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Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been
published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas-
matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures
and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence
and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati-
dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria
of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis
belonging to the family Heteropterygidae. We analyze the gene composition and the structure
of the three mitochondrial genomes. We recover the monophyly of Phasmatodea and show the
sister-group relationship between Phasmatodea and Mantophasmatodea after removal of the Em-
bioptera and Zoraptera species. We recover the monophyly of Heteropterygidae and the paraphyly
of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae.

Abstract: Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and
are best known for their remarkable camouflage as plants. In this study, we sequenced three complete
mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and
Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp,
and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were
identical to those of the most recent common ancestor of insects. The phylogenetic relationships
among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal
relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum
likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological
structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction
(LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea.
Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI
analyses with the remaining 81 species, which showed identical topology except for the position of
Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-
group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the
monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae,
Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp.
YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae.
Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae,
and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.
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1. Introduction

Stick and leaf insects (Phasmatodea) belong to an order of polyneopteran insects,
which includes over 3000 recognized species subdivided into approximately 500 genera,
distributed across major landmasses [1]. Phasmatodea are the longest insects among
extant species, mainly distributed in tropical and subtropical regions, with a few species
in temperate regions [2]. Phasmatodea are herbivorous insects and have a strong ability
to masquerade as bark, leaves, and twigs, which provide them with camouflage [3–5].
Consequently, it is difficult to explore the phylogenetic relationship of Phasmatodea by the
degree of convergence of morphology [6].

The phylogenetic relationship of Phasmatodea within Polyneoptera has been under
debate. Polyneoptera includes ten insect orders of Blattodea, Dermaptera, Embioptera,
Grylloblattodea, Mantodea, Mantophasmatodea, Orthoptera, Phasmatodea, Plecoptera,
and Zoraptera. Both morphological and molecular data highly support Embioptera as the
sister group of Phasmatodea [7–12]. Some studies showed that Phasmatodea formed a sister
group to the Mantophasmatodea [13–16], whereas other analyses alternately supported
a closer relationship between Phasmatodea and Orthoptera [8,17–19]. Moreover, recent
research based on mitochondrial genome data supported the idea that Phasmatodea had a
close relationship with Embioptera and Zoraptera [20–22].

The high-level phylogenetic relationships of Phasmatodea are currently not sufficiently
clear [23,24]. Several authors have suggested that Phasmatodea should be divided into two
suborders: Timematodea and Euphasmatodea (Verophasmatodea) [1,5,25,26]. The Euphas-
matodea includes thirteen families: Aschiphasmatidae, Damasippoididae, Prisopodidae,
Anisacanthidae, Bacillidae, Heteropterygidae, Phylliidae, Agathemeridae, Heteronemiidae,
Pseudophasmatidae, Diapheromeridae, Lonchodidae, and Phasmatidae [2]. However,
the wingless Nearctic walking-stick, Timema of family Timematidae, is the only genus
within the one family in Timematodea [27]. Neverthless, Simon et al. demonstrated a
basal dichotomy of Aschiphasmatodea and the Neophasmatodea in Euphasmatodea [28].
This result was also supported by Tihelka et al. [29]. The monophyly of Phasmatodea
remains in dispute because of the phylogenetic position of genus Timema. Most studies
based on morphology, transcriptome, and mitochondrial genome data have shown that the
monophyly of Phasmatodea can be confirmed, and Timema is recognized as the sister group
to all remaining phasmids [28,30–33]. Nevertheless, data on mitochondrial genomes con-
sidered that Timema did not belong to the Euphasmatodea, but grouped with other orders
(e.g., Orthoptera and Embioptera) [6,34]. This result coincided with the study about the
morphology of Timema species in egg that indicated that Timema was a separate lineage [35].
Based on 16S, 12S RNA genes, and protein codon genes, Song et al. [22] constructed nine
phylogenetic trees, and eight of these failed to recover the monophyly of Phasmatodea
because the clade of Embioptera and Zoraptera that existed in long-branch attraction (LBA)
was a sister group to Euphasmatodea, whereas only one phylogenetic tree supported the
monophyly of Phasmatodea, as found in Song et al. [36]. In many phylogenetic analyses,
especially those based on mitochondrial genomes, biases associated with LBA have been
found [37].

Insect mitochondrial genomes normally have 37 genes (thirteen protein-coding genes,
two ribosomal RNAs, and 22 transfer RNA genes) and a control region (CR) and are usually
a 14–20 kb double-stranded circular molecule [38]. The mitochondrial genome has been
widely used for phylogenetic analyses due to its simple and stable gene organization,
lack of genetic recombination, and fast evolution rate, etc. [21,39–41]. Many researchers
have discussed the phylogenetic relationships among insect orders using mitochondrial
genomes, such as Diptera [42], Orthoptera [43], Hymenoptera [44], and Coleoptera [45].
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Hence, the mitochondrial genome of stick insects was used for phylogenetic analysis in
this study.

