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a b s t r a c t

Zoonotic infectious diseases are spread from animals to humans. It is estimated that over
60% of human infectious diseases are zoonotic and 75% of them are emerging zoonoses.
The majority of emerging zoonotic infectious diseases are caused by viruses including
avian influenza, rabies, Ebola, coronaviruses and hantaviruses. Spillover of infection from
animals to humans depends on a complex transmission pathway, which is influenced by
epidemiological and environmental processes. In this investigation, the focus is on direct
transmission between animals and humans and the effects of seasonal variations on the
transmission and recovery rates. Fluctuations in transmission and recovery, besides being
influenced by physiological processes and behaviors of pathogen and host, are driven by
seasonal variations in temperature, humidity or rainfall. A new time-nonhomogeneous
stochastic process is formulated for infectious disease spread from animals to humans
when transmission and recovery rates are time-periodic. A branching process approxi-
mation is applied near the disease-free state to predict the probability of the first spillover
event from animals to humans. This probability is a periodic function of the time when
infection is introduced into the animal population. It is shown that the highest risk of a
spillover depends on a combination of animal to human transmission, animal to animal
transmission and animal recovery. The results are applied to a stochastic model for avian
influenza with spillover from domestic poultry to humans.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Zoonotic infectious diseases, transmitted from wild or domestic animal hosts to humans, result in over 60% of human
infectious diseases with 75% of them emerging diseases (Guo et al., 2020; Jones et al., 2008; Karesh et al., 2012; Taylor et al.,
2001; WHO, 2020b). Many emerging zoonotic diseases are caused by viruses such as avian influenza virus, Ebola virus, rabies
virus, severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome
coronavirus (MERS-CoV), West Nile virus, Nipah virus, Hendra virus and hantaviruses (Han et al., 2015; Poen et al., 2019). A
zoonotic spillover occurs when the pathogen from an infected animal host enters a human host, either directly from a natural
reservoir, an intermediate animal host, or indirectly from virus in the environment. For example, avian influenza often spills
over to humans from an intermediate host (domestic poultry) instead of directly from the natural reservoir (waterfowl
).
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including ducks and geese) (Poen et al., 2019; Vandegrift et al., 2010). For hantaviruses, spillover into humans generally occurs
via contact with infected excreta from the natural reservoir, such as rats, mice or voles (Jonsson et al., 2010).

Spillovers of public health concern are those involving new pathogens that enter the human population. Animal reservoirs
vary considerably, but bats and rodents are the majority of natural reservoirs for viral zoonoses originating in the wild
(Calisher et al., 2006; Han et al., 2015; Luis et al., 2013). The natural reservoirs for rabies virus, coronaviruses, Ebola virus,
Nipah virus and Hendra virus are bats (Calisher et al., 2006; Cui, Eden, Holmes, & Wang, 2013; Guo et al., 2020; Han et al.,
2015; Lau et al., 2005). The Centers for Disease Control and Prevention (CDC), U.S. Department of the Interior and U.S.
Department of Agriculture prepared a list of eight zoonotic diseases of most concern to the United States. These eight zoo-
noses include zoonotic influenza, salmonellosis, West Nile fever, plague, emerging coronavirus diseases, rabies, brucellosis
and Lyme disease (CDC, 2019a). Four of the eight pathogens are viruses.

Zoonotic diseases can be transmitted to humans directly or indirectly. Direct or indirect transmission requires contact
between the animal source and humans or contact with the pathogen in the environment. These contacts are often driven by
environmental factors, especially seasonal variations in temperature, humidity and rainfall that impact food resources and
habitat e.g., (Glass et al., 2000; Karesh et al., 2012; Martinez, 2018; Plowright et al., 2017).

