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Using contrast patterns between 
true complexes and random 
subgraphs in PPI networks to 
predict unknown protein complexes
Quanzhong Liu1, Jiangning Song2,3,4 & Jinyan Li5

Most protein complex detection methods utilize unsupervised techniques to cluster densely connected 
nodes in a protein-protein interaction (PPI) network, in spite of the fact that many true complexes 
are not dense subgraphs. Supervised methods have been proposed recently, but they do not answer 
why a group of proteins are predicted as a complex, and they have not investigated how to detect 
new complexes of one species by training the model on the PPI data of another species. We propose a 
novel supervised method to address these issues. The key idea is to discover emerging patterns (EPs), a 
type of contrast pattern, which can clearly distinguish true complexes from random subgraphs in a PPI 
network. An integrative score of EPs is defined to measure how likely a subgraph of proteins can form 
a complex. New complexes thus can grow from our seed proteins by iteratively updating this score. 
The performance of our method is tested on eight benchmark PPI datasets and compared with seven 
unsupervised methods, two supervised and one semi-supervised methods under five standards to 
assess the quality of the predicted complexes. The results show that in most cases our method achieved 
a better performance, sometimes significantly.

A protein complex is a group of proteins that interact one another for specific biological activities1. Identification 
of protein complexes is important for predicting protein functions2, disease genes3,4, phenotypic effects of genetic 
mutations5, and drug-disease associations6. It not only helps to characterize and understand certain biologi-
cal processes7, also improves our understanding on human diseases8. Laboratory-based techniques have been 
developed to identify complexes. However, laboratory-based techniques are low in efficiency; and the identified 
complexes are usually incomplete9.

Over the last decade, more than 20 computational methods have been proposed as complementary tools to 
laboratory-based techniques for detecting protein complexes from protein-protein interaction (PPI) networks. 
By these methods, a PPI network is represented as a undirected graph, where the nodes stand for proteins and 
the edges stand for protein interactions. Given a PPI network, these methods search for protein complexes by 
detecting densely connected subgraphs in the network. These clustering methods can be roughly grouped into 
two categories10. The first category includes those methods solely based on PPI network topological properties, 
such as method MCODE (molecular complex detection)11, MCL (Markov cluster)12, CMC (clustering based on 
maximal cliques)13, CFinder14,15, ClusterONE (clustering with overlapping neighborhood expansion)16, RRW 
(repeated random walks)17, and an ensemble clustering method18. The second category includes those based on 
PPI network topological properties and some additional biological insights, such as a core-attachment structure 
focused method19,20, a restricted neighborhood search clustering algorithm (RNSC)21, PCIA22 which incorporates 
attribute information of the proteins in the networks, and DCAFP9 which makes use of functional information.

1College of Information Engineering, Northwest A&F University, Yangling 712100, China. 2Monash Bioinformatics 
Platform and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, 
Australia. 3Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 
3800, Australia. 4National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial 
Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China. 
5Advanced Analytics Institute and Centre for Health Technologies, Faculty of Engineering and IT, University of 
Technology Sydney, 81 Broadway, NSW 2007, Australia. Correspondence and requests for materials should be 
addressed to Q.L. (email: liuqzhong@nwsuaf.edu.cn) or J.L. (email: Jinyan.Li@uts.edu.au)

received: 08 October 2015

accepted: 19 January 2016

Published: 12 February 2016

OPEN

mailto:liuqzhong@nwsuaf.edu.cn
mailto:Jinyan.Li@uts.edu.au


www.nature.com/scientificreports/

2Scientific Reports | 6:21223 | DOI: 10.1038/srep21223

However, true complexes are not always dense subgraphs. Sometimes they can be very sparse. Figure 1 shows 
two sparse complexes from the the Munich Information Center for Protein Sequence (MIPS) catalogue complex 
database23. Thus, the density of a subgraph is not the only property that is useful for predicting whether the sub-
graph is a complex or not.

Supervised learning methods have been recently developed to detect complexes by combining other 
informative properties of true complexes. For example, SCI-BN24 is a supervised learning method which uses a 
Bayesian network model to learn the characteristics of true complexes. RM25 is a regression model for protein 
complex prediction. NN26 is a semi-supervised method taking a neural network framework. A common issue 
of these supervised or semi-supervised learning methods is that they cannot easily answer why a group of pro-
teins is predicted as a complex. Moreover, they have not considered to predict new complexes of one species 
by training the model on the true complexes of another species. In fact, many informative properties such as 
degree statistics, clustering coefficient, topological coefficients and eigen values of subgraphs can be used to 
derive conjunctive patterns, which might be more effective than the only density feature, or the Bayesian net-
work, regression or the neural network model, for distinguishing true complexes from random subgraphs (see 
our case studies).

Emerging patterns (EPs)27 are such type of conjunctive patterns that contrast sharply between different classes 
of data. For example, pattern {meanClusteringCoeff ≤  0.3, 1.0 <  varDegreeCorrelation ≤  2.80} is an emerging pat-
tern in the Collins28 PPI network. It states that if the average clustering coefficient of a subgraph is less than or 
equal to 0.3 and the degree correlation variance is between 1.0 and 2.80, then 98.2% of non-complexes (random 
subgraphs) exhibit this pattern, while only 6% of true complex subgraphs contain this pattern. If a new subgraph 
contains this EP, then it is much more likely to be a non-complex instead of a new complex. We can see that the 
characteristics of complexes involved in an EP is not restricted to the density property only. Rather, EPs combine 
novel properties of complexes to answer why a subgraph can be predicted as a complex or not. Usually, we group 
a set of EPs to make the prediction more reliable. Table 1 lists several other examples of EPs from the Collins PPI 
network.

EPs have been previously applied to deal with gene expression bioinformatics problems29–32. This work is the 
first time that EPs are exploited to address the complex prediction problem given a PPI network containing some 
true complexes. Our EP-based method consists of three main steps. The first step is to construct a feature vector 
to describe the key properties of the subgraphs of true complexes (positive class) in the PPI network as well as 
those of random non-complexes subgraphs (negative class). The second step is to discover EPs by contrasting 
the positive and negative classes of data. At the third step, we define an EP-based clustering score and propose a 
search algorithm to identify protein complexes (including overlapping complexes) from the PPI network. Our 
method is named ClusterEPs.

Figure 1.  Sparse complexes in the MIPS complex catalogue database. 

Emerging patterns

Frequency (%) in 
subgraphs representing 

true complexes

Frequency (%) 
in random 
subgraphs

{meanDegree >  0.61} 99.4 0

{meanClusteringCoeff >  0.3} 88.6 0

{meanDegreeCorrelation ≤  1.9, maxLength >  868} 2.4 85

Table 1.   Examples of emerging patterns from the Collins PPI network.
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The prediction performance of ClusterEPs is compared with supervised, semi-supervised and unsuper-
vised learning methods. Comparing with the two supervised learning methods SCI-BN24 and RM25, and the 
semi-supervised learning method NN26, ClusterEPs achieved a much better performance (precision, recall and 
F1) on the commonly used DIP network33.

