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Successful identification and targeting of oncogenic gene fusion is a major breakthrough in cancer treatment. Here, we investigate
the therapeutic implications and feasibility of using a targeted RNA sequencing panel to identify fusion genes in gastrointestinal
and rare cancers. From February through December 2017, patients with gastrointestinal, hepatobiliary, gynecologic, sarcoma, or
rare cancers were recruited for a clinical sequencing project at Samsung Medical Center (NCT #02593578). 'e median age of the
patients was 58 years (range, 31–81 years), and themale-to-female ratio was 1.3 :1. A total of 118 patients passed the quality control
process for a next-generation sequencing- (NGS-) based targeted sequencing assay.'e NGS-based targeted sequencing assay was
performed to detect gene fusions in 36–53 cancer-implicated genes. 'e following cancer types were included in this study: 28
colorectal cancers, 27 biliary tract cancers, 25 gastric cancers, 18 soft tissue sarcomas, 9 pancreatic cancers, 6 ovarian cancers, and 9
other rare cancers. Strong fusion was detected in 25 samples (21.2%).We found that 5.9% (7/118) of patients had known targetable
fusion genes involving NTRK1 (n � 3), FGFR (n � 3), and RET (n � 1), and 10.2% (12/118) of patients had potentially targetable
fusion genes involving RAF1 (n � 4), BRAF (n � 2), ALK (n � 2), ROS1 (n � 1), EGFR (n � 1), and CLDN18 (n � 2). 'us, we
successfully identified a substantial proportion of patients harboring fusion genes by RNA panel sequencing of gastrointestinal/
rare cancers. Targetable and potentially targetable involved fusion genes were NTRK1, RET, FGFR3, FGFR2, BRAF, RAF1, ALK,
ROS1, and CLDN18. Detection of fusion genes by RNA panel sequencing may be beneficial in refractory patients with gas-
trointestinal/rare cancers.

1. Introduction

Successful identification and targeting of oncogenic gene
fusion has been one of the major breakthroughs in cancer
treatment in recent decades [1–3]. Generally, the prevalence
of gene fusion is lower than that of oncogenic somatic
mutations in solid cancers. However, techniques for fusion
detection revealed that up to 17% of solid cancers harbored
at least one gene fusion [3]. Oncogenic gene fusions fre-
quently involve tyrosine kinases and can cause constitutive

activation of tyrosine kinases, augmentation of downstream
survival signal, and progression of cancer. Remarkable
success has been achieved by targeting oncogenic gene fu-
sions including diverse tyrosine kinase inhibitors against
fusions involvingALK, ROS1, RET, FGFR1/2/3, andNTRK1/
2/3 in non-small-cell lung cancer and across a wide spectrum
of cancer types [4–7].

Gene fusions can be formed by various types of chro-
mosomal breakage and rejoining events, including trans-
locations, inversions, deletions, and duplications [1–3].
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Common methods for detecting fusions in the clinic include
break-apart fluorescence in situ hybridization (FISH), re-
verse transcription polymerase chain reaction (RT-PCR),
and next-generation sequencing (NGS) [1–3]. 'e first two
methods show high sensitivity for fusion detection but
typically test for a single fusion gene and cannot detect novel
fusion partners or complex structural rearrangements; they
are also less sensitive for detecting intrachromosomal fusion
genes. Whole genome sequencing (WGS) and whole tran-
scriptome sequencing (RNA sequencing) are two major
NGS technologies used for fusion gene detection [3]. WGS
provides the most comprehensive characterization of ge-
nomic alterations in cancer genomes. However, WGS re-
quires greater sequencing effort and intensive analysis.
Additionally, the significance of fusion genes discovered by
WGS must be re-evaluated to determine whether fusion
RNA transcripts are produced. RNA sequencing only se-
quences regions of the genome that are transcribed and
spliced into mature mRNA. 'us, RNA sequencing is less
costly and time-consuming and can detect multiple alter-
native fusion variants. Most recent studies that discovered
novel gene fusions have used RNA sequencing platforms.
Here, we investigated the therapeutic implications and
feasibility of using a targeted RNA sequencing panel to
identify fusion genes in gastrointestinal and rare cancers.

