first challenge is the renal clearance which limits
the circulation time of aptamers due to its low molecular weight that
could be solved by conjugating with high weigh molecules. Also, the
toxicological information regarding aptamers in humans is very limited.
However aptamers have several advantages over antibodies, such as
higher stability, simple synthesis, and modification.

Among the isolated aptamers, Pegaptanib (Macugen) is the only
aptameric drug used for the treatment of neovascular (wet) age-related
macular degeneration (AMD) that has been able to gain clinical and
marketing approvals. Therefore, it is critical to continue the studies to
find applicable therapeutic antiviral aptamers [9].

The present systematic review aimed to describe diagnostic and
therapeutic approaches found by aptamer as a versatile tool for rapid
diagnostics and therapeutics for coronaviruses.

2. Methods
2.1. Protocol
All stages of this review followed the published protocol by Liberati
et al. [10]. The meta-analysis protocol was not applied due to the very
limited available evidence on the topic and due to the urgency of the
matter.
2.2. Eligibility criteria
In this review, these designs were considered for inclusion.
e Introduction of DNA and RNA aptamers for coronavirus
e Application of DNA and RNA aptamers for the diagnosis or therapy of

coronavirus

No publication date, language, or publication status restrictions were
imposed.

2.3. Sources of information

Studies were identified by searching through electronic databases
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and scanning the reference lists of articles. The sources of the literature
review encompassed Scopus, Pubmed, and Google scholars. The last
search was run on June 21, 2020.

2.4. Search

The following terms were used to search all the trials, registers, and
databases: SARS AND Aptamer, Corona AND Aptamer, COVID-19 AND
Aptamer, SARS-CoV-2 AND Aptamer, SARS-CoV AND Aptamer, Coro-
naviruses AND Aptamer, MERS-CoV AND Aptamer, MERS AND
Aptamer, (SARS OR MERS OR MERS-CoV OR Corona OR Coronavirus
OR SARS-CoV OR SARS-CoV-2 OR COVID-19) AND Aptamer.

2.5. Study selection and data collection procedure

We included the entire original and review articles that had been
designed or applied aptamers for coronaviruses. Then, in an unblended
and standardized manner, we evaluated the eligibility of the articles by
looking at the titles, abstracts, and full-text reports to determine inclu-
sion and exclusion decisions and extract data from all eligible studies. To
ascertain the validity of studies, pairs of reviewers worked indepen-
dently and with adequate reliability determined the validity, efficiency,
and application of aptamers. Finally, we used the MFold program to
predict secondary structures of coronaviruses aptamers based on the
Zuker algorithm [11].

3. Results
3.1. Study selection

After searching in Scopus, Pubmed, and Google scholar databases, a
total of 41 studies involving aptamer and coronavirus were identified in
this review. Then, after adjusting for duplicates and discarding articles
that did not meet the criteria, three main articles on diagnostic aptamers
against coronaviruses and two other studies on therapeutic aptamers
remained. No reprinted relevant studies were obtained (Fig. 1).

3.2. Diagnostic aptamers

As we explored, there were only three published original research
articles about diagnostic aptamers for coronaviruses (Table 1).

SARS-CoV nucleocapsid (N) protein forms a helical core in the viral
envelope that plays a critical role during the viral life cycle. It can
improve the efficiency of subgenomic viral RNA transcription [12].
According to the studies, N protein can be tracked in serum for the early
detection of SARS-CoV [13].

Ahn et al. used a SELEX procedure to isolate two RNA aptamers
(aptamer-1 and aptamer-2) binding specifically to the C-terminal region
of SARS-CoV N protein with low dissociation constants (0.81 nM, and
3.35 nM, respectively). The result showed that aptamer-1 binds to N
protein with a higher affinity than aptamer-2. They also applied SPR to
confirm this result which appeared to be better than the antibody
against N protein (KD = 1.65 nM for aptamer-1 vs KD = 2.1 uM for
antibody).