At present, 27 complete mitochondrial genomes of Phasmatodea have been published
in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas-
matodea, we sequenced and annotated three complete mitochondrial genomes from Orestes
guangxiensis (Bi & Li, 1994) (Heteropterygidae), Phryganistria guangxiensis Chen & He, 2008
(Phasmatidae), and Peruphasma schultei Conle & Hennemann, 2005 (Pseudophasmatidae).
This included the first acquired complete mitochondrial genome from the Pseudophasmati-
dae and the first reported mitochondrial genome of Phryganistria (Phasmatidae). Moreover,
we analyzed the gene composition and the structure of the three mitochondrial genomes.

2. Materials and Methods
2.1. Sampling Collection and DNA Extraction

Orestes guangxiensis and Ph. guangxiensis were collected from Jinxiu, Guangxi province,
China, whereas Pe. schultei was retrieved from an insect pet market in China, the source
area being Northern Peru. According to their morphological characters, these specimens
were identified by JY Zhang and stored at −40°C in the Zhang laboratory, College of Life
Sciences and Chemistry, Zhejiang Normal University, China. Total DNA was extracted
from a piece of foreleg muscle using a Universal Genomic DNA Kit (Co Win Biosciences
Company, Beijing, China).

2.2. PCR Amplification and Sequencing

The DNA from each of the three species was amplified using eight pairs of universal
primers, as described in Zhang et al. [46], but there were still some vacancies. We then used
Primer Premier 5.0 to design species-specific primers based on known sequences from
universal primers [47] (Table S1) and used normal PCR (product length <3000 bp) as well as
long PCR (product length >3000 bp) methods for amplification [46]. Takara Taq polymerase
and Takara LATaq DNA polymerase were used, respectively (Takara, Dalian, China), in
a 50 µL reaction volume. Reaction systems and cycling conditions for normal PCR and
long PCR were as described in Zhang et al. [46]. All PCR products were sequenced in both
directions using the primer-walking method and ABI3730XL by Sangon Biotech Company
(Shanghai, China).

2.3. Mitochondrial Genome Annotation and Sequence Analyses

The fragments obtained by Sanger dideoxy sequencing were assembled with DNAS-
TAR Package v.7.1 [48]. The tRNA genes were identified using the MITOS web server
(http://mitos.bioinf.uni-leipzig.de/index.py (accessed on 15 July 2021)) [49]. Based on
the homologous sequences of mitochondrial genomes from other stick insect species, we
used Clustal X [50] to determine the two rRNA genes (12S and 16S rRNA). The remaining
13 protein-coding genes were analyzed using Mega 7.0 [51] to translate amino acids using
the invertebrate mitochondrial genetic code and find open reading frames [52]. The AT
content, codon usage, and relative synonymous codon usage (RSCU) of protein-coding
genes were calculated by PhyloSuite 1.2.2 [53]. GC and AT skews were calculated according
to the formula: AT skew = (A − T)/(A + T), GC skew = (G − C)/(G + C) [54].

2.4. Phylogenetic Analyses

To illuminate the phylogenetic relationships of Phasmatodea, we first performed max-
imum likelihood (ML) and Bayesian inference (BI) analyses based on data from 85 species,
including the three newly determined sequences, sixty-five previously sequenced mito-
chondrial genomes, and 13 PCGs of seventeen species of Phasmatodea assembled from
transcriptome data [14,33,34,36,55–77] (Table 1, Table 2 and Table S2). Long-branch attrac-
tion between Embioptera and Zoraptera appeared in both ML and BI phylogenetic trees
and affected the stability of the topology. This phenomenon probably occurred because of
phylogenetic artifacts generated by the mitochondrial genome [78]. For LBA, the following