2. Materials and Methods

2.1. Patients. From February through December 2017, 122
patients with gastrointestinal, hepatobiliary, gynecologic,
sarcoma, or other rare cancers participated in the clinical
sequencing project for evaluation with the NGS-based tar-
geted sequencing assay (Archer® FusionPlex, ArcherDx,
Boulder, CO, USA) at Samsung Medical Center (NCT
#02593578). In brief, patients with metastatic solid cancers in
whom standard chemotherapy had failed or rare cancers who
were not treated by standard chemotherapy were enrolled in
the study. All patients signed informed consent forms to
participate in the study, and the study protocol was approved
by the institutional review board of Samsung Medical Center.

2.2. Targeted RNA Panel Sequencing. We used the NGS-
based targeted sequencing assay to detect gene fusion in
36–53 cancer-implicated genes (Archer® FusionPlex). An-
chored multiplex PCR was performed for targeted RNA
sequencing using the ArcherDx fusion assay (Archer®FusionPlex Comprehensive 'yroid & Lung (CTL) kit or
Solid Tumor kit). 'irty-six genes in the CTL kit and 53
genes in the solid tumor kit are listed in Supplementary
Tables 1 and 2. Formalin-fixed, paraffin-embedded tumor
samples were microdissected to enrich the sample to ≥20%
tumor nuclei, and total nucleic acid was extracted from the
FFPE patient sample using AllPrep DNA/RNA FFPE kit
according to the manufacturer’s recommended protocol
(Qiagen, Valencia, CA). First- and second-strand comple-
mentary DNA (cDNA) synthesis was performed. Unidi-
rectional gene-specific primers were used to enrich target
regions, followed by NGS with the Illumina MiSeq platform

(San Diego, CA, USA).'e produced libraries were analyzed
for the presence of relevant fusions. Reads matching a da-
tabase of known fusions and other oncogenic isoforms
(Quiver database, ArcherDx) as well as novel isoforms or
fusions with high reads (>10% of total reads) and high
confidence after bioinformatic filtering were analyzed.
Samples with <4,000 unique RNA reads were reported as
indeterminate and excluded from analysis. All analyzed
fusions were in-frame and predicted to have preserved ki-
nase domains. Fusions among the >11,000 fusions known to
be present in normal tissues were excluded [8]. 'e clinical
literature was reviewed to determine the therapeutic im-
plications of the identified fusions.

2.3. Fish. To validate the NTRK1 gene rearrangements by
FISH, we used the ZytoLight SPEC NTRK1 Dual Color

Table 1: Patient characteristics.

Variables
Total

N � 122
No %

Sex
Male 68 55.7
Female 54 44.3

Age, years
Median (range), years 58 (31–81)

Primary cancer site and histology
Colorectal cancer (ADC) 28 23.0
Biliary tract cancer (ADC) 27 22.1
Gastric cancer (ADC) 25 20.5
Soft tissue sarcoma 18 14.8
Pancreatic cancer 9 7.4
GY cancer (ADC) 9 7.4
Ovarian cancer 6 4.9
Uterine cervical cancer 1 0.8
Fallopian tube cancer 1 0.8

Skin cancer 3 2.5
Melanoma 1 0.8
Skin squamous cell carcinoma 1 0.8
Trichilemmal carcinoma 1 0.8

Adenoid cystic carcinoma 1 0.8
Hepatocellular carcinoma 1 0.8
Pseudomyxoma peritonei 1 0.8
Urachal cancer 1 0.8

Initial stage
Locoregional disease 67 54.9
Metastatic 55 45.1

Number of prior systemic treatment regimens
1 32 26.2
2 31 25.4
3 24 19.7
≥4 26 21.3

Site of distant metastasis
Liver 38 31.4
Peritoneal seeding 33 27.3
Lung 27 22.3
Lymph node 27 22.3
Bone 13 10.7
Ovary 9 7.4
Pleura 7 5.8
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Break Apart Probe (ZytoVision, Bremerhaven, Germany)
according to the operating instructions [9]. Using appro-
priate filter sets, the interphases of normal cells or cells
without a translocation involving the 1q23.1 band show two
green/orange fusion signals. A 1q23.1 locus affected by a
translocation is indicated by one separate green signal and
one separate orange signal. A threshold of 15% nuclei
positive for break apart signals was used to establish the
cutoff for positive FISH results.