To fabricate a detection system for N protein, Ahn et al. used a
streptavidin-coated 96-well plate for immobilization of aptamer. After
incubating N protein, a polyclonal antibody was applied to the captured
agent and then a labeled monoclonal antibody to signal production. The
detection limit of this method was 20 pg/ml (420 fM) of N protein [14]
which was similar to that of ELISA with polyclonal and monoclonal
antibodies [15].

Moreover, they used a polyclonal antibody and the FITC-conjugated
secondary antibody to establish a nanoarray chip assay with a detection
limit of 42 fM which was ten times more sensitive than previous
chemiluminescence assay [14].

In the second study, Cho et al., isolated a single-stranded DNA
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Table 1
A brief overview of the aptamers probes against coronavirus.
No  Aptamer name Type Molecular Length  Sequence Kd Viral SELEX method Detection method ~ Ref
Target (nM) target
1 RNA aptamer-1-based ~ RNA SARS-CoV 83 GGGAGAGCGGAAGCGUGCUGGGCCUGUCGUUCGCUGUGUCUUGCUACGUUACGUUAC 1.65 SARS- Conventional SELEX  Aptamer- [14]
sensitive detection of Nucleocapsid ACGGUUGGCAUAACCCAGAGGUCGAUGG CoV antibody hybrid
SARS-CoV (N) protein immunoassays
nucleocapsid protein LD: 20 pg/ml
(420 fM)
Nanoarray
aptamer chip
LD: 2 pg/ml
2 RNA aptamer-2-based ~ RNA SARS-CoV 83 GGGAGAGCGGAAGCGUGCUGGGCCUCAUUACACACAUCUCACGGGAGACAUAGCUGAC  3.35 Conventional SELEX - [14]
sensitive detection of Nucleocapsid GAUAUCCAUAACCCAGAGGUCGAUGG-
SARS-CoV (N) protein
nucleocapsid protein
3 DNA aptamer specific ssDNA SARS-CoV 88 GCAATGGTACGGTACTTCCGGATGCGGGAAACTGGCTAATTGGTGAGGCGTGGGGCGGT 4.93 His-tagged N Western blot [16]
to SARS-CoV Nucleocapsid CGTGCAGCAAAAGTGCACGCTACTTTGCTAA- proteins analysis (0-18.4
nucleocapsid protein (N) protein immobilized on ug)
Ni-NTA sepharose
beads
4 CoV2-RBD-1C ssSDNA  Receptor- 51 CAGCACCGACCTTGTGCTTTGGGAGTGCTGGTCCAAGGGCGTTAATGGACA 5.5 SARS- Ni-Beads-SELEX Flow cytometric [18]
Binding CoV-2 analysis
Domain of Spike
Glycoprotein
5 CoV2-RBD-4C ssDNA  Receptor- 67 ATCCAGAGTGACGCAGCATTTCATCGGGTCCAAAAGGGGCTGCTCGGGATTGCGGATA 19.9 Ni-Beads-SELEX Flow cytometric [18]
Binding TGGACACGT analysis
Domain of Spike
Glycoprotein
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(ssDNA) aptamer with specific binding to N protein of SARS-CoV with a
high affinity (Kd = 4.93 £+ 0.30 nM). They applied the selected aptamer
in Western blot analysis, showing that this aptamer could be a worthy
recognizer element instead of the monoclonal antibodies [16].

Since, SARS-CoV N protein is more than 90% homologous with
protein sequence of SARS-CoV-2, a research group decided to investigate
the affinity of the previously reported SARS-CoV N protein aptamers by
Cho et al. [16] and modified variants against SARS-CoV-2 N protein by
Enzyme-Linked Aptamer Binding Assay (ELAA). They immobilized
SARS-CoV-2 N protein into the 96-well-plate and then added 5-bio-
tinylated aptamers. Subsequently, the avidin-HRP was applied to
recognize the biotin signal by measuring the absorbance using tetra-
methylbenzidine as substrate. Their results showed that all aptamers
could specifically bind to SARS-CoV-2 N protein [17].