http://mitos.bioinf.uni-leipzig.de/index.py
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measures are recommended: increasing samples [79]; removing long-branch groups [80];
or removing sites with rapid evolutionary rates [81]. Adding sequences was not feasi-
ble because all current mitochondrial genome sequences of Embioptera and Zoraptera
were used in this study. Then, we attempted to remove sites with fast evolutionary rates,
but nevertheless, the results were not very reliable. Therefore, we reconstructed BI and
ML phylogenetic trees with 13 concatenated PCG sequences of 81 species after removing
representative species of Embioptera and Zoraptera. Three species of Archaeognatha,
Nesomachilis australica, Pedetontus silvestrii, and Trigoniophthalmus alternatus were used as
outgroups (Table 2). We aligned each of the 13 protein-coding genes using Clustal W
in the program Mega 7.0 [51] and used the program Gblock 0.91b to identify conserved
regions [82]. The resulting alignments were concatenated with Geneious 8.1.6 [83]. Because
the third codon positions had saturated by DAMBE 4.2.13 [84], we used the Bayesian infer-
ence (BI) and maximum likelihood (ML) methods with the first and second codon datasets
to analyze the phylogenetic relationships. ML analysis was implemented by IQ-TREE
v.2.1.2 with the best model GTR + I + G that was acquired by ModelFinder [85,86]. BI
analysis was carried out by MrBayes 3.2 with GTR + I + G [87] and was set for 10 million
generations with sampling every 1000 generations, and the first 25% of generations were
discarded as burn-in.

Table 1. Species of Phasmatodea used to construct the phylogenetic relationships along with GenBank accession numbers.

Family Subfamily Species Length Accession no. Reference

Phylliidae Phylliinae Cryptophyllium tibetense 18,248 bp KX091862 Directly Submitted
[88]

Pulchriphyllium giganteum 13,980 bp AB477461 [6,88]
Cryptophyllium westwoodii 17,222 bp MW229063 [88,89]

Timematidae Timematinae Timema californicum 14,387 bp DQ241799 [14]
Bacillidae Bacillinae Bacillus rossius 14,152 bp GU001956 [15]

Bacillus atticus 14,141 bp GU001955 [15]
Heteropterygidae Dataminae Orestes mouhotii 16,223 bp AB477462 [6]

Orestes guangxiensis 16,869 bp MW450873 This study
Heteropteryginae Heteropteryx dilatata 16,618 bp AB477468 [6]

Phasmatidae Megacraniinae Megacrania alpheus 17,124 bp AB477471 [6]
Extatosomatinae Extatosoma tiaratum 16,537 bp AB642680 [6]
Clitumninae Entoria nuda 16,910 bp AB477459 [6]

Phobaeticus serratipes 16,182 bp AB477467 [6]
Ramulus hainanense 15,590 bp FJ156750 Directly Submitted
Ramulus mikado 16,633 bp AB477463 [6]
Phryganistria guangxiensis 17,005 bp MW450875 This study
Pharnaciini sp. NS-2020 15,192 bp MT025193 [22]

Phasmatinae Dryococelus australis 16,604 bp AP018522 [90]
Lonchodidae Lonchodinae Phraortes elongatus 16,456 bp AB477460 [6]

Megalophasma granulatum 15,275 bp KY124331 [91]
Phraortes sp. Miyako
Island 14,913 bp AB477465 [6]

Phraortes sp. Iriomote
Island 16,867 bp AB477464 [6]

Phraortes sp. 1 NS-2020 14,207 bp MT025191 [22]
Eurycantha calcarata 16,280 bp MW915467 Directly Submitted

Necrosciinae Micadina phluctainoides 16,507 bp AB477466 [6]
Sipyloidea sipylus 17,001 bp AB477470 [6]
Calvisia medogensis 16,107 bp KY124330 [91]
Neohirasea japonica 15,305 bp AB477469 [6]
Micadina brachyptera 15,879 bp MT025192 [22]

Pseudophasmatidae Pseudophasmatinae Peruphasma schultei 15,896 bp MW450874 This study
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Table 2. Species of other insects (excluding species of Phasmatodea) used to construct the phylogenetic relationships along
with GenBank accession numbers.

Order Species GenBank No. References

Archaeognatha Nesomachilis australica AY793551 [55]
Pedetontus silvestrii EU621793 [56]
Trigoniophthalmus alternatus EU016193 [57]

Zygentoma Tricholepidion gertschi AY191994 [58]
Atelura formicaria EU084035 [59]
Thermobia domestica AY639935 [60]

Odonata Davidius lunatus EU591677 Directly Submitted
Somatochlora hineana MG594801 Directly Submitted
Brachythemis contaminata KM658172 [61]

Ephemeroptera Siphluriscus chinensis HQ875717 [62]
Isonychia ignota HM143892 Directly Submitted
Paegniodes cupulatus HM004123 Directly Submitted
Serratella zapekinae MT274130 [63]
Parafronurus youi EU349015 [64]
Caenis sp. JYZ-2018 MG910499 [65]
Epeorus sp. JZ-2014 KJ493406 Directly Submitted
Epeorus sp. MT-2014 KM244708 [66]

Plecoptera Pteronarcys princeps AY687866 [67]
Acroneuria hainana KM199685 [68]
Isoperla bilineata MF716959 [69]

Orthoptera Locusta migratoria X80245 [77]
Gastrimargus marmoratus EU513373 [70]
Oedaleus decorus asiaticus EU513374 [70]