As the unsupervised approach has been intensively explored in the literature, we choose to compare 
ClusterEPs with seven representative clustering methods. The evaluation is on five large-scale yeast PPI datasets 
under three standard scores, and the quality of predicted complexes is assessed with reference to the true com-
plexes from the MIPS complex catalogue database23 and the Saccharomyces Genome Database (SGD)34. The three 
standard scores are: (i) the fraction of matched complexes16, (ii) the geometric accuracy measure35, and (iii) the 
maximum matching ratio16 derived from a maximal one-to-one mapping between the predicted and true com-
plexes. Their sum is termed composite score, which is a more comprehensive performance measurement widely 
used in the field. These unsupervised clustering methods under our comparison are: MCODE11, MCL12, CMC13, 
CFinder14,15, ClusterONE16, RRW17, and RNSC21. Comparative experiments show that ClusterEPs can achieve a 
higher score of the maximum matching ratio than all the seven literature methods on all the five datasets, and a 
higher composite score than six of the seven methods on almost all the datasets.

Detection of new human complexes through the model learned from the complexes of yeast PPI networks is 
a novel attempt by this study. We trained our prediction model using the complexes from the six yeast PPI net-
works, and made predictions to discover new human complexes from human PPI networks. Again, ClusterEPs 
achieved a better performance in comparison with the other prediction methods.

Case studies are also performed to further illustrate the detailed predictive capability of ClusterEPs. It is 
observed that only ClusterEPs can make a complete and accurate prediction for the challenging case of the RNA 
polymerase I complex that consists of 14 proteins. ClusterEPs is also able to detect the RecQ helicase-Topo III 
complex, a small complex of only three proteins. It is highlighted here, because it is a not-well-separated sub-
graph, connecting to a large number of proteins outside the complex. GO analysis on the novel protein complexes 
predicted by our method suggests that there are strong evidences to support our prediction for these currently 
unknown complexes.

The algorithm has been implemented and a software version of ClusterEPs is downloadable at website http://
lightning.med.monash.edu/ClusterEPs/. This website also provides a hyperlink pointing to a web server for a 
wider research community to use this prediction method.

Results
This section is organized into five parts. The first part presents our comparison results with the two super-
vised learning methods: the Bayesian network (SCI-BN) model24 and the regression model (RM)25, and the 
semi-supervised learning method26. The second part reports our comparison results with the seven unsupervised 
clustering methods. The third part describes the results on the prediction of new human protein complexes using 
the model constructed from yeast PPI data. The fourth and fifth parts present detailed case studies and GO anal-
ysis results on the novel protein complexes predicted by our method.

Performance comparison with supervised or semi-supervised learning methods.  SCI-BN24 is the 
first supervised learning method for protein complex prediction. Yu et al. proposed another supervised learning 
method RM25. As the SCI-BN program is not available, Yu et al. used the published results to compare the perfor-
mance between RM and SCI-BN. Unfortunately, the RM program is also not available to this work, we decided to 
compare their published results with ours.

SCI-BN and RM used two independent sets of true complexes as the positive class of data. One is the MIPS23 
protein complex catalog, while the other one is the core set TAP06 of protein complexes from a TAP-MS exper-
iment36. Taking the same way as SCI-BN and RM did, we filtered out those complexes composed of a single or a 
pair of proteins from the two sets of true complexes. We note that some complexes in MIPS are duplicate. Hence, 
our method also removed those duplicate complexes. There are 195 complexes remained in MIPS and 193 com-
plexes remained in TAP06.

The PPI data set for the test is the well-known DIP data set33. A SVM-based preprocessing step was used by 
SCI-BN to remove all edges having a weight below 1.0. The preprocessing step by RM is to remove those inter-
actions with a GO similarity less than 0.9. Because these two preprocessing methods are not available, we chose 
the TCSS (topological clustering semantic similarity) method37 to preprocess DIP. The semantic similarity scores 
between two interacting proteins compose of a biological process (BP) score, a cellular component (CC) score, 
and a molecular function (MF) score. We removed those interactions from DIP with a BP score less than 0.5.

We conducted experiments using MIPS as the positive training set and TAP06 as the test set and vice versa. 
There are a total of 1579 proteins from the complexes stored in MIPS and TAP06. Taking the same way as SCI-BN 
and RM did, we first extracted a PPI graph containing these proteins and their interactions from the DIP network, 
and then tested ClusterEPs on this PPI graph. Same measures including Precision, Recall and F1 (see Methods) 
were then applied to assess the performance. The results are shown in Table 2. As can be seen, when TAP06 was 
used as the training set and MIPS as the test set, the F1 measure of ClusterEPs was 32.2 percentage points higher 
than that of SCI-BN, and 12.8 percentage points higher than that of RM. When MIPS was considered as the 
training set and TAP06 as the test set, the F1 measure of ClusterEPs was 14.8 percentage points higher than that 
of SCI-BN, and 10 percentage points higher than that of RM.

NN26 is a semi-supervised learning model for protein complex prediction. Its performance was evaluated by 
using MIPS as both training set and test set. We tested ClusterEPs under this setting and the prediction perfor-
mance is shown in Table 3. As can be seen, the F1 measure of ClusterEPs was 29.9 percentage points higher than 
that of NN, and significantly better than those of SCI-BN and RM.

http://lightning.med.monash.edu/ClusterEPs/
http://lightning.med.monash.edu/ClusterEPs/
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Performance comparison with unsupervised methods.  Recently, Nepusz et al.16 proposed an unsu-
pervised method named ClusterONE, and conducted a wide range of comparative studies with a group of unsu-
pervised clustering methods on five yeast PPI networks. This group of state-of-the-art unsupervised methods 
include: CFinder14,15, CMC13, MCODE11, MCL12, RNSC21, RRW17, and ClusterONE16. The five yeast PPI net-
works are the Gavin dataset36, the Krogan core dataset38, the Krogan extended dataset38, the Collins dataset28, 
and BioGRID39. The performance evaluation was conducted under three measures (see Methods): the fraction 
of matched complexes (Frac), the geometric accuracy (Acc) and the maximum matching ratio (MMR), and two 
gold reference complex sets were used in the assessment: MIPS23 and SGD34. In line with Nepusz et al.16, we tested 
the performance of ClusterEPs on the same five yeast PPI networks, and compared with the above seven unsuper-
vised clustering methods. The quality of the predicted complexes was also assessed using MIPS and SGD under 
the same performance measures. All parameters of the seven comparing algorithms on every PPI dataset were the 
same as those used in the corresponding literature16 for a fair comparison.