It has been identified that SARSCoV-2 infects the human respiratory
epithelial cells via interaction of its receptor-binding domain (RBD) of
spike glycoprotein (S) with angiotensin-converting enzyme II (ACE2) on
the host cells. Recently, Song et al. has isolated novel anti-RBD-SARS-
CoV-2 aptamers using ACE2 competition-based aptamer selection
strategy and a machine learning screening algorithm. They used His-tag
RBD-modified Ni-beads (RBD-Ni-beads) to monitor the enrichment of
interacted aptamers with SARS-CoV-2-RBD using flow cytometry. This
research group found two high-binding-affinity aptamers with kd values
of 5.8 and 19.9 nM. These aptamers could provide new hopes for
detection of SARS-CoV-2 [18]. (Fig. 2).

3.3. Aptamers with therapeutic purposes

Despite of all efforts, scientists have not yet discovered the first line
drug against COVID-19. However more than 500 complex clinical trials
have been established for COVID-19 encompassing (a) direct-acting
antiviral drugs such as Favipiravir, Arbidol, Interferon, Corticoste-
roids, Remdesivir and lopinivir-ritonavir (LPV/r), (b) antimalarial
medicines like hydroxychloroquine and chloroquine, (c) convalescent
plasma therapy and stem-cell transfusion, (d) anti-inflammatory

20 O &
La %,
A
O ek
20 S Aptamer 1 g jﬁ»

4
os”

o o
. gottroa, ‘f f
P B,

=-7.05 keal/mol

i

2%, g
: g S
V2-RBD-1C Cov-2-RBD-4C

1 AG =-7.92 kecal/mol

Molecular and Cellular Probes 53 (2020) 101636

treatments and even (e) traditional medicine [19].

From a molecular biology point of view, viral helicase is a potential
target for viral therapy because it is important in viral genome repli-
cation. The SARS-CoV helicase can be involved in a variety of biological
pathways, such as replication, recombination, DNA repair, chromatin
remodeling, catalytic process of conformational changes in the nucleic
acids, movement of Holliday junctions, and numerous features of RNA
metabolism. Thus, SARS-CoV NTPase/Helicase could be considered as a
potent target to develop agents against SARS-CoV [20,21]. These drugs
can bind to the helicase and inhibit its activity through blocking the
binding to nucleic acids [22].

Nonstructural Protein 10 (nsP10) is an enzyme with NTPase/Heli-
case activity which can threaten the life of SARS-CoV as its Achilles heel.
In this line, we found two published original research articles about the
therapeutic aptamers against coronaviruses (Table 2).

In the first research, Shum et al. isolated two different DNA aptamers
in structure, G-quadruplex, and non-G-quadruplex, via Ni-NTA magnetic
beads SELEX. Both of these aptamers had a positive effect on ATPase
activity with low Km values. However, only the non-G-quadruplex one
inhibits the SARS-CoV helicase activity to unwind nucleic acids. The
aptamers could bind to the binding sites of helicase and change their
conformation [23]. The MFold program was applied to predict the
secondary structures of these DNA aptamers [11] (Fig. 3).

In the second research, Jang et al., presented specific RNA aptamers
against nsP10. They used the conventional SELEX to find RNA aptamers
against NTPase/Helicase in SARS-CoV from an RNA library, which
resulted in an enriched RNA aptamer pool (ES15 RNA). This aptameric
pool could decrease the unwinding of nucleic acid and ATPase activity of
the helicase (IC50 = 1.2 nM) [24]. They pointed out that the inhibitory
effect of these RNA aptamers was derived from AG-rich conserved
sequence which could be considered as anti-SARS-CoV agents (Fig. 3).

4. Discussion

Currently, the major approaches to detect SARS-CoV-2 are nucleic
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Fig. 2. Secondary structures of diagnostic Coronaviruses aptamers. a) The secondary structures of different RNA (14), b and ¢) DNA [16,18] were predicted using the
MFold program or permitted previous studies. The variable regions are marked with different colors.
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Fig. 3. Secondary structures of therapeutic Coronaviruses aptamers. a) The secondary structures of different ssDNA aptamer [23] were predicted using the MFold
program. b) The AG-rich conserved sequences (Highlighted Regions) at the loop region in RNA aptamer pools, isolated by Jang et al., are assumed as binding motif
structure to SARS-CoV RNA helicase [24].