Grylloblattodea Grylloblatta sculleni DQ241796 [14]
Mantophasmatodea Sclerophasma paresisensis DQ241798 [14]
Mantodea Paratoxodera polyacantha MG049920 Directly Submitted

Mantis religiosa MN356097 [71]
Pliacanthopus bimaculatus MT679725 [72]

Embioptera Aposthonia japonica AB639034 [34]
Aposthonia borneensis KX091848 Directly Submitted
Eosembia sp. FS-2017 KX091852 Directly Submitted

Blattodea Cryptotermes declivis MK599465 [73]
Coptotermes formosanus AB626147 [74]
Macrotermes subhyalinus JX144937 [75]

Zoraptera Zorotypus medoensis JQ910991 Directly Submitted
Dermaptera Challia fletcheri JN651407 [76]

Euborellia arcanum KX673196 [36]
Eudohrnia metallica KX091853 [36]

3. Results and Discussion
3.1. Mitochondrial Genome Organization and Composition

The lengths of the three complete mitochondrial genomes of O. guangxiensis, Pe. schul-
tei, and Ph. guangxiensis were 16,869 bp, 15,896 bp, and 17,005 bp, respectively (Figure 1).
All three genomes were deposited in GenBank, with accession numbers MW450873,
MW450874, and MW450875, respectively. Mitochondrial genomes of the three species
had the same genes and gene order as those of other published stick insects, which have
37 genes, including 13 PCGs, 22 tRNA genes, and two rRNA genes. Currently, the gene ar-
rangement of published stick insects is similar to the assumed common ancestor of insects,
except for Ramulus hainanense (CR-trnM-trnQ-trnI-CR-trnI-trnQ-trnM) and Megalophasma
granulatum (trnR-trnA) [6,14,15,22,30,89–91]. According to the previously published com-
plete mitochondrial genomes of stick and leaf insects, we found that the differing lengths
of the Phasmatodea genomes (15,590–18,248 bp) were caused mainly by the size of the
A + T-rich region, gene overlaps, and different intergenic nucleotides (IGNs). The sequence
length of Pe. schultei (15,896 bp), with a short A + T-rich region (<1500 bp), was the shortest
after that of R. hainanense (15,590 bp). The three species have short intergenic regions
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ranging from 1 to 18 bp. The whole mitochondrial genome of Ph. guangxiensis, which
contained additional IGNs (136 bp), was longer than that of O. guangxiensis (Tables S3–S5).
The nucleotide composition of the O. guangxiensis, Pe. schultei, and Ph. guangxiensis mi-
tochondrial genomes had a high A + T bias of 75.6%, 76.6%, and 76.8%, respectively. All
three species showed a positive AT skew and negative GC skew (Table 3). The content of
A was more than T, and the content of C was higher than G, which also occurred in the
sequences of previously studied stick insects (Table S6) [6,14,15,22,30,89–91].
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Figure 1. Mitochondrial genome maps of O. guangxiensis (A), Pe. schultei (B), and Ph. guangxiensis (C).
The first circle shows the gene map (PCGs, rRNAs, tRNAs, and the AT-rich region). The genes shown
outside the map are coded on the majority strand (J-strand), whereas the genes inside the map are
coded on the minority strand (N-strand). The second circle shows the GC skew and the third shows
the GC content. GC content and GC skew are plotted as the deviation from the average value of the
entire sequence.
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Table 3. Base composition of the mitochondrial genomes of the three species.

Region

O. guangxiensis Pe. schultei Ph. guangxiensis

Length(bp) A + T
(%)

AT
Skew

GC
Skew Length(bp) A + T

(%)
AT

Skew
GC

Skew Length(bp) A + T
(%)

AT
Skew

GC
Skew

mito 16,869 75.6 0.19 −0.22 15,896 76.6 0.16 −0.19 17,005 76.8 0.16 −0.19

PCGs
J 11,112 74.2

0.06 −0.16 11,100 75.5
0.03 −0.12 11,121 75.8

0.06 −0.14
N −0.38 0.28 −0.35 0.25 −0.37 0.26

rRNAs 2079 78.3 0.25 −0.32 2055 77.7 0.22 −0.30 2124 77.9 0.20 −0.30
A + T-rich region 2238 79.6 0.17 −0.29 1294 82.5 0.13 −0.37 2286 79.1 0.10 −0.17