ClusterEPs was first tested on the five yeast PPI networks when SGD was applied as the positive training data. 
Table 4 shows the comparative performance of the eight algorithms using the MIPS standard complexes as the 
test set. Then, ClusterEPs was tested on these PPI networks when MIPS is used as the positive training set. Table 5 
shows the comparison results when the SGD standard complexes were considered as the test set. “N/A” for the 
CFinder algorithm on the BioGRID dataset denotes that CFinder did not output any result within 24 hours. “N/A” 
for the CMC algorithm on the BioGRID dataset denotes that CMC generated a prohibitively large number of 
clusters (more than 6000)16. We can see that ClusterEPs achieved the highest MMR score on all the PPI datasets. 
That is, the complexes identified by ClusterEPs from the five PPI datasets had better one-to-one mapping with the 
reference complexes from both MIPS and SGD. For the composite scores, ClusterEPs achieved the highest scores 
on the Gavin, Krogan extended and BioGRID datasets (column 7 in Tables 4 and 5).

It is noteworthy that none of the eight algorithms achieved an overall best performance across all the datasets. 
However, except ClusterONE, our ClusterEPs algorithm achieved a consistently better composite score than the 
other six algorithms on four datasets. As the negative data (random subgraphs) were generated by randomly 
selecting nodes in the PPI networks, we ran ClusterEPs 20 times on two personal computers to calculate the aver-
age performance. The standard deviation of the 20 runs was very small for each assessment score (Supplementary 
Tables 17–26).

Detection of human protein complexes through prediction model constructed on yeast pro-
tein complex data.  This work was also aimed to detect novel human protein complexes from human PPI 
networks through a prediction model constructed using yeast complexes and PPI data. Yeast PPI networks and 
complexes have been deeply explored by many research teams. Our idea is to learn the basic principles of PPI net-
works and characteristics of protein complexes from yeast PPI and complex data, and then apply the constructed 
prediction model to human PPI data to transfer the basic principles for the prediction of novel human protein 
complexes which has been less intensively studied recently.

We used all the true yeast complexes from MIPS and SGD (MIPS +  SGD) as the positive training data. The 
negative data were randomly generated from individual or all-combined of the six yeast PPI networks. Then 
emerging patterns were discovered from these positive and negative data. The prediction model was then applied 
to the human PPI network named HPRD (the Human Protein Reference Database Release 9)40 to detect new 
human complexes. The all-combined PPI dataset of the six yeast PPI networks contains 77051 distinct interac-
tions after the removal of duplicate interactions. This combined dataset is named CombinedYeast. HPRD contains 

Train Test Method Precision Recall F1

MIPS TAP06 ClusterEPs 0.399 0.798 0.529

MIPS TAP06 SCI-BN 0.312 0.489 0.381

MIPS TAP06 SCI-SVM 0.247 0.377 0.298

MIPS TAP06 RM 0.424 0.433 0.429

TAP06 MIPS ClusterEPs 0.601 0.672 0.634

TAP06 MIPS SCI-BN 0.219 0.537 0.312

TAP06 MIPS SCI-SVM 0.176 0.379 0.240

TAP06 MIPS RM 0.489 0.525 0.506

Table 2.   Performance comparison with SCI-BN and RM.

Train Test Method Precision Recall F1

MIPS MIPS ClusterEPs 0.638 0.769 0.696

MIPS MIPS SCI-BN 0.273 0.473 0.346

MIPS MIPS SCI-SVM 0.239 0.412 0.302

MIPS MIPS RM 0.419 0.67 0.514

MIPS MIPS NN 0.333 0.491 0.397

Table 3.  Performance comparison with NN.
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37080 interactions, encompassing a high proportion of human PPIs present in the other literature databases41. 
TCSS37 was used to filter out those interactions which have a biological process score less than 0.5. There were 
11765 interactions left in our application.

The prediction model constructed on the CombinedYeast datasets using all the true yeast complexes from 
MIPS and SGD as the positive training data was also applied to a large human signaling network (HSN) to detect 
new human complexes. HSN (Version 6) contains 6305 proteins and 62937 relations including activation, inhibi-
tion and physical interactions (http://www.cancer-systemsbiology.org/dataandsoftware.htm). Physical relations 
represent complexes that play an important role in cell signaling. To the best of our knowledge, this network has 
been considered as the largest manually curated human signaling network according to the literature42–46.

We also combined the two human PPI networks HSN and HPRD into one large human protein relation net-
work (HSN +  HPRD). The merged network contains 92252 distinct interactions after removing those duplicates. 
Then, we predicted human complexes from this network through the model constructed on CombinedYeast 
using complexes from MIPS and SGD.

To assess the quality of the predicted human complexes, they are compared against the gold standard database 
CORUM (the comprehensive resource of mammalian protein complexes)47 which stores 1843 human protein 

Datasets Methods #cluster Frac Acc MMR
Composite 

score

Gavin

ClusterEPs 240 0.774 0.479 0.431 1.684

MCL 252 0.681 0.503 0.331 1.515

MCODE 135 0.611 0.447 0.301 1.359

CMC 339 0.663 0.452 0.347 1.462

ClusterONE 196 0.708 0.5 0.375 1.583

RNSC 138 0.611 0.485 0.319 1.415

RRW 234 0.664 0.446 0.34 1.45

CFinder 137 0.558 0.487 0.279 1.324

Krogan core

ClusterEPs 364 0.691 0.420 0.357 1.468

MCL 376 0.6 0.441 0.272 1.313

MCODE 79 0.326 0.334 0.144 0.804

CMC 156 0.37 0.374 0.172 0.916

ClusterONE 522 0.674 0.44 0.319 1.433

RNSC 87 0.422 0.383 0.182 0.987

RRW 329 0.504 0.361 0.248 1.113

CFinder 115 0.341 0.369 0.166 0.876

Krogan extended

ClusterEPs 561 0.598 0.386 0.319 1.302

MCL 483 0.436 0.409 0.193 1.038

MCODE 64 0.192 0.294 0.097 0.583

CMC 421 0.365 0.343 0.172 0.88

ClusterONE 530 0.577 0.422 0.284 1.283

RNSC 93 0.365 0.369 0.159 0.893

RRW 232 0.468 0.354 0.222 1.044

CFinder 121 0.218 0.315 0.107 0.64

Collins

ClusterEPs 171 0.705 0.528 0.421 1.654

MCL 183 0.739 0.537 0.397 1.673

MCODE 112 0.652 0.499 0.351 1.502

CMC 184 0.591 0.509 0.309 1.409

ClusterONE 195 0.782 0.555 0.418 1.755

RNSC 94 0.608 0.499 0.306 1.413

RRW 190 0.678 0.446 0.378 1.502

CFinder 114 0.557 0.495 0.312 1.364

BioGRID

ClusterEPs 862 0.635 0.366 0.304 1.304

MCL 338 0.196 0.348 0.083 0.627

MCODE 85 0.201 0.325 0.08 0.606

CMC N/A N/A N/A N/A N/A

ClusterONE 473 0.466 0.44 0.195 1.101

RNSC 209 0.481 0.43 0.212 1.123

RRW 253 0.402 0.348 0.176 0.926

CFinder N/A N/A N/A N/A N/A

Table 4.   Performance comparison of eight algorithms tested on five yeast PPI datasets using MIPS as the 
test set.

http://www.cancer-systemsbiology.org/dataandsoftware.htm
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complexes. We also compared the prediction performance of ClusterEPs with CluseterONE which had the sec-
ond best performance for predicting yeast complexes shown in the above experiments. As can be seen in Table 6, 
ClusterEPs achieved a higher Precision, Recall, F1 and MMR scores than ClusterONE. This superior performance 
is mainly attributed to the knowledge and principles learned by the prediction model from the well explored yeast 
PPI and complex data.

