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The pathophysiology of Parkinson’s disease (PD) is known to involve altered patterns of neu-
ronal firing and synchronization in cortical-basal ganglia circuits. One window into the nature
of the aberrant temporal dynamics in the cerebral cortex of PD patients can come from
analysis of the patients electroencephalography (EEG). Rather than using spectral-based
methods, we used data models based on delay differential equations (DDE) as non-linear
time-domain classification tools to analyze EEG recordings from PD patients on and off
dopaminergic therapy and healthy individuals. Two sets of 50 1-s segments of 64-channel
EEG activity were recorded from nine PD patients on and off medication and nine age-
matched controls. The 64 EEG channels were grouped into 10 clusters covering frontal,
central, parietal, and occipital brain regions for analysis. DDE models were fitted to individ-
ual trials, and model coefficients and error were used as features for classification.The best
models were selected using repeated random sub-sampling validation and classification
performance was measured using the area under the ROC curve A′. In a companion paper,
we show that DDEs can uncover hidden dynamical structure from short segments of sim-
ulated time series of known dynamical systems in high noise regimes. Using the same
method for finding the best models, we found here that even short segments of EEG data
in PD patients and controls contained dynamical structure, and moreover, that PD patients
exhibited a greater dynamic range than controls. DDE model output on the means from
one set of 50 trials provided nearly complete separation of PD patients off medication
from controls: across brain regions, the area under the receiver-operating characteristic
curves, A′, varied from 0.95 to 1.0. For distinguishing PD patients on vs. off medication,
classification performance A′ ranged from 0.86 to 1.0 across brain regions. Moreover, the
generalizability of the model to the second set of 50 trials was excellent, with A′ ranging
from 0.81 to 0.94 across brain regions for controls vs. PD off medication, and from 0.62 to
0.82 for PD on medication vs. off. Finally, model features significantly predicted individual
patients’ motor severity, as assessed with standard clinical rating scales.

Keywords: Parkinson’s disease, electroencephalography, dopamine-replacement, classification, non-linear
dynamical analysis

1. INTRODUCTION
Parkinson’s disease (PD) is a common and progressive neuro-
logical disorder that adversely affects the quality of life of up to
six million people worldwide (1). Classical models of the patho-
physiology of PD have emphasized the anatomical segregation of
multiple looping structures linking frontal cortex and the basal
ganglia, distinct pathways within the basal ganglia, and excessive
firing rates of basal ganglia output nuclei that lead to excessive
tonic inhibition of thalamus and cortex (2, 3). However, it recently
has become clear that temporal patterning within these looped
structures is of critical importance, and that the deficiency in
dopamine in PD results in markedly abnormal patterns of timing

and synchronization within basal ganglia-thalamic-cortical cir-
cuits (4–6). It also is becoming clear that these abnormal timing
patterns contain non-linear features (7), that non-linear features
of basal ganglia neuronal activity may be important for infor-
mation coding (8), and that dopamine treatment in PD patients
reduces abnormal non-linear interactions between rhythms in the
local field potential oscillations in basal ganglia nuclei (9).

Although EEG recorded at the scalp reflects grossly summed
currents, studies that have simultaneously recorded scalp EEG and
local field potentials in the basal ganglia (subthalamic nucleus) in
PD patients have found that scalp EEG reflects processing within
functionally coupled circuits connecting distinct cortical areas and
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basal ganglia (10–12). These results have led to the general conclu-
sion that “tuning to distinct frequencies may mark and segregate
related processing, over and above any anatomical segregation of
processing streams” (11). Thus, cortically generated EEG signals
recorded at the scalp may be used as a marker for the nature
of the processing within altered basal ganglia-thalamic-cortical
circuits. Indeed, abnormalities in resting-state and movement-
related oscillatory brain activity have been observed in the EEG
of PD patients using both linear and non-linear time series
methods (13–25).