3. Results

3.1.PatientCharacteristics. Patient characteristics are shown
in Table 1. Sixty-eight patients (55.7%) were male, and the
median age of the patients was 58 years (range, 31–81 years).
Patients included in this study had various types of cancer:
28 patients with colorectal cancer (CRC), 27 with biliary
tract cancer (BTC), 25 with gastric cancer (GC), 18 with soft
tissue sarcoma (STS), 9 with pancreatic cancer, 6 with
ovarian cancer, and 9 with other rare cancers. Fifty-eight
patients (45.1%) showed metastatic disease at initial pre-
sentation. 'e most common metastatic sites were as fol-
lows: liver (31.4%), peritoneal seeding (27.3%), lung (22.3%),

lymph node (22.3%), bone (10.7%), ovary (7.4%), and pleura
(5.8%).

3.2. Detection of Fusion Genes. Among the 122 cases, 118
cases (96.7%) passed the quality control process for the
NGS-based targeted sequencing assay. Overall, we observed
28 fusion events in 25 cases (21.2%, 25/118), and 3 cases
showed 2 types of fusion transcripts. Cancer types in which a
fusion was detected were CRC (n � 7), STS (n � 6), BTC
(n � 5), GC (n � 5), melanoma (n � 1), and pancreatic
cancer (n � 1). 'e detection rates of fusion genes were
25.0% in CRC (7/28), 33.3% in STS (6/18), 18.5% in BTC (5/
27), 20.0% in GC (5/25), 100% in melanoma (1/1), and 11.1%
in pancreatic cancer (1/9). No fusion genes were detected in
gynecologic cancers (0/9). Patient numbers, detailed de-
scriptions of the cancer types, histology, and identified fu-
sion genes are shown in Table 2.

Notably, known therapeutically targetable fusions were
identified in 7 cases (5.9%): two CRCs with TPM1-NTRK1
fusion, one STS with PEAR1-NTRK1 fusion, one CRC with
NCOA4-RET fusion, one GC and one BTC with FGFR3-
TACC3 fusion, and one BTC with FGFR2-NRAP fusion.

Table 2: Individual patients’ information and concomitant genomic alterations.

No Sex Age Cancer type Histology Strong fusion SNV/indel
1 M 48 CRC M/D ADC TPM3⟶NTRK1 KRAS G12V
2 F 74 CRC M/D ADC TPM3⟶NTRK1,
3 F 78 STS Angiosarcoma PEAR1⟶NTRK1
4 M 68 BTC M/D ADC FGFR3⟶TACC3,
5 M 58 GC M/D ADC FGFR3⟶TACC3,
6 F 53 CRC M/D ADC NCOA4⟶RET
7 F 32 GC P/D ADC INTERGENIC⟶CSMD1⟶RAF1
8 F 35 Melanoma Skin melanoma MAPRE2⟶RAF1

9 M 58 STS Retroperitoneal leiomyosarcoma IGH-AS⟶RAF1,
AXL⟶LOC440300

10 F 60 Pancreas
cancer M/D ADC IQSEC1⟶RAF1 KRAS G12D

11 M 56 CRC SRCC MAP7D1⟶EGFR
KRAS G13D
PIK3CA
H1047R

12 M 57 CRC W/D ADC LACE1⟶ROS1 KRAS G12A

13 M 80 BTC P/D ADC SP6⟶ALK,
THADA⟶VPS36

14 M 65 CRC W/D ADC AXL⟶ALK
15 M 66 GC P/D ADC AXL⟶ IGH-AS
16 M 56 BTC M/D ADC FGFR2⟶NRAP
17 M 56 GC SRCC CLDN18⟶ARHGAP26
18 M 47 GC P/D ADC CLDN18⟶ARHGAP26
19 M 67 BTC ADC BRAF⟶ INTERGENIC⟶PTMA