HSN +  HPRD is a very large network, it may contain some noise interactions. Similarly as preprocessing 
HPRD, we also used TCSS to filter out those interactions having a biological process score less than 0.5. The 
processed PPI network is named HSNHPRD_F which contains 38091 interactions. We ran our algorithm and 
ClusterONE on HSNHPRD_F to identify new human complexes. Experimental results (Table 6) show that both 
our method and ClusterONE achieved a better performance than those on the original HSN +  HPRD network. 
Again, our method achieved a better performance than ClusterONE.

Case studies.  This section first presents detailed case studies on three non-overlapping yeast complexes (i.e. 
complexes that are separated one another in the yeast PPI networks), a pair of overlapping yeast complexes, 
and a human protein complex. The three non-overlapping complexes are: the RNA polymerase I complex (large 

Datasets Methods #cluster Frac Acc MMR
Composite 

score

Gavin

ClusterEPs 244 0.825 0.657 0.526 2.008

MCL 253 0.75 0.689 0.438 1.877

MCODE 135 0.602 0.628 0.38 1.61

CMC 339 0.726 0.612 0.466 1.804

ClusterONE 196 0.789 0.706 0.476 1.971

RNSC 143 0.648 0.684 0.398 1.73

RRW 237 0.758 0.667 0.471 1.896

CFinder 137 0.609 0.668 0.369 1.646

Krogan core

ClusterEPs 292 0.642 0.584 0.431 1.656

MCL 367 0.636 0.637 0.354 1.627

MCODE 79 0.394 0.477 0.218 1.089

CMC 156 0.394 0.516 0.232 1.142

ClusterONE 522 0.667 0.663 0.418 1.748

RNSC 88 0.43 0.529 0.23 1.189

RRW 264 0.606 0.561 0.361 1.528

CFinder 115 0.418 0.494 0.243 1.155

Krogan extended

ClusterEPs 522 0.669 0.550 0.414 1.633

MCL 517 0.492 0.594 0.253 1.339

MCODE 64 0.278 0.422 0.147 0.847

CMC 351 0.401 0.513 0.232 1.146

ClusterONE 530 0.594 0.628 0.364 1.586

RNSC 97 0.406 0.527 0.225 1.158

RRW 232 0.54 0.529 0.311 1.38

CFinder 88 0.262 0.47 0.155 0.887

Collins

ClusterEPs 385 0.805 0.646 0.536 1.987

MCL 181 0.836 0.723 0.518 2.077

MCODE 112 0.672 0.66 0.439 1.771

CMC 184 0.589 0.626 0.37 1.585

ClusterONE 195 0.828 0.731 0.532 2.091

RNSC 95 0.627 0.661 0.377 1.665

RRW 190 0.754 0.656 0.494 1.904

CFinder 114 0.605 0.648 0.412 1.665

BioGRID

ClusterEPs 780 0.668 0.539 0.397 1.604

MCL 335 0.3 0.46 0.144 0.904

MCODE 85 0.21 0.424 0.094 0.728

CMC N/A N/A N/A N/A

ClusterONE 481 0.562 0.628 0.277 1.467

RNSC 220 0.527 0.616 0.287 1.43

RRW 270 0.485 0.534 0.263 1.282

CFinder N/A N/A N/A N/A N/A

Table 5.   Performance comparison of eight algorithms tested on five yeast PPI datasets using SGD as the 
test set.
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size), RecQ helicase-Topo III complex (small size), and the DASH complex. The two overlapping complexes are 
the pair of the RSC and the SWI/SNF complexes. The DASH complex and the two overlapping complexes have 
been previously used as case study examples by ClusterONE16 and other methods for performance evaluation. 
The example of human complex is the ubiquitin E3 ligase complex which was detected by our prediction model 
constructed on the yeast interaction data.

The RNA polymerase I complex is a transcription complex (MIPS identifier 510.10), comprising 14 proteins. 
The Collins PPI network contains the subgraph of this complex. Figure 2 shows the predicted subgraph of this 
complex by ClusterEPs in comparison with ClusterONE. Our ClusterEPs could completely identify all the pro-
teins in this complex with 100% precision, while the other seven methods failed to do so. The RNA polymerase I 
complex subgraph is a subgraph with a density of 0.89. This subgraph also has a higher cohesiveness than sparse 
subgraphs. However, this subgraph is not a well-separated subgraph, as it is connected to 109 external proteins 
outside the complex (see Supplementary Figure 4). This means that it has a higher boundary weight. Due to 
these facts, ClusterONE was not able to exactly recover this complex—it added 10 nearby proteins, which almost 
doubled the true size of this complex. As a comparison, MCL and CFinder added other proteins into the RNA 
polymerase I complex. Interestingly, the wrongly predicted proteins by CFinder not only included those added by 
MCL and ClusterONE, but also included 34 other unrelated proteins. RNSC and RRW were only able to cluster 
part of the RNA polymerase I. CMC clustered part of this complex and added an unrelated protein. MCODE 
clustered 30 proteins 10 of which belong to this complex and 20 of which are irrelevant to the RNA polymerase I 
complex. More details of the results for this complex can be found in Supplementary Figure 5.

The RecQ helicase-Topo III complex is a small complex in the SGD database, comprising 3 proteins. Figure 3 
shows the neighborhood of this complex in the BioGRID PPI network. Predicting small complexes (consisting of 
fewer than four proteins) is a challenging research because they are more susceptible to noise (missing or spurious 

Method Trained yeast PPI
Trained yeast 

complexes Human PPI Precision Recall F1 Acc MMR

ClusterEPs Gavin MIPS +  SGD HPRD 0.211 0.603 0.313 0.243 0.206

ClusterEPs Krogan core MIPS +  SGD HPRD 0.232 0.551 0.326 0.226 0.195

ClusterEPs krogan extended MIPS +  SGD HPRD 0.217 0.586 0.317 0.238 0.207

ClusterEPs Collins MIPS +  SGD HPRD 0.191 0.612 0.292 0.247 0.201

ClusterEPs BioGRID MIPS +  SGD HPRD 0.197 0.580 0.294 0.239 0.198

ClusterEPs DIP MIPS +  SGD HPRD 0.190 0.574 0.286 0.245 0.199

ClusterEPs CombinedYeast MIPS +  SGD HPRD 0.208 0.482 0.290 0.213 0.173

ClusterONE HPRD 0.169 0.376 0.233 0.317 0.114

ClusterEPs CombinedYeast MIPS +  SGD HSN 0.121 0.429 0.189 0.248 0.139

ClusterONE HSN 0.057 0.128 0.079 0.308 0.035

ClusterEPs CombinedYeast MIPS +  SGD HSN +  HPRD 0.115 0.448 0.183 0.217 0.170

ClusterONE HSN +  HPRD 0.062 0.164 0.090 0.312 0.057

ClusterEPs CombinedYeast MIPS +  SGD HSNHPRD_F 0.196 0.504 0.282 0.237 0.171

ClusterONE HSNHPRD_F 0.125 0.242 0.165 0.332 0.074

Table 6.   Performance of ClusterEPs in the detection of human complexes through the model constructed 
on the yeast PPI and complexes data.