We have previously used non-linear dynamical analyses to char-
acterize and distinguish the motor behavior of PD patients from
healthy controls (26). However, to our knowledge, non-linear
methods have not yet been used to classify changes in brain activ-
ity in scalp EEG due to PD and to dopaminergic therapy (27,
28). The primary goal of this study is to use data models based
on delay differential equations (DDE) as non-linear time-domain
classification tools to distinguish EEG recordings from PD patients
on and off dopaminergic therapy and healthy individuals. Given
that DDEs can uncover hidden dynamical structure from short
segments of simulated time series of known dynamical systems
in high noise regimes, as shown in a companion paper (29), we
also characterized changes in EEG dynamics in PD patients and
age-matched healthy controls.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Nine PD patients (6 female) and nine age-matched healthy
older adults (Controls, 4 female) participated (Mean± SD age:
PD patients, 62.8± 8.4 years; controls, 64.3± 7.9 years, t -test for
means, p > 0.05). All patients had mild to moderate clinically
typical PD (Hoehn and Yahr stages 2 and 3), and their motor
disabilities were responsive to anti-Parkinsonian medications. No
patient had marked resting tremor, action tremor, or dyskinesias.
Moreover, no patient had dementia or major depression (screened
with the Mini-Mental State Examination (30) and Beck Depres-
sion Inventory (31)). No participant had any neurological or
psychiatric disease in addition to PD for the PD participants. All

participants were right-handed (32) with normal or corrected to
normal vision. Clinical characteristics of the PD patients are given
in Table 1.

PD patients were tested on (PD ON) and off (PD OFF) their
anti-Parkinsonian medications in counterbalanced order on sep-
arate days. For off medication testing, patients were tested in the
morning before taking their first medications of the day and hav-
ing not taken their anti-Parkinsonian medication for at least 12 h
(33). Prior to each session’s testing, the Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) was administered to provide a clinical
measure of each patient’s motor severity. All participants signed
the informed consent document approved by the human subjects
Institutional Review Board of the University of California San
Diego.

2.2. DATA ACQUISITION AND TASK
Electroencephalographic (EEG) data were acquired with a 64-
channel active electrode EEG system (BioSemi Inc., ActiveTwo,
Amsterdam, Netherlands) consisting of a cap plus four EOG elec-
trodes, temporal to both eyes and above and below the right eye,
two EMG electrodes on the trapezius and right and left sternoclei-
domastoids, and two reference electrodes on the left and right
mastoids. Data were recorded at 512 Hz, and referenced to the
average of the mastoid electrodes. The positions of the EEG sen-
sors on the head were digitized with a electromagnetic motion
tracking system (Polhemus, FASTRAK, Colchester, VT, USA).

In this study, we analyzed EEG data from two sets of 50 ran-
domly selected 1-s “baseline” trials, collected between trials as
participants waited for a “go” cue to reach for and grasp a vir-
tual rectangular object. During these resting intervals, subjects
rested their right thumb and index finger on a virtual starting
dock. Participants were provided haptic as well as visual feedback
of the dock, so that they felt their hands resting on a solid sur-
face using two haptic robots (Phantom Premium 1.0, Geomagic,
Wilmington, MA, USA). Overall, a maximum of 360 (10 blocks
of 36 trials) trials were performed by each participant, with rest
provided between blocks to limit fatigue [see Ref. (34), for details
of the experiment and behavioral results].

Table 1 | Clinical characteristics of Parkinson’s disease patients.

Patient

ID

Sex Age

(years)

Disease durationa

(years)

UPDRSb

(ON, OFF)

H&Y scorec

(ON, OFF)

Medications

PD01 F 65 8 20, 39 2, 2 Carbidopa/levodopa, pramipexole

PD02 M 70 17 47, 52 3, 3 Carbidopa/levodopa, amantadine, selegiline

PD03 M 47 7 42, 58 3, 3 Ropinirole XL, selegiline, rasagiline

PD04 F 70 7 30, 38 2, 2 Rasagiline, pramipexole

PD05 F 68 3 22, 28 3, 2 Rasagiline, carbidopa/levodopa

PD06 F 69 9 31, 37 3, 3 Carbidopa/levodopa, amantadine, selegiline, pramipexole

PD07 F 66 4 36, 44 3, 3 Carbidopa/levodopa, pramipexole, rasagiline

PD08 M 58 12 37, 41 2, 3 Carbidopa/levodopa/entacapone; rasagiline

PD09 F 52 9 33, 43 3, 3 Carbidopa/levodopa, rasagiline, amantadine, ropinirole XL