Table 3

Advantages and disadvantages of nucleic acid amplification-based diagnostic
methods vs Aptamer based diagnostic methods.

Method

Advantages

Disadvantages

Nucleic acid
amplification-based
diagnostic methods

Aptamer based
diagnostic methods

Ability to differentiate
among strains and
species

High sensitivity and
specificity

No need for viable
organism

Simplicity and
universal procedure
Availability in markets

Easy getting approved
for clinical diagnostic
usage

Recognize wide range
of targets

High sensitivity and
specificity
High stability

Ease of use
Ease of production

Low-cost

Simple modification
and labeling
Compatibility with
different diagnostic
approaches

Limited targets to nucleic acid

High-cost

Expensive labeled reagents
(probes)

Pre-analytical sample
preparation

Need for additional detection
step after amplification

Need for expensive equipment
and reagents

Low stability

Difficulties for generating for
some molecules such as small
molecules

Problems toward
commercialization
Sensitivity to nuclease existed
in serum and real samples
Changes in affinity and
specificity in real situations
Low chemical diversity of
natural oligonucleotide

natural oligonucleotides. Some studies have attempted to solve this
problem by using modified nucleotides. The other most important
challenge in diagnosis field is nuclease sensitivity of unmodified
aptamers. The nucleases in biological fluids such as serum are able to
degrade the aptamer molecules. Fortunately, some chemicals could

increase their stability and half-life, but these modifications may
decrease sensitivity and impose cost. The other issue is derived from in
vitro SELEX procedures that may ignore some in vivo conditions. This
ignorance dramatically impacts the structural arrangement of aptamers
which may influence the affinity and specificity of aptamers in real
samples. These challenges provide some restrictions for commerciali-
zation of aptamer-based methods. However, some studies have tried to
resolve them by novel high-throughput technologies in automating
SLEX procedure and fabrication of bisensors [36,37]. In spite of these
challenges, there is a promising prospect toward aptamer-based diag-
nostic methods to fabricate ultrasensitive recognition tools for crucial
targets such as SARS-CoV-2.

Therapeutic aptamers have more problems. In addition to nuclease
sensitivity, low half-life and cost of modifications, therapeutic aptamers
encounter new challenges such as high renal clearance, safety and drug
delivery to enter therapeutic protocols. As mentioned before only one
aptamer has been commercialized over the past quarter century. The
few numbers of aptamers have entered in pre-clinical and clinical phases
of treatment which are most related to cancers, but the scientists are
attempting to develop new generation of aptamer-based drugs by
combination of therapeutic aptamers with other novel technologies such
as nanobiotechnolgy [38].

5. Conclusion

COVID-19 is a dangerous threat to public health, global disciples,
and economics. The first step to treat this viral disease is a rapid and
accurate diagnosis that can prevent its contagion. Recently, Nucleic acid
aptamers have been confirmed to be useful as medications and diag-
nostic probes [39]. According to the previous studies and from a general
point of view, it seems that the aptamer molecules could be effective
anti-coronavirus agents in both diagnosis and treatment.

Although no aptamers have been isolated for SARS-Cov-2 until now,
it seems that modeling of other coronavirus aptamers can be helpful to
find an appropriate shortcut to achieve the best targets and subsequently
the best antidote or diagnostic assays.

The Helicase enzyme has an important role in viral replication and
proliferation. Therefore, it could be considered as a potent target to
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develop the coronavirus therapeutic aptamers [23,24]. N protein could
be also a potent target to detect and inhibit COVID-19 due to its crucial
role in the synthesis of viral RNA and SARS detection. By applying
aptamers as sensitive diagnostic elements, we will be able to fabricate
rapid, sensitive, low-cost, and user-friendly diagnostic tools of small
volume clinical samples.
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