20 M 51 STS Extraskeletal myxoid
chondrosarcoma

EWSR1⟶NR4A3,
BRAF⟶UNALIGNED⟶ LOC100996643

21 M 50 STS Liver leiomyosarcoma CTBP2⟶NOTCH2
22 F 49 STS Uterine leiomyosarcoma ENO2⟶ETV4

23 M 56 STS Retroperitoneal
Malignant SFT GNA13⟶PRKCA

24 F 61 BTC P/D ADC LOC100506217⟶RELA
25 M 52 CRC M/D ADC ESR1⟶KIAA1731
CRC: colorectal cancer; GC: gastric cancer; BTC: biliary tract cancer; STS: soft tissue sarcoma; W/D ADC: well-differentiated adenocarcinoma; M/D ADC:
moderately differentiated adenocarcinoma; P/D ADC: poorly differentiated adenocarcinoma; SRCC: signet ring cell carcinoma.

Journal of Oncology 3



Additionally, potentially targetable fusions were found in 12
patients (10.2%). RAF1 fusion was detected in 4 cases (GC,
melanoma, STS, and pancreatic cancer), BRAF fusion in 2
cases (BTC and STS), ALK fusion in 2 cases (CRC and BTC),
ROS1 fusion in 1 case (CRC), and EGFR fusion in 1 case
(CRC) with diverse counterparts. CLDN18-ARHGAP26
fusion was detected in two cases of GC in this study (8%, 2/
25), which was recently reported and investigated in signet-
ring GC and diffuse-type GC [10, 11]. 'e detection rate of
fusion genes, targetable fusion genes, and potentially tar-
getable-involved fusion genes according to the cancer types
are illustrated in Figure 1.

3.3. STS with PEAR1-NTRK1 Fusion. A novel PEAR1-
NTRK1 fusion was detected in a 78-year-old female patient
with angiosarcoma. She initially presented with diffuse in-
filtrative skin lesion in the right lower leg in December 2016
and had been administered a palliative paclitaxel, pazopanib,
and ifosfamide-based combination. However, the patient
showed a refractory disease course. She also underwent
palliative radiotherapy to the right lower leg for wound
management. Based on the PEAR1-NTRK1 fusion detection
in this study, we performed immunohistochemical staining
and FISH. 'e patient showed strong positivity for TRK
immunohistochemical staining (Figure 2(a)), and NTRK1
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Figure 1: Detection rate of fusion genes and targetable fusion genes according to cancer types.
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Figure 2: (a) Positive immunohistochemical staining for TRK. (b) Positive FISH analysis for NTRK1 fusion. (c) PEAR-NTRK1 fusion
confirmed by NGS.
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fusion was confirmed by FISH analysis (Figure 2(b)). We
enrolled this patient in a phase I basket trial for treatment
with a TRK inhibitor. 'e tumor was confirmed by NGS to
harbor a novel PEAR1-NTRK1 fusion with the 5′ end of
NTRK1, including the kinase domain, starting at exon 9
fused to exon 15 of PEAR1 (Figure 2(c)). 'e primary lesion
in the right lower leg responded well to the TRK inhibitor
(Figure 3), but she died of sepsis due to wound infection
during the second cycle of treatment.

3.4. Melanoma with MAPRE2-RAF1 Fusion. A 35-year-old
female patient with melanoma showed MAPRE2-RAF1 fu-
sion. She had previously been treated by surgical resection of
the primary melanoma in the lower leg followed by ad-
ministration of adjuvant interferon therapy. She showed
lymph node, lung, liver, bone, and brain metastases and was
subsequently treated as follows: pembrolizumab, ipilimu-
mab, dacarbazine-based combination therapy, gamma knife
surgery, craniotomy, and tumor removal from the brain.
After immunotherapy and dacarbazine failed, she was en-
rolled in this study, and her primary resected tissues were
processed for sequencing. 'is study identified MAPRE2-
RAF1 fusion with exon 5 of MAPRE2 fused to exon 10 of
RAF1 (Figure 4), and she was administered vemurafenib for
1 month. Unfortunately, she showed progressive disease
during vemurafenib administration.