With the exception of vector-host epidemic models, much of the modeling efforts for emerging viral zoonoses have
concentrated on the disease dynamics within a single population, either humans or the natural reservoir. There are a number
of zoonotic modeling studies that include at least two species, such as models for avian influenza (Gumel, 2009; Iwami et al.,
2007; Liu et al., 2017; Royce and Fu, 2020; Tuncer & Martcheva, 2013; Vaidya & Wahl, 2015; Zhang et al., 2019), rabies
(Asamoah, Oduro, Bonyah, & Seidu, 2017; Huang et al., 2019; Ruan, 2017), hantaviruses (Allen et al., 2009; Sauvage et al.,
2007) and COVID-19 (Chen et al., 2020). Most of these models are systems of ordinary differential equations (ODEs). A few
stochastic zoonotic disease models include human spillover or seasonal variability, e.g., (Breban, Drake, Stallknecht,& Rohani,
2009; Keeling & Gilligan, 2000; Singh et al., 2014; Vaidya &Wahl, 2015; Voinson et al., 2018). Breban et al. (2009) and Vaidya
and Wahl (2015) included seasonal variability in models for avian influenza in migratory waterfowl, as they move between
breeding and wintering sites. Keeling and Gilligan (2000) modeled spillover of bubonic plague for a metapopulation of rats,
fleas and humans that included seasonal forcing in the flea carrying capacity. Stochastic simulations of the metapopulation
model showed sporadic human outbreaks from subpopulations of endemic rat reservoirs. General stochastic models for
spillover to humans from an animal reservoir were studied by Voinson et al. (2018) and Singh et al. (2014). These in-
vestigations applied Markov chain and branching process theory to susceptible-infected-recovered (SIR) models to study the
number and size of outbreaks. Singh et al. (2014) also investigated the dynamics during the early epidemic stages through
estimation of the probability of and time to first human spillover. We apply similar techniques, as in Singh et al. (2014) and
Voinson et al. (2018), to investigate the early epidemic dynamics. In addition, we extend their models by including seasonal
variability in the parameters and by considering more complex settings.

In this investigation, we develop mathematical methods for study of the first spillover event to humans via direct
transmission either from a natural reservoir or an intermediate host. We focus on viral zoonoses. However, the methods can
be extended to other zoonotic pathogens and to indirect exposure. The following section describes the underlying SIR ODEs
from which the transition rates for the time-nonhomogeneous Markov chain are defined. The branching process approxi-
mation is described in Section 3. Then, in Section 4, these new mathematical methods are applied. Numerical examples
illustrate how the periodic parameters affect the probability of and time to spillover as a function of the timewhen infection is
introduced into the animal population. In Section 5, the methods are applied to several avian influenza models with spillover
from domestic poultry to humans (Tuncer&Martcheva, 2013), where the SIR framework is also generalized to include a latent
stage. In the last section, the results are summarized and the public health implications are discussed.
2. Spillover model

A system of SIR ODEs serves as a framework for formulation of a stochastic model for spillover. Since we are considering
the first spillover event, the human disease dynamics after the spillover are not modeled. Whether an outbreak occurs in the
human population depends on human-to-human transmission, human recovery rate (Singh et al., 2014; Voinson et al., 2018)
and seasonal effects (Nipa & Allen, 2020).
2.1. Deterministic spillover model

A compartmental diagram of the deterministic spillover model is given in Fig. 1. The animal population includes sus-
ceptible, infectious and recovered animals, denoted as Sa, Ia and Ra, respectively. Similarly, Sh, Ih and Rh denote susceptible,
infectious and recovered humans, respectively. The parameter baa(t) is the transmission rate from animal to animal, g(t) is the
recovery rate of an infected animal and bah(t) is the transmission rate of animal to human. Each of these rates are time-
periodic with a common period T. The population sizes are constant, Na ¼ Sa þ Ia þ Ra and Nh ¼ Sh þ Ih þ Rh. For the
human population, we do not consider the recovered state, because our interest is in the first spillover event in the human
population. The ODE model for the animal and the human populations is described by the following system:
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Fig. 1. Compartmental diagram of the SIR ODE model for a spillover event from an animal host (subscript a) to a human host (subscript h).
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We assume the parameters are continuous and periodic for t 2 (�∞, ∞) with common period T > 0:

gðtþ TÞ ¼ gðtÞ; biðtþ TÞ ¼ biðtÞ; i ¼ aa; ah: (3)

one or more of the rates may be constant or have a fundamental period other than T.