3.2. Protein-Coding Genes and Codon Usages

The locations of the 13 PCGs within the three mitochondrial genomes were identical
to those of most stick insects (Tables S3–S5). Four PCGs (ND1, ND4, ND4L, and ND5) were
located in the minority strand (N-strand), whereas the remaining PCGs were coded on
the majority strand (J-strand). The total lengths of the 13 protein-coding genes (PCGs) in
O. guangxiensis, Pe. schultei, and Ph. guangxiensis were 11,112 bp, 11,100 bp, and 11,121 bp,
respectively (Table 3). Among the three mitochondrial genomes, all PCG initiation codons
used ATN (N represents A, G, C, or T), except for ND4L of Pe. schultei, which started with
GTG. GTG as a start codon has also been found in ND4 of Megalophasma granulatum [91].
ATN is an accepted canonical initiation codon for insect mitochondrial genomes [92]. Of the
stick insects that used ATN as an initiation codon, most used ATA, ATG, and ATT, with only
a few using ATC [6,14,15,22,30,89–91]; only ATP8 (Pe. schultei) used the ATC start codon in
this study. The typical termination codons (TAA/TAG) were found in most PCGs, except
for some incomplete terminal codons, such as T used for COX2 (O. guangxiensis, Pe. schultei,
and Ph. guangxiensis), ND1 (Ph. guangxiensis), ND3 (O. guangxiensis and Pe. schultei), ND4L
(Pe. schultei), and ND5 (O. guangxiensis and Pe. schultei). Incomplete termination codons
have also been found in other insects [65,93–96]. Incomplete stop codons play a significant
role in polycistronic transcription cleavage and polyadenylation processes [97]. High A + T
bias was also found in the PCGs of O. guangxiensis, Pe. schultei, and Ph. guangxiensis, which
were 74.2%, 75.5%, and 75.8%, respectively. The PCGs of the majority strand displayed
positive AT skews and negative GC skews, whereas the minority strand displayed negative
AT skews and positive GC skews. The A skew (the content of A > T) and C skew (the
content of C > G) of the minority strand was greater than on the majority strand (Table 3).

We calculated the relative synonymous codon usage (RSCU) of the three mitochondrial
genomes (Figure 2, Table S7). The results showed that A or T nucleotides were used in high
frequency in the third codon position compared to other nucleotides, and that A was used
more often than T. The most frequent codons used were UUU (Phe), UUA (Leu), AUU
(Ile), and AUA (Met) and were used >280 times in the PCGs of O. guangxiensis, Pe. schultei,
and Ph. guangxiensis mitochondrial genomes. In contrast, codons with a third codon G
or C were used very rarely (≤10), such as CUC (Leu), UGC (Cys), CGC (Arg), GCG (Ala)
(≤5), etc. This may be a kind of AT mutation bias that has an obvious influence on codon
usage [98,99].

3.3. Ribosomal RNAs and Transfer RNAs

The mitochondrial genomes of O. guangxiensis, Pe. schultei, and Ph. guangxiensis
each had 22 tRNA genes, as in other Phasmatodea mitogenomes [6,14,15,22,30,89–91].
The total tRNA sizes of O. guangxiensis, Pe. schultei, and Ph. guangxiensis were 1463 bp,
1432 bp, and 1468 bp, respectively, with a high A + T bias of 78.3%, 77.6%, and 79.2%.
Among the 22 tRNA genes of the three species, most secondary structures of the tRNA
genes can fold into the common cloverleaf model, except for trnS1 (O. guangxiensis), which
lacks the dihydrouridine (DHC) arm, and trnN (O. guangxiensis and Pe. schultei) and
trnP (O. guangxiensis), which had lost the TΨC loops (Figures S1–S3). A lack of DHC arms
or TΨC loops exists in other stick insects and various insects in general [62,91,100–102],
and these have lower translational activity compared to the normal structures [103]. We
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also found a few mismatched pairs, such as unmatched A-A base pairs in trnS1 of the three
stick species, A-G in trnW (O. guangxiensis and Pe. schultei), C-A in trnG (Ph. guangxiensis),
U-U in trnV of the three stick insects, as well as trnA (O. guangxiensis and Pe. schul-
tei), trnY (Ph. guangxiensis), trnS2, and trnL1(Pe. schultei). Mismatched pairs may affect
aminoacylation and translation [104].
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The mitochondrial genomes of these three stick insects, similar to other species in
Phasmatodea, contained two rRNAs genes [6,15]. The 16S rRNA gene in O. guangxiensis,
Pe. schultei, and Ph. guangxiensis was located between trnL1 and trnV, with a length of
1291 bp, 1281 bp, and 1328 bp, respectively, whereas the 12S rRNA was located between
trnV and the CR, with sizes of 788 bp, 774 bp, and 796 bp, respectively. The AT content of
the two rRNAs in O. guangxiensis (78.3%), Pe. schultei (77.7%), and Ph. guangxiensis (77.9%)
were each higher than the average AT content of the 13 PCGs (Table 3). We found that
the AT skew values of the two rRNAs in O. guangxiensis, Pe. schultei, and Ph. guangxiensis
were 0.25, 0.22, and 0.20, respectively. Meanwhile, the GC skew was highly negative, with
values around 0.3 (Table 3).

