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Abstract: Protein ubiquitylation is an essential post-translational modification process that performs
a critical role in a wide range of biological functions, even a degenerative role in certain diseases,
and is consequently used as a promising target for the treatment of various diseases. Owing to
the significant role of protein ubiquitylation, these sites can be identified by enzymatic approaches,
mass spectrometry analysis, and combinations of multidimensional liquid chromatography and tan-
dem mass spectrometry. However, these large-scale experimental screening techniques are time
consuming, expensive, and laborious. To overcome the drawbacks of experimental methods, machine
learning and deep learning-based predictors were considered for prediction in a timely and cost-
effective manner. In the literature, several computational predictors have been published across
species; however, predictors are species-specific because of the unclear patterns in different species.
In this study, we proposed a novel approach for predicting plant ubiquitylation sites using a hy-
brid deep learning model by utilizing convolutional neural network and long short-term memory.
The proposed method uses the actual protein sequence and physicochemical properties as inputs to
the model and provides more robust predictions. The proposed predictor achieved the best result
with accuracy values of 80% and 81% and F-scores of 79% and 82% on the 10-fold cross-validation
and an independent dataset, respectively. Moreover, we also compared the testing of the independent
dataset with popular ubiquitylation predictors; the results demonstrate that our model significantly
outperforms the other methods in prediction classification results.

Keywords: CNN; deep learning; LSTM; post-translational modification; ubiquitylation

1. Introduction

Protein post-translational modifications (PTMs) are fundamental to cellular regulatory
processes that control behavior, including cellular signaling, cell maintenance, cell develop-
ment, and cell modification [1–3]. In the PTM process, a modification group is added to one
or more amino acids to alter the physical and chemical properties of the proteins [4]. As stated
in the literature, PTM sites are identified in the domains of proteins, which are associated with
drug-target binding, and protein–protein interactions, which lead to drug discovery [5,6].
In the case of ubiquitylation PTM, the small regulatory protein ubiquitin, which is either
as a single ubiquitin or a ubiquitin chain, binds with targeted lysine residues on the protein
substrate, resulting in changes in the transcriptional and translational levels [7,8]. This pro-
cess involves three steps: activation, conjugation, and ligation [9]. The ubiquitin-activating
enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3) are responsible
for activation, conjugation, and ligation, respectively [10]. Various studies have proposed that
ubiquitylation has a significant regulatory function and performs an important role in inflam-
mation, cell division, signal transduction, hypersensitive response, proteasomal degradation,
downregulation, transcription, and deoxyribonucleic acid repairing [11–16]. Ubiquitylation
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has also been implicated in a wide range of diseases such as periodontal disease, cancer,
Alzheimer, Parkinson, immune disorders [17–20]. According to the literature, ubiquitination
performs an essential role in plant biology, including hormone signaling, light perception,
embryogenesis, reflection of an unfavorable environment, prevention of pathogens, epige-
netic regulation, subcellular localization of plant immunity-associated proteins, and their
interactions with other cellular molecules [21–25].