2.2. Stochastic spillover model

The susceptible, infectious and recovered animal and human variables are discrete random variables satisfying

SaðtÞ; IaðtÞ;RaðtÞ2f0;1;…;Nag; ShðtÞ; IhðtÞ;RhðtÞ2f0;1;…;Nhg; t2½0;∞Þ:

the values of the random variables are denoted with lower case letters: sa, ia, ra, sh and ih. The initial conditions are at a fixed
time t0 2 [0, T]. They are Ia(t0) > 0 and Ra(t0) ¼ Ih(t0) ¼ Rh(t0) ¼ 0 with Sa(t0) ¼ Na � Ia(t0) and Sh(t0) ¼ Nh. To record the first
spillover event, the stochastic process continues until a time t (t > t0) such that either Ia(t) ¼ 0 or Ih(t) ¼ 1. We compute the
probability that Ih(t) ¼ 1 before Ia(t) ¼ 0.

The transition probabilities that lead up to a spillover are described in Table 1. Given Ia(t0) > 0 and Ih(t0) ¼ 0, three possible
events may occur: (i) an infected animal infects another animal, (ii) an infected animal recovers or (iii) an infected animal
infects a human. Event (iii) is a spillover. The sum of the transition rates is

SðtÞ ¼ baaðtÞia
sa
Na

þ gðtÞia þ bahðtÞia
sh
Nh

: (4)
Table 1
Transition probabilities for a zoonotic spillover, ri(t)Dt þ o(Dt).

Description Event (DIa, DIh) Probabilities

Animal infection (Sa, Ia) / (Sa � 1, Ia þ 1) (1, 0) baaðtÞia
sa
Na

Dtþ oðDtÞ
Animal recovery (Ia, Ra) / (Ia � 1, Ra þ 1) (�1, 0) g(t)iaDt þ o(Dt)
Human infection (Sh, Ih) / (Sh � 1, Ih þ 1) (0, 1) bahðtÞia

sh
Nh

Dtþ oðDtÞ
No change (Sa, Ia, Sh, Ih) / (Sa, Ia, Sh, Ih) (0,0) 1 �S(t)Dt þ o(Dt)
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To numerically approximate the Markov time-nonhomogeneous process, we use a Monte Carlo approximation based on
Table 1. We consider a discrete set of time points ftng∞n¼0 with tn ¼ nDt for sufficiently small time step Dt so that the prob-
abilities ri(tn)Dt, i ¼ 1, 2, 3 and 1 �S(tn)Dt lie in [0, 1] for tn > 0. A uniform random number is used to select the event, if any,
that occurs at time tnþ1. An alternate method based on a Gillespie-type algorithm is discussed in Appendix A.

In Fig. 2, five sample paths of the infected animal population are graphed for two different initial conditions. The two initial
conditions are Ia(t0) ¼ 1 for t0 ¼ 0, 12 [0, T], where the period length is T ¼ 4. The sample paths are graphed until the time t,
when either Ia(t)¼ 0 or Ih(t)¼ 1, t > t0, whichever event occurs first. As can be seen in Fig. 2, there are significant differences in
the occurrence of a spillover. At t0 ¼ 0, transmission rates baa(0) and bah(0) and recovery time 1/g(0) are at their peak values;
four out of five sample paths result in a spillover. At t0 ¼ 1, the values of baa(1), bah(1) and 1/g(1) have much smaller values
than at t0 ¼ 0 and only one of the five sample paths results in a spillover.

3. Branching process approximation

We apply a Markov branching process approximation to the infected animal population, variable Ia, at the disease-free
equilibrium (DFE), Sa ¼ Na and Sh ¼ Nh. In particular, we assume Ia follows a birth-death-killing process, as defined by
Karlin and Tavar�e (1982), with state space {0,1,/ }∪{K}, where state K is the first human spillover event. The two states, Ia¼ 0
and Ia ¼ K (Ih ¼ 1), are the only absorbing states for Ia. The process begins at a fixed time t0 and the process stops at time t > t0,
if either Ia(t) ¼ 0 or Ih(t) ¼ 1. Karlin and Tavar�e (1982) assumed the birth-death-killing process was time-homogeneous with
constant parameters. The time-homogeneous process has been applied by Singh et al. (2014) to spillover events for SIR
epidemic processes in humans and animals. We extend their work to a time-nonhomogeneous process for periodic trans-
mission and recovery rates and to more general epidemic settings. We summarize some of the theory and describe how the
probability of spillover is computed.