4. Discussion

Our study revealed that 21.2% (25/118) of patients with
gastrointestinal/rare cancers harbored at least one strong

fusion by using a targeted RNA sequencing panel. In terms
of gastrointestinal cancers including only CRC, GC, BTC,
and pancreatic cancer, we found that 20.2% (18/89) of pa-
tients harbored at least one fusion gene. Notably, we
identified 5.9% (7/118) patients with known targetable fu-
sion genes involvingNTRK1 (n � 3), FGFR (n � 3), and RET
(n � 1) and 10.2% (12/118) of patients with potentially
targetable fusion genes involving RAF1 (n � 4), BRAF
(n � 2), ALK (n � 2), ROS1 (n � 1), EGFR (n � 1), and
CLDN18 (n � 2).

'e first NTRK1-TPM3 fusion was identified in colon
cancer, and NTRK fusions have been identified in approx-
imately 1% of all solid cancers across diverse cancer types
[12, 13]. NTRK fusions are oncogenic drivers regardless of
the tissue of origin, and first-generation TRK tyrosine kinase
inhibitors (larotrectinib, entrectinib, or ropotrectinib) have
demonstrated very promising antitumor efficacies in both
adult and pediatric patients with NTRK fusion-positive
cancers [13–15]. Larotrectinib induced a 75% response rate
in TRK fusion-positive cancers, regardless of the tumor type,
and was recently approved by the U.S. Food and Drug
Administration for solid tumors with NTRK gene fusions
[6]. We successfully identified 3 NTRK fusion-positive pa-
tients. Subsequently, one patient with angiosarcoma (no. 3)
harboring PEAR1-NTRK1 fusion was enrolled in the clinical
trial of TRK inhibitor. Recently, the TRIDENT-1 trial
demonstrated 8 confirmed cases of partial remission in TKI-
naı̈ve or TKI-pretreated ROS1+ /NTRK+ patients at various
dose levels [16].

FGFR fusions with multiple partners have been de-
scribed in numerous cancer types. After the first report of
FGFR3-TACC3 fusion in glioblastoma, these fusions were

(a) (b) (c)

Figure 3: (a) Right lower leg lesion before treatment of TRK inhibitor. (b and c) Right lower leg lesion after 1 cycle of TRK inhibitor.

·············AGAAGAACACAGGCCTCGTG·············

1
Chr 18 Chr 3

MAPRE2-RAF1 mRNA
5 10 17

Figure 4: MAPRE2-RAF1 fusion confirmed by NGS.
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reported in numerous solid cancers, including urothelial
carcinoma, non-small-cell lung cancer, thyroid cancer, and
uterine cervical carcinoma. Notably, FGFR2 fusions are also
present in 13–17% of intrahepatic cholangiocarcinomas
[17–19]. A phase I trial of erdafitinib, an oral pan-fibroblast
growth factor receptor (FGFR) inhibitor, demonstrated that
urothelial carcinoma and cholangiocellular carcinoma were
most responsive to erdafitinib showing objective response
rates of 46.2% (12/26) and 27.3% (3/11), respectively, in
patients with FGFRmutations and fusions [20]. Other FGFR
inhibitors, such as BGJ398, showed an objective response
rate of 14.8% (18.8% FGFR2 fusions only) and disease
control rate of 75.4% (83.3% FGFR2 fusions only) in patients
with FGFR-altered advanced cholangiocarcinoma [21]. 'is
study successfully identified 3 patients with FGFR fusions (2
patients with FGFR3-TACC3 fusion (nos. 4 and 5) and 1
patient with FGFR2-NRAP fusion (no. 16)); importantly, 2 of
3 patients harboring FGFR fusion had BTC, which may be
responsive to erdafitinib or BGJ398 according to recent
reports [20, 21].