3.4. A + T-Rich Region

The large non-coding region of O. guangxiensis, Pe. schultei, and Ph. guangxiensis
between trnI and 12S rRNA was an A + T-rich region with lengths of 2238 bp, 1294 bp, and
2286 bp, respectively (Table 3). Compared with mitogenomes from other Phasmatodea, the
length of the A + T-rich region in Pe. schultei was the shortest, except for Ramulus hainanense
(774 bp) (FJ156750). According to the published complete Phasmatodea mitochondrial
genomes, the longest A + T-rich region was found in Cryptophyllium tibetense (3701 bp)
(KX091862). In the mitochondrial genomes of O. guangxiensis, Pe. schultei, and Ph. guangx-
iensis, the content of A + T in the control regions was 79.6%, 82.5%, and 79.1%, respectively,
which was higher than other partitions of mitochondrial genomes. The A + T-rich regions
of the three species each showed positive AT skew values and negative GC skew values
(Table 3). The A + T region embodied the origin sites and essential regulatory elements
needed for transcription and replication [105–107].

Repeat regions were observed in O. guangxiensis, Pe. schultei, and Ph. guangxiensis
(Figure 3). The A + T-rich region of Ph. guangxiensis possessed seven copies of tandem
repeats regions with a length of 106 bp, whereas the A + T-rich region of Pe. schultei
contained six tandem repeat regions of a 32 bp sequence. However, two repeats (172 bp)
in O. guangxiensis were not tandem (Figure 3). Tandem repeats in the A + T rich region
have also been observed in many Phasmatodea species. In the research of Kômoto et al.,
the presence of tandem repeats in the A + T region was also detected in eight Phasma-
todea species, such as Entoria nuda (ten tandem repeats of a 128–129 bp sequence) and
Ramulus mikado (two tandem repeats of a 149 bp sequence and seven tandem repeats of
125 bp) [6]. Two identical copies of a 64 bp tandem repeat were discovered in Ramulus
hainanense (FJ15676), and Eurycantha calcarata included twenty-two tandem repeats of a
32 bp fragment (MW915467). Twenty-two tandem repeats of a 21 bp sequence were found
in Cryptophyllium tibetense (KX091862), and Extatosoma tiaratum possessed three tandem re-
peats of a 128-129 bp fragment [30]. Phraortes sp. 1 NS-2020 contained two tandem repeats
with lengths of 20 bp [22]. The secondary structure of these repeat units was predicted
by RNAalifold in 15 species [108–110]. We found that most of these tandem repeats in
the A + T region could form the stem–loop structure (Figure S4). Repeat regions of the
mitochondrial A + T region also existed in other insects. The A + T-rich region of Theopompa
sp.YN (Mantodea: Mantidae) contained three tandem repeats of a 200 bp sequence [96].
Two tandem repeats of a 90 bp sequence, three tandem repeats of a 100 bp sequence, and six
tandem repeats of a 50 bp sequence were observed in Serratella zapekinae (Ephemeroptera:
Ephemerellidae) [63]. The cause of tandem repeats may be slipped-strand mispairing in
mitochondrial genome replication [111].

3.5. Intergenic and Overlap Regions

The mitochondrial genomes of Phasmatodea, including the three stick insects in this
study, were compact, with intergenic regions usually not exceeding 20 bp [6,14,15,22,30,89–91].
The mitochondrial genomes of O. guangxiensis, Pe. schultei, and Ph. guangxiensis contained
7, 5, and 12 intergenic regions with total lengths of 17 bp, 41 bp, and 40 bp, respectively.
We observed the longest intergenic spacer between ND1 and trnL1 and the second-longest
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between trnI and trnQ within the mitochondrial genomes of Pe. schultei, with lengths of
18 bp and 13 bp, respectively. Overall, insertions between genes ranged from 1 to 8 residues
in the three stick insects (Tables S3–S5).
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Figure 3. Organizations of the repeat regions in the control region of O. guangxiensis, Pe. schultei, and Ph. guangxiensis.