Because of the significant role of protein ubiquitylation, protein ubiquitylation sites
have been identified using several conventional experimental approaches, including en-
zymatic approaches, mass spectrometry analysis, and combinations of multidimensional
liquid chromatography and tandem mass spectrometry [26,27]. However, these large-
scale experimental screening techniques for the identification of ubiquitination sites are
time consuming, expensive, and laborious. Owing to the advantages and emergence of
machine learning models, they have been utilized in different fields, such as natural lan-
guage processing (NLP) [28,29], energy load forecasting [30], speech recognition [31], image
recognition [32–34], and computational biology [35–38]. Computational predictors were
built to predict ubiquitination sites in a cost- and time-effective manner. Some machine learn-
ing predictions are Ubipred [39], UbPred [40], Ubsite [41], Ubisite [42], CKSAAP_UbSite [43],
UbiProber [44], hCKSAAP_Ubsite [45], iUbiq-Lys [46], ESA-UbiSite [47], Ubibrowser [48],
RUBI [49], WPAAN [50], MDDLogoclustered [51], non-conical pathway network [52],
and ensemble approach model [53]. Ubipred was built by using a support vector machine
(SVM) that considered 31 informative physicochemical properties selected by an informative
property mining algorithm. The UbPred predictor was built using a random forest (RF)
algorithm that used 586 sequence attributes and was employed as the input of the predictor.
Ubsite uses an efficient radial basis function (RBF) network for position-specific scoring
matrix (PSSM) properties that are generated by the position-specific iterative basic local
alignment search tool [54]. Ubisite was built using SVM from the library for SVMs to
investigate the amino acid composition (AAC), amino acid pairwise composition, positional
weight matrix, solvent accessible surface area, and PSSM features; moreover, the MDDLogo-
identified substrate is also considered. The CKSAAP_Ubsite predictor was built using
an SVM base learner with RBF using the features of a composition of k-spaced acid pairs
(CKSAAP). hCKSAAP_Ubsite is an improved version of the CKSAAP_Ubsite predictor
with additional features including binary amino acid encoding, amino acid index (AAIn-
dex) physicochemical property encoding, and protein aggregation propensity encoding.
The iUbiq-Lys predictor was built using the gray system model to employ evolutionary
information and the general form of the AAC. Another predictor, ESA-UbiSite, which is
based on an evolutionary screening algorithm (ESA), uses a set of well-selected physico-
chemical properties together with an SVM for accurate prediction. In the literature, deep
learning models that include UbiNets use densely connected neural networks [55]. DeepUbi
uses a convolutional neural network (CNN) [56] and Caps-Ubi uses a capsule network [57].
However, pattern differences exist between the ubiquitylated proteins in different species;
therefore, the multispecies ubiquitination site predictors are not appropriate for predicting
the multispecies ubiquitination sites for different organisms [56,58].

In the literature, various plant-specific ubiquitination site predictors are available,
including the predictor developed by Mosharaf et al., using an RF model, which is a predic-
tion tool for Arabidopsis thaliana species [59]. Recently, Wang et al. collected a plant-specific
ubiquitination site dataset and built a predictor using the word embedding technique
for applying the deep learning model [58]. The aforementioned predictors are currently
helpful for scientists; however, they have certain limitations, such as training on a small
dataset, problems with feature extraction, utilization of shallow machine learning models,
imbalanced classification, and the utilization of only limited deep neural networks. In the
era of deep learning and machine learning, novel predictors are sought to achieve better
classifier results. Therefore, in this study, we attempted to develop an improved com-
putational method for identifying ubiquitination sites based on the protein sequences of
plant-specific species. We developed a deep learning-based predictor that was built using
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two modules of different encoding schemes based on embedding encoding and physic-
ochemical properties. The embedding encoding module extracts the feature by using
long short-term memory (LSTM) followed by a max-pooling layer, whereas in the second
module, the features of physicochemical properties are extracted using a convolutional
layer followed by a max-pooling layer. The results in terms of feature vectors of these
modules are concatenated and input to dense layers for deeper feature extraction. The ex-
perimental results show that our approach achieves a better performance than that of
previous work [58]. Finally, a user-friendly freely accessible web server is available at
http://nsclbio.jbnu.ac.kr/tools/UbiComb/, accessed on 10 April 2021.

2. Materials and Methods
2.1. Benchmark Dataset

Recently, Wang et al., collected sequences from the protein lysine modifications database,
which includes data collected from plants, animals, and fungi [58]. They categorized the orig-
inal dataset according to the species. They selected the plant ubiquitination site sequences
from Arabidopsis thaliana, Oryza sativa subsp. indica, and O. sativa subsp. japonica. This plant
subset was obtained from a combination of original data containing 121,742 ubiquitina-
tion sites from 25,103 proteins. In the dataset, the ubiquitination-annotated lysine residues
were considered as positive sites, and all other lysine residues were considered as negative
sites. The fragments were created by considering the ubiquitination site residue in the cen-
ter and considering 15 upstream and downstream residues, which resulted in a fragment
length of 31. If the upstream and downstream residues were less than 15, then we used
a pseudo-amino acid (“X”) to create fragments of equal length. In general, a high degree
of similarity in the training sequences can cause overfitting, which may affect the classi-
fication ability of the predictor [60]. To overcome this limitation, the protein fragments
were filtered with an identity cutoff of 30 using Cluster Database at High Identity with
Tolerance (CD-HIT) [56,61–64]. Finally, 7000 protein fragments were constructed from plant
subset data containing 3500 positive and 3500 negative fragments, which were selected ran-
domly [58]. In the case of the independent dataset, 1500 sequences were randomly selected
from the above-mentioned total fragments. The remaining 5500 fragments were used for
training, which contained 2750 positive and negative fragments. In this study, we used
the same training and independent samples for a fair comparison of results.