aDuration is years since first remembered Parkinsonian symptom.
bUPDRS: United Parkinson’s Disease Rating Scale, Motor Section (maximum score of 108). Higher scores indicate greater motor impairments.
cH&Y stage: Hoehn and Yahr stage (maximum score of 5). Higher stages indicate more severe disease.
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2.3. DATA PREPROCESSING
Raw EEG data were imported into EEGLAB using MATLAB (The
MathWorks, Natick, MA, USA) for processing (35). Data were
high-pass filtered at 1 Hz to remove drift and low-pass filtered at
55 Hz to remove line noise. EEG artifacts associated with eye and
other muscle movement were removed using independent com-
ponent analysis (ICA) (36). Based on the topography, spectra, and
trial-to-trial characteristics of ICA components, good fit ICA com-
ponents were selected and used to generate back-projected EEG
data, which will be referred to as clean EEG. The 64 EEG chan-
nels were then grouped into 10 clusters covering frontal, central,
parietal, and occipital brain regions for analysis (Figure 1A), using
the mean voltage from 2 to 6 electrodes depending on the clus-
ter. Figure 1B presents a representative EEG time series of the left
occipital cluster from each participant and is illustrative of the
variability in EEG seen across subjects.

2.4. FEATURE EXTRACTION
Delay differential equations (DDE) were used as a generic non-
uniform embedding tool to extract feature vectors from clean EEG
data for classification. The method introduced here is based on
non-linear modeling methods known to be effective in classifying
short time series (26, 29, 37–39). Typical phase portraits for a PD
patient on and off medications and healthy control subjects are
shown in Figure 2. The phase portraits suggest that delay embed-
dings may be able to uncover underlying dynamical structure of
EEG data in all participants.

Lainscsek et al. (26) proposed a genetic algorithm to find a sin-
gle DDE model for the classification of PD movement data. Similar
to Ref. (40), we propose an exhaustive search of models and delays
to find the model and delay combination that can best separate
EEG data from PD patients on and off dopaminergic therapy and
healthy individuals. Candidate polynomial DDE models include

ẋ = a1 xτ1 + a2 xτ2+

a3 x2
τ1
+ a4 xτ1 xτ2 + a5 x2

τ2
+

a6 x3
τ1
+ a7 x2

τ1
xτ2 + a8 xτ1 x2

τ2
+ a9 x3

τ2

(1)

where x = x(t ) and xτj = x(t − τj), with some of the ai equal
to zero [see structure selection in the companion paper (29)]. In
this study, we only considered models with two to three terms, a
maximum of two delays, and terms with up to cubic order of non-
linearity, so as to limit computational demands. In total we have
18 two-term models and 32 three-term models [see companion
paper (29) for a full list of models]. We had one linear model and
all others were non-linear.