The mitochondrial genomes of O. guangxiensis, Pe. schultei, and Ph. guangxiensis
had 14, 10, and 13 overlaps with a total length of 39 bp, 28 bp, and 38 bp, respectively.
Coincidentally, we observed that the three phasmatodean species shared four pairs of gene
overlaps: trnW/trnC (8 bp), COX1/trnL2 (5 bp), ATP8/ATP6 (4 bp), and ATP6/COX3
(1 bp). The overlapping between ATP6 and COX3 was an A that also exists in all published
Phasmatodea mitochondrial genomes [6,14,15,22,30,89–91]. An 8 bp (AAGYCTTA) overlap
was also found between trnW and trnC that is present in all published sequences except
Timema californicum and Dryococelus australis. Simultaneously, a pentanucleotide TCTAA
consensus motif existed in the overlap regions situated between COX1 and trnL2 of a few
other stick insects [15,91].

3.6. Phylogenetic Analyses

When we analyzed the phylogenetic relationship using the 13PCGs of 85 species,
including Embioptera and Zoraptera, the Bayesian tree was different from the maximum
likelihood inference tree, mainly in the internal topological structure of Phasmatodea
(Figures S5 and S6). We found that Phasmatodea was paraphyletic because the clade of
Zoraptera and Embioptera clustered into the Phasmatodea, as also reported by Song et al.
based on mitochondrial genome sequence data [22,36]. Zoraptera was the sister clade to
Embioptera, caused by long-branch attraction, as found in Ma et al. [20].

After removal of the Embioptera and Zoraptera species, we re-performed ML and BI
analyses with the remaining 81 species, which showed identical topology except for the
position of Tectarchus ovobessus (Phasmatodea). Figure 4 shows that Odonata was the basal
group of Pterygota, and Ephemeroptera was a sister clade to the Polyneoptera, as also
reported by some other molecular and morphological studies [62,112,113]. The monophyly
of Polyneoptera also was supported. We recovered the monophyly of Phasmatodea, and the
sister-group relationship between Phasmatodea and Mantophasmatodea was supported
by current phylogenetic analyses after removing Zoraptera and Embioptera. Phasmatodea
was divided into two branches: Timematodea and Euphasmatodea (Figure 4).
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At the family level, our data supported the monophyly of Heteropterygidae but Dia-
pheromeridae, Phasmatidae, and Lonchodidae were not recovered. Lonchodidae consists
of two subfamilies, Lonchodinae and Necrosciinae, but did not form a clade, which was also
reported by Forni et al., Kômoto et al., and Song et al. [6,22,33]. However, the phylogenetic
relationship among Dataminae, Heteropteryginae, and Obriminae of Heteropteridae is still
controversial. In this study, O. guangxiensis was the sister clade to O. mouhotii belonging
to Dataminae, and Heteropteryginae was the sister clade to (Dataminae + Obriminae).
Meanwhile, the same conclusion was also obtained by some research that utilized mor-
phological data [35,114] and molecular data [115]. By contrast, Bank et al., based on three
nuclear data sets (18S, 28S and H3) and four mitochondrial data genes (COX1, COX2, 12S,
and 16S), were in favor of the clade of Dataminae + (Heteropteryginae + Obriminae) [116],
consistent with previous results [117–119]. By contrast, other studies hypothesized that
Obriminae and the clade of (Heteropteryginae + Dataminae) had a close phylogenetic rela-
tionship [5,28,120,121]. The Pseudophasmatidae (Pe. schultei) should be a separate clade,
but our molecular phylogenetic trees showed that it was classified into Phasmatidae, and,
at the same time, Phraortes sp. YW-2014 (Lonchodidae) and species of Diapheromeridae
clustered into the clade of Phasmatidae. However, some studies support a sister clade of
Agathemera and Pseudophasmatidae [5,28].
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At the subfamily level, both Lonchodinae and Clitumninae were recovered as a poly-
phyletic group. In our analysis, we showed that Lonchodinae was not monophyletic
because Phraortes sp. YW-2014 (Lonchodinae) formed a clade with Medauroidea extradentata
(Clitumninae) instead of the main clade of Lonchodinae, consistent with previous analyses
using molecular markers [115,122] and mitochondrial genomes [6,33,91]. Phraortes sp.
YW-2014 did not cluster with other Phraortes species, probably because of a species misiden-
tification [33]. Meanwhile, some studies, even including transcriptomes, clearly recover
the monophyly of Lonchodinae [5,26,28,114]. Therefore, the problem of the monophyly of
Lonchodinae (or not) needs further study. Ph. guangxiensis (Phasmatidae: Clitumninae)
formed a sister group to Pharnaciini sp. NS-2020, but the placement of this group and
Phobaeticus serratipes was distant from the main clade of Clitumninae. In our work, we
failed to recover the monophyly of Clitumninae, similar to the results presented in Bradler
et al., Robertson et al., and Song et al. [5,22,26].