2.2. Sequence Encoding

In comparison with the traditional machine learning and statistical computation meth-
ods, the deep learning approach can extract features automatically from amino acid se-
quences, which does not require handicraft features. Therefore, it is important to transmit
protein peptide sequences to quantification vectors for the application of deep learning-based
models [65]. In this study, we used embedding encoding and physical–chemical property-
based vectors to capture the features of the sequence. In NLP-based encoding techniques,
the words in a sentence are considered as real numbers. We considered each protein as a sen-
tence and the residues of the protein as words [56,66]. We created a dictionary of residues by
integer encoding to map each residue in which the amino acid residues and pseudo-amino
acids are converted into index-based integers ranging from 1 to 22. After transmitting this
integer-based encoding to the embedding layer, a lookup table was used to map these inputs
into low-level features. The embedding weight matrix was initialized with random weights
and these weights were learned during training. As mentioned in DeepGO, which is a deep
gene ontology (GO)-aware classifier [67], embedding encoding has advantages over one-hot
encoding, as embedding encoding captures the semantic correlation of amino acids in pro-
tein fragments. The main advantages of the embedding layer are the input dictionary of
the residues and output dimensions. Venkatarajan et al. derived a small five-dimensional
quantitative vector for the descriptions of 20 natural amino acids [68]. These five-dimensional
vector properties are the outcome of the reduction of a large pool of meaningful physico-
chemical properties by multidimensional scaling, and it is enough to reproduce the distance
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in the form of complete properties space by a measure of similarity of amino acids. These
principal components are constructed from multidimensional scaling of 237 physicochemical
properties and represent precise and similar spatial relations of all amino acids to high-
dimensional properties [68]. These properties are described as well correlated in terms of five
major components: hydrophobicity, size, number of degenerate triplet codons, preference of
amino acid residues in a beta strand, and frequency of occurrence of amino acid residues
in a beta strand. In the literature, the aforementioned encoding techniques have already been
used to predict different PTM sites [66,69,70].

2.3. Proposed Architecture

In this study, we developed a deep-learning-based classifier for the prediction of
ubiquitylation sites using two different encoding schemes and extracted the features from
these encoding schemes using two different modules. As shown in Figure 1, the first
module contains the following four main layers: (1) an input layer, in which fragment
residues of length 31 are converted into index-based encoding; (2) an embedding layer,
which is used to represent every residue of protein in the form of a 32-dimensional word
vector; (3) an LSTM layer, which is used to process sequence data and relies on the hid-
den layer in the forward direction to trace preceding contextual features. The ability to
memorize the sequence of data makes LSTM a special type of recurrent neural network
(RNN), which is used in several computational predictors for tracing the LSTM depen-
dencies [71]; (4) a max-pooling layer, which is used to reduce the dimension by half to
prevent the overloading of model training parameters. A max-pooling layer preserves
important features by taking the maximum value in the pool size [72]. Similar to the first
module, the second module contains four main layers, which are as described subsequently.
(1) The first is an input layer, in which the five-dimensional vector for each residue of
amino acid is passed to the preceding layer for features extraction. (2) The second layer is
a convolution layer, which extracts the low- to high-level features by processing the grid
pattern data [73]. A convolution layer performs a specialized type of linear operation,
and the data, which are stored in an array of numbers and small grid parameters called
the kernel for optimizable feature extraction, are applied at every position of the input ma-
trix. The learning function of the CNN aims to learn filters that can map the input features
to the desired output label [74]. This optimization is performed by the backpropagation
and gradient descent techniques to minimize the error between the output and the truth
labels and determine the global minima, respectively [75]. Owing to the weight sharing
and flexibility in the number of filters and the different sizes of kernels, a convolution layer
is more usable in deep learning frameworks [76]. (3) The third layer is a max-pooling layer,
which selects the maximum value in each pooling region, provides the more important
features, and reduces the size of the dimension by half. After the features are extracted
using two separate modules, the feature vectors are concatenated and passed to the dense
layer for deep feature extraction. The backpropagation and gradient descent techniques
update their weights and minimize the errors [75]. (4) Finally, there is an output layer con-
taining two neurons that are activated by the “softmax” activation function, which presents
the probability of each class. In deep learning-based methods, the main problem is model
overfitting; consequently, we used the early stop with a patience of five as the checkpoint
to minimize the validation loss and prevent it from deteriorating further. We also used
regularizers and a dropout layer to prevent the model from overfitting. We determined
the best hyperparameters for each layer with the Keras Tuner; the hyperparameter infor-
mation for each layer is listed in Table 1, excluding the given values for each layer that are
set as the default in the Keras library.