DDE models were fitted to individual 1-s trials of clean EEG
data, and model coefficients and least square error were used as
features for classification. Supervised structure selection was per-
formed in order to identify the DDE model form and delays that
best classified two classes of data. In total three classifiers were
considered: (1) Control vs. PD OFF, (2) PD ON vs. OFF, and
(3) Control vs. PD ON. Training data consisted of 50 randomly
selected trials from each of the 10 EEG data clusters from each
participant. For each classifier, training was first carried out on
data from 6 randomly selected participants from each group on a
total of 600 trials, and then testing was performed on data from
the 3 remaining participants from both groups (300 trials) using
repeated random sub-sampling validation [Ref. (41), see compan-
ion paper (29)]. For each trial, the DDE features (i.e., coefficients
and least square error) of all 50 DDE models with delays between 1
and 50 time steps were computed and the linear separating hyper-
plane between groups in each classifier was found, which consisted
of a linear set of weights for each DDE feature estimated via a sin-
gular value decomposition (SVD) algorithm. Testing consisted of
using the previously calculated weights to compute the separating
hyperplane on untested data. For each trial and model and delay
combination, classification performance was then measured using
the area under the receiver operator characteristic (ROC) curve
A′. This process was repeated 84 times with different training and
testing subjects, with each subject used equally for both training
and testing. A combination of the 30 best performing model and
delay combinations were then used to extract a mean set of weights
that was used for testing on a new set of data from each participant,
which consisted of an additional 50 randomly selected trials. For
details on the methodology, see Ref. (29).
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FIGURE 1 | (A) Overview of EEG data clusters used in analysis, and (B) randomly selected EEG time series from each participant sampled at 512 Hz from left
occipital cluster during 1-s baseline trial. Note: OCC, occipital; PAR, parietal; MOT, motor; ANT, anterior; L, left; R, right; F, frontal.
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2.5. STATISTICAL ANALYSIS
Linear mixed models were used to evaluate the effect of cluster
location and classifier (Control vs. PD OFF, PD ON vs. OFF, and
Control vs. PD ON) on the classification performance in both orig-
inal and new EEG data. As fixed effects, we entered cluster location
and classifier along with their interaction and the training and test-
ing combination. As random effects, we had intercepts for cluster,
as well as by-cluster and by-training and testing combination ran-
dom slopes for the effect of classifier. In addition, linear mixed
models were used to examine the effect of cluster location and
PD (Control vs. PD OFF) or medication (PD ON vs. OFF) on the
mean logarithmic power at theta (4–8 Hz), alpha (8–12 Hz), and
beta (12–30 Hz) frequency bands. As random effects, we included
the subject, cluster, cohort as well as subject by-cluster and cohort
interaction. P-values were obtained by likelihood ratio tests of the
full model with and without the effect in question. A significance
level of p = 0.05 was used to test for statistical significance. To con-
trol for multiple comparisons, Hochberg’s step-up method was
used in this secondary analysis. Pearson correlations (42) between
the DDE model distance from the dividing hyperplane and severity
of motor impairment in PD patients tested the degree of rela-
tionship between model output and PD motor impairment. All

Control

PD ON

PD OFF

Clean EEG data: Delay Embedding:

x (a.u.)

1 s

x
τ

x

1: OCC L

FIGURE 2 | EEG data from left occipital cluster of three exemplary
participants with phase portrait reconstructed from left occipital
cluster, using a delay τ of 8 ms.

statistical analyses were done using R version 3.0.1 (43); linear
mixed models were fit using lme4 version 0.999999-2 (44).

3. RESULTS
Even brief 1-s segments of EEG data in PD patients and healthy
age-matched controls demonstrate dynamical structure, as seen
by differences in the distance to the hyperplane in all groups
(Figure 3). Given that changes in the distance from the hyperplane
reflect changes in the underlying dynamics of the system (29), the
distinct separation of both PD patients on and off medication vs.
controls (Figures 3A,B) are indicative of distinct and quantifiable
changes in EEG dynamics due to PD, irrespective of treatment. The
separation between PD patients on and off medication is relatively
strong but less than that of the other two comparisons (Figure 3C),
indicating increased similarities in EEG dynamics (Figure 3C).

DDE model output on the means from one set of 50 trials
provided nearly complete separation of PD patients off med-
ication from controls: across brain regions, the area under the
receiver-operating characteristic curves, A′, varied from 0.95 to
1.0. For distinguishing PD patients on vs. off medication, classifi-
cation performance A′ ranged from 0.86 to 1.0 across brain regions
(Figure 4A). Lastly, for distinguishing PD patients on medication
from controls, classification performance A′ varied from 0.97 to
1.0. Moreover, the generalizability of the model to the second set
of 50 trials was excellent, with A′ ranging from 0.81 to 0.94 across
brain regions for controls vs. PD off medication, from 0.62 to 0.82
for PD on medication vs. off, and from 0.74 to 0.92 for controls
vs. PD on medication (Figure 4A). Finally, model features sig-
nificantly predicted individual patients’ motor severity, as assessed
with standard clinical rating scales (Figure 4B, Pearson correlation
coefficient R= 0.68, p < 0.005).