Figure 2.  The RNA polymerase I complex as predicted by ClusterONE and ClusterEPs. The red nodes 
represent proteins that belong to the true complex, while the white color nodes represent proteins that do not 
belong to the true complex. The shaded area indicates the whole predicted subgraph.
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interactions) in a PPI network48. The strategy of identifying dense regions (applicable to large complexes) is less 
effective for the prediction of small complexes10. Especially, in the cases where a small complex directly connects 
to a large number of external proteins, it is even more challenging to detect these small complexes with 100% pre-
cision10. As our ClusterEPs method not only considers the density of subgraphs, but also makes use of other top-
ological measurements, such as the clustering coefficient that measures the number of triangles that go through 
a node49, the topological coefficient that reflects the number of rectangles that pass through a node24,50. These 
measurements can capture and characterize the connectivity of the neighboring subgraphs. Therefore, ClusterEPs 
was able to completely identify the subgraph of the RecQ helicase-Topo III complex with 100% precision. Other 
methods (except MCL) could not completely identify this complex.

The DASH complex has been examined as a case study by16. The subgraph of this complex was included 
in the Krogan extended PPI network, and the complex is described by MIPS which contains 9 proteins. Only 
ClusterONE and ClusterEPs were able to detect this complex completely and correctly. Supplementary Figure 6 
presents more details of the result.

The RSC and the SWI/SNF complexes are a pair of overlapping complexes which were also investigated 
by16 as a case study. This pair of overlapping complexes have a match with two overlapping subgraphs in the 
Collins PPI network. Both ClusterEPs and ClusterONE obtained a prediction result closest to the ground truth. 
Supplementary Figure 7 presents the detailed prediction result.

The ubiquitin E3 ligase complex (complexe id:1162) is a human complex recorded at the CORUM database. 
The topological structure of this complex is like a five-pointed star shape (Fig. 4) in the HPRD PPI network. We 
constructed the prediction model by training on the yeast complexes data and the six yeast PPI networks. The 
prediction model was applied to detect human complexes from the HPRD PPI network. The ubiquitin E3 ligase 
complex was detected when the prediction model was constructed using every individual yeast PPI network. For 
comparison, we also applied ClusterONE16 on the same HPRD PPI network. The result is that an unrelated pro-
tein DTL was added into the ubiquitin E3 ligase complex. As only one protein (DDB1) in the whole HPRD PPI 

Figure 3.  The RecQ helicase-Topo III complex as predicted by ClusterEPs. The red nodes represent proteins 
that belong to the true complex and the white color nodes represent proteins that do not belong to the true 
complex.

Figure 4.  The Ubiquitin E3 ligase complex as predicted by ClusterEPs. 
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network interacts with the protein DTL, the cohesiveness of the subgraph of ubiquitin E3 ligase complex becomes 
locally optimal after DTL is added to this subgraph as determined by ClusterONE. This is the direct reason why 
ClusterONE couldn’t detect this complex correctly.

Similar to other supervised learning methods for protein complex prediction, ClusterEPs constructed the 
negative examples of data by randomly selecting subgraphs. However, this did not seem to have effect on these 
case studies. We ran ClusterEPs 20 times on two different personal computers, each run ended up with the same 
prediction results for these case study complexes.

Predicting currently unknown but biologically interpretable complexes.  Figure 5 presents four 
examples of identified subgraphs by ClusterEPs. The first complex (YeastComplex-1 in the Krogan core PPI net-
work) is very sparse; while the third one (YeastComplex-3 in the Collins PPI network) is very dense. The second 
complex YeastComplex-2 is embedded in the Krogan extended PPI network. These three predicted complexes 
have not been characterized by MIPS or SGD. The fourth example is a subgraph identified from the human PPI 
network (HPRD) by ClusterEPs when it was trained on the combined yeast PPI network (CombinedYeast). To 
our best knowledge, this subgraph has not been characterized by any databases including CORUM. Our analysis 
revealed that none of the four subgraphs contained any EPs favoring the non-complex class, but only EPs favor-
ing the complex class. (Supplementary Tables 28–31 list the features and their values of these subgraphs, and 
Supplementary Tables 11–16 provide the detailed EPs). That is, these subgraphs match many properties of cur-
rently true complexes, but they do not match any property of the random subgraphs. Therefore, these subgraphs 
are highly likely to be currently unknown true complexes.

We conducted gene ontology (GO) enrichment analysis for these predicted complexes by using BINGO51. 
YeastComplex-1 is a sparse subgraph (density 0.4) in the Krogan core PPI network. All the 11 proteins of 
YeastComplex-1 are enriched in 13 GO terms that are mostly related to translation, macromolecule biosyn-
thetic process, protein metabolic process, gene expression, biosynthetic process, or metabolic process (with a 

Figure 5.  Four examples of complexes identified by ClusterEPs. 
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p-value <  8.1*10−3). All the 10 genes in YeastComplex-2 are enriched in 56 GO terms that are mostly related 
to histone deacetylation, protein amino acid deacetylation, positive regulation of transcription, positive regu-
lation of metabolic process, positive regulation of biosynthetic process, negative regulation of cellular process, 
or post-translation protein modification (with a p-value <  7.891*10−3). All the 16 proteins in YeastComplex-3 
are enriched in 19 GO terms that are mostly related to transcription from RNA polymerase III promoter, RNA 
biosynthetic process, RNA metabolic process, or biosynthetic process (with a p-value <  9.076*10−4). All the 9 
proteins in HumanComplex-1 are enriched in 32 GO terms that are mostly related to positive regulation of tran-
scription, positive regulation of RNA metabolic process, positive regulation of gene expression, positive regula-
tion of metabolic process, positive regulation of biological process, regulation of biosynthetic process, regulation 
of metabolic process, regulation of cellular process, and biological regulation (with a p-value <  1.489*10−3).