For effective training, we used a batch size of 24 and the Adam optimizer with a learn-
ing rate of 0.001, which merges the dividends of both the adaptive gradient algorithm
and root mean square propagation. We also used a learning rate scheduler after 30 epochs,
which minimized the learning rate. Because we used the softmax function in the pre-
diction layer, categorical cross-entropy was used as the loss function. The architecture
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was implemented using the Keras deep learning library (https://keras.io/, accessed on
10 April 2021).

Table 1. Proposed Model Layer Hyperparameter Details.

Layers Hyperparameter Settings Output Shape

Input_1 shape = (31) (31)

Embedding Input dim = 22
Output dim = 32 (31, 32)

Input shape = (31 )

LSTM units = 32
Kernal reg = L2 (1 × 10−4) (31, 32)

Recurrent reg = L2 (1 × 10−4)
Bias reg = L2 (1 × 10−4)

Dropout Rate = 0.2 (31, 32)

MaxPooling1D Pool size = 2 (15, 32)

Flatten_1 Just flatten the matrix (480)

Input_2 shape = (31, 5) (31, 5)

Conv1D filters = 16
kernal_size = 3 (29, 16)

Activation = relu

MaxPooling1D Pool size = 2 (14, 16)

Dropout Rate = 0.2 (14, 16)

Flatten_2 Just flatten the matrix (224)

Concatenate concatenate the Flatten_1 and Flatten_2 (704)

Dense Activation = relu (16)
Units = 16

Dropout Rate = 0.4 (16)

Dense Activation = softmax (2)
Units = 2
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Figure 1. Proposed model architecture.
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2.4. Model Evaluation and Performance Metrics

This study used 10-fold stratified cross-validation, in which the data were split into
10 equal parts, where one part was used for testing and the other nine parts were used
for training purposes. This technique was repeated until every fold was tested once.
In the stratified cross-validation method, the division of data contains the same proportion
of positive and negative sequences as the original dataset, which is helpful for a balanced
and accurate prediction, thereby preventing the model from prejudice toward any one
class. In the literature, stratified cross-validation appears to be uniformly better than simple
cross-validation in terms of bias and variance [77]. For the assessment of our classification
prediction, we used different types of evaluation terms, i.e., accuracy, precision, recall,
and F-score. These were derived from the basic confusion matrix that was used to assess
the quality of the classification models. The binary classifier confusion matrix provides
information about ground truth values and predicts the classification by the classifier
in two dimensions for the actual and predicted values. A confusion matrix depends on four
values, i.e., the number of true positives (T_P), number of false positives (F_P), number of
true negatives (T_N), and number of false negatives F_N).

Accuracy =
T_P + T_N

T_P + F_N + T_N + F_P
(1)

Recall =
T_P

T_P + F_N
(2)

Precision =
T_P

T_P + F_P
(3)

F − Score = 2×Recall × Precision
Recall + Precision

(4)

As shown in (1)–(4), accuracy is the ratio of all accurately predicted examples to the total
number of examples. Recall is calculated as a ratio of the true positive rate of the predictor to
the total number of actual positive examples. Precision is calculated as a ratio of the number
of positive examples labeled correctly to the total number of examples that were classified as
positive by the predictor. Unfortunately, it is not possible to maximize both these metrics
simultaneously, as one comes at the expense of the other. Thus, the F-score metric considers
both precision and recall, and is the harmonic mean of precision and recall, which condenses
them to a single value. We also used the area under the curve (AUC) for a graphical
representation of the prediction results with the help of the true- and false-positive rates,
which show the degree of power and separability of a classifier.