Overall, cluster location was found to significantly affect
classification performance in both the original [χ2(9)= 18.9,
p= 0.026] and new [χ2(9)= 26.1, p= 0.002] EEG data. Classifica-
tion performance, as evaluated by A′, was affected by the classifier
(Control vs. PD OFF, PD ON vs. OFF, and Control vs. PD ON)
on new data only [χ2(2)= 16.1, p < 0.001]. Specifically, overall
classification performance of PD patients on medication vs. off
decreased by 0.165 relative to the classification of PD patients off
medication from controls (A′= 0.886). In addition, the interac-
tion between cluster location and classifier was found to affect A′ in

A B C

FIGURE 3 | (A) DDE model output distance from the hyperplane in classification of controls vs. PD patients off medications, (B) controls vs. PD patients on
medications, and (C) PD patients on vs. off medications. Each column represents all 10 cluster classification outputs for a given subject.
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FIGURE 4 | (A) Classification performance of three different classifications
using A′ (area under the receiver-operating characteristic curve) on the
mean of the original 50 randomly selected 1-s trials of baseline EEG used
for training and the mean of 50 new 1-s trials from the same subjects, and

(B) relationship between DDE model output’s distance from a hyperplane,
and severity of motor impairment in PD patients, as evaluated by the
Unified Parkinson’s Disease Rating Scale (UPDRS). Controls are included
to serve as a reference.

both original [χ2(18)= 85.9, p < 0.001] and new [χ2(18)= 77.5,
p < 0.001] trials. Relative to Control vs. PD OFF classification per-
formance at the left occipital cluster (OCC L), A′ increased at the
left motor cluster (MOT L) by 0.023± 0.007 (standard error) in
original trials and by 0.097± 0.017 in new trials. PD ON vs. OFF
classification performance was best in the mid frontal cluster (MID
F) in original trials and in the right occipital (OCC R) cluster in
new trials, relative to OCC L. Control vs. PD ON classification
performance was best in the right frontal cluster (ANT R) in new
trials (i.e., 0.063± 0.016 increase, relative to OCC L).

The delay characteristics of the top performing DDE mod-
els indicate that to best differentiate between PD patients and
controls, longer time delays (i.e., time delays closer to 50 time
steps or 100 ms) are needed in frontal clusters (i.e., anterior left,
anterior right, and mid frontal), in comparison to all other clus-
ters (Figure 5A). In contrast, differentiation of PD patients on
vs. off medications leads to a more diffuse selection of time
delays, with shorter time delays used in the posterior cortices.
Moreover, the diffused selection of time delays is indicative of a
greater dynamic range in PD patients vs. controls. Considering
each cluster, we demonstrate the effect of an increased number of
combined models on the classification performance (Figure 5B).
Based on traditional spectral analysis output, no statistically sig-
nificant differences in mean power spectra were observed between
PD patients and controls nor between PD patients on and off
medications [p > 0.0042 (i.e., p= 0.05/12)]. However, a signifi-
cant interaction between PD patients off medication vs. control
and cluster location was identified in the theta [χ2(9)= 25.9,
p= 0.002] frequency band (Figure 6). Moreover, dopaminergic
therapy demonstrated a significant interaction with cluster loca-
tion in the theta [χ2(9)= 34.6, p < 0.001] and beta [χ2(9)= 24.9,
p= 0.003] frequency bands, consistent with the literature (45).
Given, these differences in spectral power density in PD patients
vs. controls, and due to the observed effects of dopaminergic ther-
apy, we examined how well our non-linear methods could classify
subjects based on each individual 1-s trial (Figure 7). Using a sin-
gle second of data, allowed us to differentiate between PD patients
off medication and controls (A′= 0.73− 0.80),PD patients on and

A

B

FIGURE 5 | (A) Time delay characteristics of top 20% performing models,
and (B) classification performance of three different classifications using A′

on the mean of the original 50 1-s trials, using 1, 5, 10, and 30 combined
models.

off medication (A′= 0.74− 0.82), and PD patients on medications
and controls (A′= 0.69− 0.76) with a classification performance
well above chance.

4. DISCUSSION AND CONCLUSION
We have shown that differences in EEG dynamics due to PD
and to dopaminergic therapy are detectable using DDE models.
Moreover, we found that DDE model output of EEG signifi-
cantly correlated with the patient’s motor impairment severity
(Figure 4B). This finding is consistent with prior work showing
that DDE model output of movement time series likewise cor-
related with PD severity (26). Given the excellent classification
performance of PD patients on and off medication vs. controls,
DDEs may provide a promising non-linear time-domain classifi-
cation tool for objectively and automatically measuring changes
in neural dynamics due to a broad range of neurological disorders,
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and might eventually serve as a biomarker, or one component of
a biomarker, for PD. This work is consistent with recent advances
in the study of sensory-motor circuitry that have demonstrated
non-linear temporal dynamic irregularities in motor-related neu-
ronal activity due to Parkinson’s disease (46). These irregularities
have also been shown to be amenable to dopaminergic treatment
(7, 47, 48).