These GO analysis results suggest that the proteins in each of these subgraphs are strongly correlated with each 
other in terms of the enriched GO terms. These subgraphs represent biologically interpretable complexes that 
are currently not characterized but are worth further experimental investigations. Supplementary Tables 32–35 
provide detailed results of these gene ontology enrichment analysis.

Functional information of proteins such as biological processes, molecular functions and cellular compo-
nents are useful to decide whether two proteins should be classified into or not into the same complex9. As 
proposed by9,22, proteins similar in specific subsets of these three functional categories should be considerably 
more preferred than those where proteins are not similar. There are a total of 55 protein pairs in YeastComplex-1. 
Surprisingly, the cellular component score of every protein pairs in this sugraph achieved the maximum value of 
1.0. Biological process scores of 62% (28/45) protein pairs in YeastComplex-2 achieved the maximum value of 
1.0. Biological process scores of 87.5% (105/120) protein pairs in YeastComplex-3 achieved the maximum value 
of 1.0. Molecular function scores of 55.6% (20/36) protein pairs in HumanComplex-1 achieved the maximum 
value of 1.0, and 13.9% (5/36) protein pairs in HumanComplex-1 had molecular function scores less than 1.0 but 
greater than 0.9. The functional information scores of the proteins in these identified subgraphs strongly indicate 
that these subgraphs are worth further experimental investigations for complex verification.

A very recent study8 shows that a protein complex is associated with a disease phenotype if one or more 
of its protein elements are associated with the disease phenotype. With this hypothesis, we can infer that 
HumanComplex-1 is a disease-protein complex, because SMAD4, MITF, SMAD3, EP300 and CTNNB1 of this 
subgraph are all known disease genes. For example, Juvenile polyposis syndrome[MIM:174900], Pancreatic can-
cer (PNCA) [MIM:260350], syndrome phenotype consisting of the coexistence of juvenile polyposis (JIP) and 
hereditary hemorrhagic telangiectasia (HHT) [MIM:187300], Colorectal cancer (CRC) [MIM:114500], Myhre 
syndrome (MYHRS) [MIM:139210], and Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome 
(JP/HHT) [MIM:175050] are all caused by mutations in SMAD4 [UniProt: Q13485]. Waardenburg syndrome 
2A (WS2A) [MIM:193510], Waardenburg syndrome 2, with ocular albinism, autosomal recessive (WS2-OA) 
[MIM:103470], Tietz syndrome (TIETZS) [MIM:103500], Melanoma, cutaneous malignant 8 (CMM8) 
[MIM:614456] are all caused by mutations in MITF [UniProt: O75030]. Colorectal cancer (CRC) [MIM:114500] 
and Loeys-Dietz syndrome 3 (LDS3) [MIM:613795] are both caused by mutations in SMAD3 [UniProt: P84022]. 
Rubinstein-Taybi syndrome 2 (RSTS2) [MIM:613684] is caused by a mutation in EP300 [UniProt: Q09472]. 
Pilomatrixoma (PTR) [MIM:132600], Medulloblastoma (MDB) [MIM:155255], Colorectal cancer (CRC) 
[MIM:114500], Ovarian cancer (OC) [MIM:167000], Mesothelioma, malignant (MESOM) [MIM:156240], 
and Mental retardation, autosomal dominant 19 (MRD19) [MIM:615075] are all caused by mutations in 
CTNNB1[UniProt:P35222].

For the other proteins in HumanComplex-1, their functional analysis and results are even more interesting. 
As discussed by52, even if two protein sequences do not share significant sequence identity but share a functional 
domain, then mutations may disrupt the same process of them and thereby lead to similar phenotypes. SMAD2, 
SMAD4 and SMAD3 have MH1 and MH2 domains in common [PFAM: PF03165, PF03166]. TFE3 and MITF 
have DUF3371 and HLH domains in common [PFAM: PF11851, PF00010]. Moreover, SMAD2 and SMAD4 
are 77% identical at sequence level, TFE3 and MITF are 77% identical at sequence level. Therefore, we can infer 
that SMAD2 may have similar disease phenotypes as SMAD4 and SMAD3, and TFE3 may have similar disease 
phenotypes as MITF.

Discussion
Due to the fact that gold standard protein complex sets are incomplete53, random subgraphs may contain some 
unknown complexes, although the probability is extremely low. Here unknown complexes mean true complexes 
but they are not discovered by the research community. ClusterEPs is developed based on the knowledge of true 
complexes. These unknown complexes that were treated as negative samples in the current work might have an 
effect on the performance of ClusterEPs. With the increasing availability of true complexes discovered, it is likely 
to achieve a better performance of ClusterEPs (Supplementary Discussion). In our future work, we will consider 
exploring positive-unlabeled (PU) learning algorithms54,55 to achieve a better optimization of the complex search 
process to further enhance the performance and quality of our method.

There remain significant challenges for the detection of human complexes from human PPI networks for the 
following reasons and facts:

1.	 Human PPIs are more noisy and less complete than yeast PPIs. The most recent version of HPRD (Release 9)  
has collected 39240 interactions, containing a high proportion of human PPIs that are present in other data-
bases41, and it includes all human disease-associated genes listed in OMIM. HPRD contains 84.7%  
(1562 of 1843) human complexes in the47(CORUM) database, and 3.7% (23 of 622) human soluble protein 
complexes (HSPC)56. HSPC complexes were not used as a test set to evaluate the predicted complexes in 
our experiments, because a large percentage of HSPC complexes (96.3%) were not included in human PPIs. 
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However, the yeast PPIs curated by BioGRID contain 96.4% (188 of 195) yeast complexes in MIPS, and 
99.7% (322 of 323) yeast complexes in SGD. These facts highlight that human PPIs are actually more noisy 
and less complete than yeast PPIs.

2.	 Human PPIs contain a larger number of small complexes compared with yeast PPIs. The CORUM database 
contains 72.3% (1333 of 1843) of small human complexes (less than five proteins each). HSPC contains 
64.3% (400 of 622) of small human complexes. However, MIPS contains 34.9% (68 of 195) of yeast com-
plexes, while SGD contains 61.6% (199 of 323) of yeast complexes. As aforementioned, small complexes are 
more susceptible to noise (missing or spurious interactions), and accordingly it is a big challenge to detect 
small complexes accurately.

3.	 Some human complexes are very big. The maximum size (number of proteins in a complex) of human 
complexes in CORUM is 142, and the number is 105 in HSPC. However, the maximum size of yeast com-
plexes in MIPS is 95, and it is 55 in SGD. These complexes consist of some small complexes, so it is difficult 
to recover these complexes.

4.	 There are many paralogous proteins that have similar and overlapping functions with human PPIs. For 
example, the proteins AKT1, AKT2 and AKT3 are present in human PPIs, but yeast PPIs have only one 
AKT. These paralogous proteins have similar and overlapping functions and are involved in multiple com-
plexes. Thus, it remains a big challenge using the sequence or functional information only to identify which 
protein belongs to which complex.