3. Results
3.1. Experiment on Different Techniques

To develop a robust predictor, we applied different types of deep learning and ma-
chine learning techniques for different encoding schemes and physicochemical properties.
We extracted features from the embedding and one-hot encoding schemes by using LSTM-
and CNN-based architectures. The results show that the embedding encoding schemes
performed better by applying the LSTM model. We also combined the one-hot and em-
bedding encoding schemes with the more commonly used five-dimensional scaling of
physicochemical properties [68] and applied different types of deep learning architectures.
After the investigations, the combined embedding and physicochemical property encoding
scheme provided the best results in terms of 10-fold cross-validation and independent re-
sults, by using a hybrid LSTM- and CNN-based architecture; the results are listed in Table 2.
The receiver operating characteristic (ROC) curves are shown in Figure 2, while the details
of the investigated methods are provided in the Supplementary Materials (section C).

We also examined the physicochemical properties, which were extracted from iLearn,
including enhanced AAC (EAAC), enhanced group AAC, CKSAAP, pseudo-AAC (PAAC),
amphiphilic PAAC (APAAC), AAIndex, k-Spaced Conjoint Triad (KSCTriad), and Quasi-
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sequence-order descriptor [78]. Individual properties and a combination of features were
considered by using machine learning methods such as SVM, extreme gradient boosting
(XGboost), and RF. The investigation results in the form of ROC curves for all the properties
are provided in the Supplementary Materials (section B). After investigations, the selected
combination of 500 feature vectors from CKSAAP, APAAC, EAAC, and KSCTriad using XG-
boost provided better results by applying RF. The results are listed in Table 2 and the ROC
curves are shown in Figure 2.

Table 2. Results of different techniques.

Models 10-Fold Cross Validation Independent

Predictor ACC F-Score ACC F-Score

LSTM-emb 0.700 0.735 0.734 0.779
CNN-emb 0.704 0.739 0.733 0.776

BiLSTM-onehot 0.725 0.729 0.757 0.777
CNN-onehot 0.719 0.731 0.748 0.778

CNN-onehot-PCA 0.748 0.750 0.768 0.786
Comb-emb-PCA (UbiComb) 0.804 0.795 0.818 0.825

RF-Comb 0.762 0.757 0.781 0.800
The Comb-emb-PCA (UbiComb) provided the best results in terms of 10-fold cross-validation and independent
results.
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Figure 2. ROC-AUC comparisons of different techniques. (a) 10-fold cross validation. (b) Indepen-
dent data results.
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3.2. Cross-Validation Performance

The length of the peptide sequence is also one of the important hyperparameters.
Usually, the general range for fragment length is (21–41) for predictions of PTM sites.
We try these different lengths, as shown in results, Table 3, and Figure 3, we found that
the optimal window is 31.

Table 3. 10-fold cross-validation result on different fragment lengths.

Fragment ACC F-Score AUC

21 0.762 0.753 0.833
23 0.754 0.744 0.835
25 0.767 0.759 0.848
27 0.774 0.760 0.853
29 0.779 0.763 0.854
31 0.805 0.795 0.892
33 0.780 0.769 0.859
35 0.782 0.773 0.854
37 0.771 0.770 0.856
39 0.788 0.777 0.856
41 0.777 0.763 0.855

The fragment length 31 shows the best result.
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Figure 3. AUCs of different fragment results.

Our ultimate predictor used the embedding and physicochemical properties with
dimensions of 32 and 5, respectively, built on a sequence length of 31. We employed
10-fold cross-validation to test the results. For a fair comparison, we used the same training
and testing dataset as that used in a recently published predictor [58]. The 10-fold cross-
validation outcomes are listed in Table 4, and the performance metrics were as follows:
accuracy of 0.805, recall of 0.763, precision of 0.834, F-score of 0.795, and AUC of 0.892,
as shown in Figure 4.
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Table 4. Comparison of UbiComb with recent existing predictor.