Analyzing the phylogenetic relationships using ML and BI using the 85 species,
Embioptera and Zoraptera were clustered into Phasmatodea, and the monophyly of Phas-
matodea was not recovered, which was caused by long-branch attraction. After removal
of the Embioptera and Zoraptera species, the phylogenetic relationships of ML and BI
using the 81 species showed the monophyly of Phasmatodea and the relationships within
subfamilies of Phasmatodea were supported.

4. Conclusions

In this study, we successfully determined the complete mitochondrial genomes of
O. guangxiensis, Pe. schultei, and Ph. guangxiensis. The three stick insects shared a sim-
ilar gene arrangement that has been previously reported for other stick insect species.
In this study, after removing representatives of Embioptera and Zoraptera that showed
long-branch attraction, BI tree and ML trees showed identical topology, except for the
position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasma-
todea and showed the sister-group relationship between Phasmatodea and Mantophas-
matodea. We recovered the monophyly of Heteropterygidae and the paraphyly of Dia-
pheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study,
Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and
species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteroptery-
gidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and
Heteropteryginae was supported as the sister clade to (Dataminae + Obriminae). Future
work may need to further explore the mitochondrial genomes of Embioptera and Zoraptera
to evaluate the long-branch attraction and explore the phylogenetic relationships between
Embioptera and Phasmatodea.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12090779/s1, Figure S1. Inferred secondary structures of the 22 tRNA genes in
O. guangxiensis mitochondrial genome. A: trnI; B: trnQ; C: trnM; D: trnW; E: trnC; F: trnY; G: trnL
(UUA); H: trnK; I: trnD; J: trnG; K: trnA; L: trnR; M: trnN; N: trnS (AGC); O: trnE; P: trnF; Q: trnH;
R: trnT; S: trnP; T: trnS (UCA); U: trn L (CUA); V: trnV. Figure S2. Inferred secondary structures
of the 22 tRNA genes in Pe. schultei mitochondrial genome. A: trnI; B: trnQ; C: trnM; D: trnW; E:
trnC; F: trnY; G: trnL (UUA); H: trnK; I: trnD; J: trnG; K: trnA; L: trnR; M: trnN; N: trnS (AGC); O:
trnE; P: trnF; Q: trnH; R: trnT; S: trnP; T: trnS (UCA); U: trn L (CUA); V: trnV. Figure S3. Inferred
secondary structures of the 22 tRNA genes in Ph. guangxiensis mitochondrial genome. A: trnI; B:
trnQ; C: trnM; D: trnW; E: trnC; F: trnY; G: trnL (UUA); H: trnK; I: trnD; J: trnG; K: trnA; L: trnR;
M: trnN; N: trnS (AGC); O: trnE; P: trnF; Q: trnH; R: trnT; S: trnP; T: trnS (UCA); U: trn L (CUA); V:
trnV. Figure S4. The possible secondary structure of the tandem repeat in the control regions. (A) the
repeat unit (176 bp) in O. guangxiensis. (B) the repeat unit (64 bp) in Pe. schultei. (C) the repeat unit
(106 bp) in Ph. guangxiensis. (D) the repeat unit (128 bp) in Entoria nuda. (E) the repeat unit (149 bp)
in Ramulus mikado. (F) the repeat unit (125 bp) in Ramulus irregulariterdentatus. (G) the repeat unit
(193 bp) in Phobaeticus serratipes. (H) the repeat unit (106 bp) in Micadina phluctainoides. (I) the repeat
unit (70 bp) in Phraortes elongatus. (J) the repeat unit (97 bp) in Phraortes sp. Iriomote Island. (K) the
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repeat unit (21 bp) in Heteropteryx dilatata. (L) the repeat unit (149 bp) in Heteropteryx dilatata. (M) the
repeat unit (64 bp) in Ramulus hainanense. (N) the repeat unit (50 bp) in Megacrania alpheus. (O) the
repeat unit (189 bp) in Extatosoma tiaratum. (P) the repeat unit (32 bp) in Eurycantha calcarata. Figure
S5. Phylogenetic relationships of Phasmatodea inferred from ML analysis including Embioptera
and Zoraptera. Figure S6. Phylogenetic relationships of Phasmatodea inferred from BI analysis
including Embioptera and Zoraptera. Table S1. Specific primers used to amplify the mitochondrial
genomes of O. guangxiensis, Pe. schultei and Ph. guangxiensis. Table S2. Species of Phasmatodea used
to construct the phylogenetic relationships along with SRA numbers. Table S3. Location of features
in the mtDNA of O. guangxiensis. Table S4. Location of features in the mtDNA of Pe. schultei. Table S5.
Location of features in the mtDNA of Ph. guangxiensis. Table S6. Mitochondrial genome comparisons
of Phasmatodea species. Table S7. The codon numbers and relative synonymous codon usage in
mitochondrial protein-coding genes.
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