5.	 There are many proteins that match many UniProtKB human IDs in human PPIs. For example, the 
UniProtKB human IDs of the protein HLA-A include P30443, P01892, P04439, P13746, P30447, P05534, 
P18462, P30450, P30512 and P16188. However, yeast proteins have unique SGD gene IDs. Thus, it remains 
another difficult challenge as to how to filter out false interactions in order to improve the quality of pre-
dicted human PPIs.

ClusterONE16 is an unsupervised clustering methods with a better performance than other unsupervised 
clustering methods. Our ClusterEPs is a supervised learning methods developed based on the knowledge of true 
protein complexes. When using true yeast complexes to construct the prediction model to detect human com-
plexes from human PPI networks, ClusterEPs achieved a better performance than ClusterONE. This indicates 
that human complexes have similar topologies as yeast complexes. Thus, this represents an alternative strategy to 
research human complexes using yeast complexes topologies.

Methods
A PPI network G is modeled by an undirected graph = ( , )G V E , where V denotes the set of proteins and E 
denotes the set of protein interactions. The degree of v ∈  V is defined as the number of its direct neighbors. Let 
C =  (Vc, Ec) be a subgraph in the PPI network. The average degree avedeg(C) of C is given by

( ) = × / ( )avedeg C E V2 1c c

where |Ec| denotes the number of edges in Ec and |Vc| denotes the number of vertices in C. The density den(C) of 
C is given by

( ) = × /( × ( − )) ( )den C E V V2 1 2c c c

The neighboring nodes of C in G is defined as

( , ) = ( , ) ∈ , ∈ , ∉ , ∈ ( )GN C v w v E v V v V w V{ } 3c c

The three major steps of ClusterEPs: Step 1 uses a feature vector to represent the positive class of data (the true 
complexes) and the negative class of data (the random subgraphs); Step 2 discovers EPs that can distinguish the 
properties between the complex class and the random subgraph class; Step 3 uses an EP-based scoring method to 
discover currently unknown protein complexes or re-discover currently known complexes.

Feature vector representation for true complexes and random PPI subgraphs.  Given a subgraph 
C of a PPI graph G, we convert some properties of C into a feature vector. This feature vector consists of 22 fea-
tures. Feature-1 is named Node Size (the number of nodes in the subgraph C); Feature-2 is named Graph Density 
(the density of the subgraph C). The remaining 20 features are organised into six groups: Degree Statistics, Degree 
Correlation Statistics, Clustering Coefficient Statistics, Topological Coefficients, First Eigenvalues, and Protein 
Weight/Size Statistics. (See Supplementary Table 1 for details).

For each protein complex subgraph of G, mapped from the gold standard MIPS database or the SGD database, 
we calculate the values of the 22 features for this subgraph, and represent them as a vector (i.e. a set of feature 
values). This vector is an instance in the positive class.

To construct a negative dataset, we generate complex-unlikely subgraphs by randomly selecting nodes in the 
input PPI network, with the number of generated random subgraphs 20 times the true complexes. The size dis-
tribution of true complexes in MIPS, SGD or TAP06 is distributed as a power law. In line with other supervised 
learning methods, we generated non-complexes subgraphs following the same power law distribution. More 
details can be found in the size distribution of the non-complexes subgraphs of the Supplementary file. We then 
calculate all the feature values for each random subgraph to be an instance in the negative class.

We use Dp and Dn to denote the positive and negative class, respectively, and use D to denote ∪D Dp n.
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Discovery of emerging patterns.  For the dataset D derived from the input PPI network, a discretization 
method in the WEKA package57 is used to uniformly discretize each feature into 10 equal width bins. A bin of 
each feature is called an item of the feature. A set of items from different features is called an itemset (pattern).

This work focuses on a special type of EPs called noise-tolerant EPs.

Definition 158 Give two support thresholds δ1 >  0 and δ2 >  0, δ2 > >  δ1, a noise-tolerant emerging pattern (NEP) 
from D1 to D2 is an itemset X that satisfies the following conditions:

1.	 δ( ) ≤supp XD 11
 and δ( ) ≥supp XD 22

; 
2.	 any proper subset of X does not satisfy condition 1. 

where ( )supp XD1
 represents the occurrence frequency of X in dataset D1. ( )supp XD2

 is similarly defined.
NEPs have strong predictive power and noise tolerance. An NEP from D1 to D2 is simply called an NEP of D2. 

The contrast pattern tree algorithm59 is modified to discover NEPs from the discretized D.

Searching for new protein complexes.  For a PPI network G, we use EP(D) to denote the set of NEPs 
discovered from D (namely, NEPs of Dp and NEPs of Dn). Assuming G is a subgraph of G, we use Ins(G) to denote 
the feature vector comprising of the 22 discretized feature values of G. An aggregate score for G in terms of Dp is 
defined as

∑( , ) = ( )
( )∈ ( ), ⊆ ( )

score G D supp e
4

p
e EP D e Ins G

D p

where e  Ins(G) means e is contained by Ins(G). Similarly, an aggregate score for G in terms of Dn is defined as

∑( , ) = ( )
( )∈ ( ), ⊆ ( )

score G D supp e
5

n
e EP D e Ins G

Dn

To label the subgraph G, score(G, Dp) favors a positive label. The larger score(G, Dp) is, the more likely G 
belongs to the class of true complexes. On the other hand, score(G, Dn) favors a negative label for G. The number 
of NEPs for the two classes can greatly affect the final decision. If Dp has many more NEPs than Dn, score(G, Dp) 
would be often larger than score(G, Dn), even when G actually belongs to the negative class. Therefore, we normal-
ize the two scores for making a fair decision.

For each instance of Dp, we calculate the score using Equation 4. Then we choose the median value of the |Dp| 
number of scores as a base score for Dp, denoted by base_score(Dp). The normalized score for G in terms of Dp is 
given by

_ ( , ) = ( , )/ _ ( ) ( )norm score G D score G D base score D 6p p p

The base score for Dn, base_score(G, Dn), can be similarly defined, which is given by

_ ( , ) = ( , )/ _ ( ) ( )norm score G D score G D base score D 7n n n

A clustering score for G is defined as

( ) =
_ ( , )

_ ( , ) + _ ( , ) ( )
f G

norm score G D
norm score G D norm score G D 8

p

p n

f(G) >  1/2 means norm_score(G, Dp) >  norm_score(G, Dn); it implies that G matches more properties of cur-
rently known complexes. f(G) =  1 means norm_score(G, Dn) =  0; it implies that G does not match any property of 
the random subgraphs. Thus, a larger f(G) suggests that G is more likely to be a protein complex.

We search for those subgraphs G in G that have a high f(G). As the number of possible subgraphs in G is expo-
nential, we use a heuristic method to identify good candidates for those subgraphs that are likely to be protein 
complexes.