Models 10-Fold Cross Validation Independent

Predictor ACC F-Score ACC F-Score

Wang et al., 0.782 0.785 0.791 0.782
UbiComb 0.805 0.795 0.818 0.825

The UbiComb give the improve results in terms of 10-fold cross-validation and independent results.
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Figure 4. AUCs of 10-fold cross-validation.

Additionally, we tested our architecture performance, as we prepared the data from
Zhan, H. et al. [79], and trained the same architecture. After the same steps, we obtained
1756 ubiquitination and 1756 non-ubiquitination Tobacco species sites which were chosen
randomly. We apply the same procedure and architecture, and obtain results as accuracy,
0.835; F1-score, 0.833, and AUC, 0.914 as shown in Figure 5, on 10-folds cross-validation.
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Figure 5. AUCs of 10-fold cross-validation of Tobacco species Dataset.
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3.3. Independent Dataset Comparison and Analysis of Published Tools

Cross-validation combines the results from several local models instead of validating
the global model. To solve this problem, a research study proposed the use of an independent
dataset that can validate the global model [80]. The independent dataset shows the prediction
power and generalization capability of the predictor because the independent dataset is differ-
ent from the training dataset. For this purpose, we verified the similarities between the training
and independent datasets using CD-HIT [61]. We used the remaining fragments after the cut-
off values of 0.9, 0.8, 0.7, and 0.6 to trace the generalizing capability of the predictor. When
we cutoff 60% of similar sequences from the independent set, the predictor still achieved better
results, with an accuracy of 0.811, F-score of 0.806, and AUC of 0.884. We also used the same
independent dataset for a fair comparison with the six popular existing ubiquitylation site
predictors, i.e., UbPred [40], iUbiq-Lys [46], Ubisite [42], Deep ubiquitylation [81], DeepUbi [56],
and another recently published predictor [58]. We evaluated the independent sequence predic-
tion results in terms of accuracy, recall, precision, and F-score. As listed in Table 5, the proposed
predictor achieved the following: accuracy of 0.782, recall of 0.854, precision of 0.798, F-score
of 0.825, and AUC of 0.889, as shown in Figure 6. According to the evaluation matrix results
of the recent predictor, which are listed in Table 5, the independent testing result is less than
that of our predictor. The proposed model appears to be more tuned and has a better general-
ization capability than the previous predictor. According to the investigation, the proposed
model provides reliable forecasts when compared to existing methods for the prediction of
ubiquitination sites.

Table 5. Independent dataset comparison of UbiComb with existing predictors.

Models 10-Fold Cross Validation Independent

Predictor ACC F-Score ACC F-Score

UbPred 0.719 0.738 0.626 0.678
iUbiq-Lys 0.799 0.837 0.563 0.671

Ubisite 0.752 0.794 0.596 0.681
Deep Ub 0.683 0.703 0.674 0.687
DeepUbi 0.739 0.741 0.733 0.734

Wang et al., 0.756 0.767 0.733 0.749
UbiComb 0.805 0.795 0.818 0.825

The UbiComb give the best results in terms of 10-fold cross-validation and independent results.
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Figure 6. AUC of independent testing.
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4. Conclusions

In this study, we analyzed the ubiquitination of PTM sites in plant species. Owing
to the advantage of iterative enhancement in the era of deep learning, a more accurate
predictor could be proposed. In this study, we used the advantages of both RNN- and CNN-
based feature extraction for physicochemical and embedded properties, respectively. To
obtain a predictor with superior performance, we applied both deep learning and machine
learning techniques. Among the different types of techniques mentioned in this study
and previous predictors on the same dataset, our proposed model demonstrated a bet-
ter generalization capability. Thus, the proposed model can identify ubiquitination sites
in a significantly efficient and accurate manner, which can help scientists to classify these
PTM sites. Although the proposed model provides accurate and better predictions than
other published models, it still has certain limitations that should be considered in future
work. The structural preferences of ubiquitination sites should be considered in greater
detail because the tertiary structure is a key feature during the occurrence of protein ubiqui-
tination and it was not considered in this study. Finally, a user-friendly freely accessible web
server and dataset is available at: http://nsclbio.jbnu.ac.kr/tools/UbiComb/, accessed on
10 May 2021.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12050717/s1, Section A: Hyperparameter tuning, Section B: Experiment on different
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