This study provides further evidence that non-invasive, scalp
EEG analysis can be used to detect abnormalities in the function of
basal ganglia-cortical circuits in PD patients (4, 5). In particular,
frontal clusters demonstrated excellent, generalizable, classifica-
tion performance between PD patients and controls (Figure 4A).
Consistent with findings of increased theta power in frontal areas
due to PD (49), our traditional spectral analysis suggests differen-
tial changes in theta frequency power spectra as a potential expla-
nation for this improved classification performance. Classification

performance when distinguishing PD patients on vs. off medica-
tions was best in occipital or anterior clusters (Figure 4A), which
coincides with reported decreases in frontal theta and occipital
beta due to dopaminergic therapy during rest (45). We also found
that PD patients off medication showed increased theta power
in certain clusters relative to control subjects. However, we were
unable to find significant differences due to either PD or dopamin-
ergic therapy in other frequency bands, including beta. Lack of
differences in beta power between PD patients and controls was
an unexpected result. However, the short, 1 s EEG intervals used
in the present study may not have provided a sufficient amount
of time for beta activity to recover, and hence, may explain the
similar power spectral density plots between PD patients and con-
trols (Figure 6) described in the paper. It should be noted that
power spectra is a linear feature of EEG data. Thus, the excellent
EEG classification performance using DDE models are likely rely-
ing on non-linear features of EEG data, which warrant further
investigation.

Based on non-linear dynamical classification of short time
series of the Rössler system in a companion paper (29), we found
that the distance to the hyperplane is related to the underlying
dynamic parameters of the system. Given the distinct separation
in PD patients versus controls based on the distance to the hyper-
plane, this study further affirms that PD results in changes in
non-linear temporal brain dynamics (19, 28, 46) and demonstrates
such changes in EEG. The increased difficulty in distinguishing PD
patients on versus off medication, particularly when generalized
to new data, suggests that both groups have more overlapping EEG
dynamics. Together with the broader distribution of time delays
selected in the top performing models in classifying PD patients
on and off medication, these findings are consistent with observed
increases in the local entropy of EEG due to PD (19, 23), as higher
entropies correspond to decreased predictability of EEG dynamics.

Interestingly, the increased dynamic range observed in the EEG
data of PD patients in this study (Figure 4B) is suggestive of
increased complexity in cortical activity, consistent with findings
of higher dimensional EEG signals in PD patients, when com-
pared to healthy controls during imagined or actual movements
(18), and during sleep (50). However, both animal and human
studies have demonstrated pathologically increased oscillatory
synchronization in the basal ganglia due to Parkinsonism (51–
54), which could be indicative of a reduction in signal complexity
(55). Furthermore, recent findings suggest a strong negative corre-
lation between signal complexity and some dimensions of motor
impairment in PD patients, based on subthalamic nucleus local
field potentials recorded at a resting state (56). Further studies are
necessary to resolve these discrepancies and further examine this
important issue.

In conclusion, this study provides a unique and novel time
series method for analyzing the dynamics of neural activity in
patients with Parkinson’s disease. Given the excellent classifica-
tion performance observed in DDE models when distinguishing
brief and sparse 1-s EEG recordings from PD patients on and off
dopaminergic therapy and healthy individuals, this study provides
a crucial first step toward the development of an objective and
automatic method of tracking the progression of PD using EEG
time series. Additional training on a larger pool of PD patients and
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healthy age-matched controls, and expansion to longer time delays,
should allow for a further refinement of the relevant dynamical
features for classification of PD. As this study was carried out
on a limited sample of subjects, additional subjects are needed
for a prospective test of this classification method to evaluate
the generalizability of our findings. Furthermore, further study of
the non-linear dynamics of cortical activity and comparing with
intra-cortical data collected during surgery should provide a bet-
ter understanding of the underlying pathophysiology of the basal
ganglia-thalamic-cortical system in Parkinson’s disease.
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