Using this heuristic method, we first select a seed protein as the starting cluster, and then add proteins 
one-by-one from its neighbor nodes to grow the cluster. More specifically, we select the protein with the highest 
degree as the first seed protein from the input PPI network G. When the cluster grows into a protein complex, the 
growth process finishes for the current seed protein. We then select the next seed protein with the highest degree 
from the set of proteins that have not occurred in any of the protein complexes found so far. The search algorithm 
terminates when each protein in G has occurred at least once in the protein complexes found.

The steps of the heuristic search are detailed below. Suppose the search starts from v0. Step 1: Denote the initial 
cluster as C =  {v0}; Step 2: Compute f(C) and avedeg(C). Let V =  C; Step 3: For each vertex v in its neighborhood 
( , )GN C  (i.e., Eqn (3)), let edgeNum(v,C) denote the number of edges that connect v to the nodes of C. We select 

the vertex v with the maximum value of edgeNum(v,C), and then let ∪′ =C C v{ }. If f(C′ ) ≥  f(C) and avede-
g(C′ ) >  avedeg(C) then let C =  C′ . Step 4: If C ≠ V, go back to Step 2. Otherwise, if f(C) >  1/2, then a subgraph C is 
constructed which is predicted to be a true complex.

We note that the search process uses v to expand the current subgraph C under the two strong conditions: 
∪( ) ≥ ( )f C v f C{ }  and ∪( ) > ( )avedeg C v avedeg C{ } . The first condition ensures that a subgraph should grow 
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into a protein complex (i.e., f(G) >  0.5), while the second condition guarantees that a protein complex should have 
the highest average degree compared with all its ancestor subgraphs.

As proposed by16, we also merge two subgraphs found above if they are highly overlapping. Suppose C1 and C2 
are two clusters, the overlapping score ω11 between C1 and C2 is defined as

∩ω ( , ) =
× ( )

C C
C C
C C 91 2

1 2
2

1 2

when ω(C1, C2) meets a certain threshold, then they will be merged as a subgraph ∪= ( , )( , ) ( , )C V V EC C1 2 1 21 2
, 

where ∪ ∪= ( , )|( , ) ∈ , ∈ , ∈( , )E c c c c E c V V c V V{ }C C C C1 2 1 2 1 2 1 21 2 1 2
.

Benchmark datasets and performance evaluation measures.  The DIP database33 has been widely 
used by supervised learning methods of protein complex detection. The most recent version of DIP PPI networks 
(1 July 2015) contains 22895 interactions. After removing self-interactions, the resulting DIP network contains 
22277 interactions and 4931 proteins. MIPS23 and TAP0636 are usually used by the supervised learning methods 
as the positive training set and test set. MIPS contains 103 complexes and TAP06 contains 491 complexes, respec-
tively. Actually, TAP06 is the core set of protein complexes from a TAP-MS experiment.

We used five large-scale yeast PPI datasets to compare the performance of our methods with unsupervised 
clustering methods. These five PPI datasets are: the Gavin dataset36, the Krogan core dataset38, the Krogan 
extended dataset38, the Collins dataset28, and BioGRID39. MIPS23 and SGD34, as two reference complex sets, were 
used to compare the quality of predicted complexes. These five PPI datasets and two reference complex sets 
have been used by ClusterONE16 to assess the performance of eight unsupervised clustering methods. Refer to 
Supplementary Tables 2–3 for details of these datasets.

We used the above six yeast PPI datasets as the training data to detect human complexes from human PPI 
networks. The Human Protein Reference Database (HPRD)40 has been widely used by the research community. 
HPRD (Release 9) has collected 39240 interactions, containing a high proportion of human PPIs that are pres-
ent in other literature databases41. We removed self-interactions from HPRD, and the resulting HPRD network 
contains 37080 interactions and 9465 proteins. We used 1843 human protein complexes from the database of the 
comprehensive resource of mammalian protein complexes47(CORUM) as gold standards.

Three independent quality measures are used to assess the performance of supervised learning methods, i.e. 
Precision, Recall and F1-measure. Let S denote the set of standard protein complexes (true complexes), and P 
denote the set of predicted protein complexes by a method. The set of true complexes detected by predicted 
complexes is defined as St =  {s | ω(s, p) ≥  0.25, s ∈  S, p ∈  P}, and the set of predicted complexes matching true com-
plexes is defined as Sp =  {p | ω(s, p) ≥  0.25, s ∈  S, p ∈  P}. Precision and Recall are then given by |Sp|/|P| and |St|/|S|, 
respectively, where |S| and |P| denotes the numbers of standard complexes and predicted complexes, respectively. 
The F1-measure is defined as 2 * |Sp|/|St|.

Recall measures the fraction of true complexes matched by at least one predicted complex. It is also denoted 
as the fraction of matched complexes in the literature16. In this work, we use “Frac” and “Recall” interchangeably 
to represent the fraction of matched complexes.

A predicted complex and a gold standard one are often matched in part. A gold standard complex may match 
with more than one predicted complexes, and vice versa. These facts make the comparison difficult16. To address 
this problem, Nepusz et al. proposed a measure based on the maximum matching ratio (MMR), which is based 
on the maximal one-to-one mapping between predicted and the standard complexes16. MMR builds on a bipartite 
graph, in which each node represents a standard protein complex or a predicted protein complex. A maximum 
matching ratio is calculated as follows:

1.	 For each standard protein complex s ∈  S and predicted protein complex candidate p ∈  P, if ω(s, p) >  0, then 
s and p are connected by an edge with the weight equal to ω(s, p).

2.	 A subset of edges subEdges is chosen from the bipartite graph such that these edges satisfy the two follow-
ing conditions:

(a)	 For each s ∈  S and p ∈  P, s and p are incident on at most one of the selected edges.
(b)	 The sum of the weights of the selected edges is maximal.
Then, the MMR between S and P is the sum of the weights of the selected edges in subEdges, divided by |S|.
Another independent measure is the geometric accuracy (Acc)35. Acc is the geometrical mean of the 

clustering-wise sensitivity Sen(S, P) and the clustering-wise positive predictive value PPV(S, P). Suppose S =  {s1, 
s2, ···, si, ···, sn} contains n standard protein complexes, and P =  {p1, p2, ···, pj, ···, pm} contains m predicted protein 
complexes, where si and pj respectively denotes the ith standard protein complex and the jth predicted protein com-
plex, respectively. Let T be a matrix with n rows and m columns, row i corresponds to si and column j corresponds 
to pj. Tij indicates the number of proteins found both in si and pj. Sen(S, P) is defined as

( , ) =
∑

∑ ( )
= =

=

Sen S P
T

s
max

10
i
n

j
m

ij

i
n

i

1 1

1

where, |si| is the number of proteins in the complex si. PPV(S, P) is given by
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( , ) =
∑

∑ ∑ ( )

= =

= =

PPV S P
T

T
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j
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i
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ij

1 1

1 1

Then,

( , ) = ( , ) × ( , ) ( )Acc S P Sen S P PPV S P 12
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