RET fusions have been described in up to one-third of
papillary thyroid cancers and in 2% of lung adenocarcinoma
cases; CCDC6-RET and NCOA4-RET are the most com-
monly identified RET fusions [22, 23]. In CRC, Le Rolle et al.
reported six RET fusion kinases among 3,117 advanced cases
(0.2%) through comprehensive genomic profiling and
identified NCOA4-RET fusion, which was consistent with
the result for the patient with CRC in this study (no. 6) [24].
A recent study comparing RET fusion-positive and RET
fusion-negative CRCs revealed that right-sided and MSI-
high tumors are more likely to have RET fusion, and RET
fusion is an independent poor prognostic factor in overall
survival [25]. Confirmed responses to multikinase inhibitors
with activity against RET, such as cabozantinib and van-
detanib, can be achieved in some patients with lung cancer
harboring RET-rearrangement or RET-mutation [26, 27].
Studies of RET-specific inhibitors such as BLU-667 have
begun to show promising responses in early-phase clinical
trials [6, 28].

RAF kinase fusions, such as of BRAF or RAF1 (also
known asCRAF), have been reported in various tumor types,
including prostate cancer, GC, melanoma, and papillary
thyroid cancer [1, 29]. RAF fusions activate the mitogen-
activated protein kinase pathway, and a few reports have
demonstrated the anticancer efficacy of MEK inhibitors in
RAF fusion-positive melanoma [30, 31]. However, a recent
report showed that existing RAF inhibitors cannot suppress
RAF1-fusion-driven signaling pathways, and our study also
showed that a melanoma patient harboring MAPRE2-RAF1
fusion did not respond to vemurafenib [32]. Novel ap-
proaches to RAF1-directed targeted therapy should be
explored.

Fusion between CLDN18, a tight junction gene, and
ARHGAP26, a gene encoding an RHOA inhibitor, was first
reported by the Cancer Genome Atlas to be enriched in the
genomically stable subtype of GC [33]. Yao et al. detected
CLDN18-ARHGAP26 fusion in 3% of Asian GCs, and cancer
cells transfected with this fusion showed reduced cell-cell

adhesion and augmented invasiveness [11]. Recently, a
Chinese group reported the largest dataset to date regarding
signet ring cell carcinoma of GC; 17% of all signet ring cell
carcinoma cases harbored this fusion gene and showed
resistance to chemotherapy and worse survival outcomes
[10]. Based on these results, CLDN18-ARHGAP26 fusion is
considered as a driver that contributes to aggressive tumor
behavior and is a strong candidate for targeted drugs.

Our results suggest that detection of fusion genes using a
targeted RNA sequencing panel can be beneficial for various
cancer subtypes, particularly CRC and BTC. In patients with
CRC, gene fusion is rarely observed, but recent studies
showed that a substantial proportion of patients with CRC
had potentially actionable gene rearrangements involving
ALK, ROS1, and NTRK [9, 34]. Interestingly, this study also
showed that 6 of 28 patients with CRC (21.4%) had tar-
getable or potentially targetable gene rearrangements such as
NTRK1 (n � 2), RET (n � 1),ALK (n � 1), ROS1 (n � 1), and
EGFR (n � 1) fusions. In patients with BTC, there are several
ongoing clinical trials targeting FGFR (NCT03230318,
NCT02052778, NCT01948297, NCT02924376, NCT022
65341), BRAF/MET (NCT02034110), and ALK/ROS1
(NCT02374489, NCT02034981, and NCT02568267). In this
study, we found that 4 of 27 patients with BTC (14.8%) had
targetable or potentially targetable gene rearrangements
such as FGFR3 (n � 1), FGFR2 (n � 1), BRAF (n � 1), and
ALK (n � 1) fusions. Unfortunately, patients with CRC and
BTC harboring targetable or potentially targetable fusion
genes in this study could not be administered targeted
therapy because they were ineligible or respective clinical
trials in Korea were not available.

5. Conclusions

In conclusion, we successfully identified a substantial pro-
portion of patients harboring targetable (5.9%) and po-
tentially targetable (10.2%) fusion genes by RNA panel
sequencing in gastrointestinal and rare cancers. Involved
fusion genes were NTRK1, RET, FGFR3, FGFR2, BRAF,
RAF1, ALK, ROS1, and CLDN18. We suggest that detection
of fusion genes by RNA panel sequencing can be beneficial in
refractory patients with gastrointestinal or rare cancers,
particularly in those with CRC and BTC.
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