The assumptions in the Markov branching process for Ia are that the population size is unbounded, Ia 2{0, 1, 2, …}, the
infected animals at time t are independent of those infected prior to time t (Markov property) and infected animals produced
after a time t from infected animals at time t are independent of each other (Harris, 1963). To ensure the branching process is a
good approximation of the time-nonhomogeneous process at the human-animal interface, the value of Na must be suffi-
ciently large and the initial number of infected animals must be sufficiently small so that the process is near the DFE.

For the Markov branching process, the events in Table 1 simplify to those given in Table 2. Given Ia(t0) ¼ i, the branching
process is used to estimate the probability of animal disease extinction before the first human spillover. We denote this
probability as Pextði;t0Þ. The probability of the first human spillover event is Pspillði;t0Þ ¼ 1� Pextði;t0Þ. The derivation of this
expression is described below.

The expression for the probability of the first human spillover comes from the more general multitype branching process
at the human-animal interface (Singh et al., 2014). The generating function for the interface involves both Ia and Ih. Given the
transition probability,

pði;jÞ;ðk;lÞðt0; tÞ ¼ PððIaðtÞ; IhðtÞÞ¼ ðk; lÞjðIaðt0Þ; Ihðt0ÞÞ¼ ði; jÞÞ; (5)
the probability generating function for (Ia, Ih) equals
Fig. 2. Five sample paths are graphed for the infected animal population in the stochastic spillover model until either Ia(t) ¼ 0 or Ih(t) ¼ 1, t > t0. Parameter values
are Na ¼ 1000 ¼ Nh, biðtÞ ¼ b

̄

ið1 þ 0:9cosðp =2ÞÞ, i ¼ aa, ah, gðtÞ ¼ g
̄ ð1 � 0:9cosðp =2ÞÞ, b

̄

aa ¼ 4, b
̄

ah ¼ 1 and g
̄ ¼ 6 and initial conditions Sa(t0) ¼ 999, Ia(t0) ¼ 1,

Sh(t0) ¼ 1000 and Ih(t0) ¼ Rh(t0) ¼ Ra(t0) ¼ 0 for t0 ¼ 0 or t0 ¼ 1.

517



Table 2
Transition probabilities for a branching process approximation of spillover.

Event (DIa, DIh) Probabilities

(i) (1, 0) baa(t)iaDt þ o(Dt)
(ii) (�1, 0) g(t)iaDt þ o(Dt)
(iii) (0, 1) bah(t)iaDt þ o(Dt)

A. Nandi, L.J.S. Allen Infectious Disease Modelling 6 (2021) 514e531
Gi;jðu; v; t0; tÞ ¼
X∞
k;l¼0

pði;jÞ;ðk;lÞðt0; tÞukvl: (6)
As our focus is the first human spillover, we restrict to the case Ih(s) ¼ 0 for s2 [t0, t], i.e., j ¼ l ¼ 0 in equations (5) and (6).
With these restrictions, the simplified expressions for the transition probability and the generating function are defined as
follows:

pi;kðt0; tÞ ≡ pði;0Þ;ðk;0Þðt0; tÞ;
Giðu; t0; tÞ ≡ Gi;0ðu;0; t0; tÞ

in particular,
pi;kðt0; tÞ ¼ PðIaðtÞ¼ kjIaðt0Þ¼ i and IhðsÞ¼0; t0 � s� tÞ:
Applying the probabilities in Table 2, we derive the backward Kolmogorov differential equations for the restricted process.
It follows that the transition probability for a small change in the initial time Dt0 > 0 equals

pi;kðt0 � Dt0; tÞ ¼baaðt0 � Dt0Þipiþ1;kðt0; tÞDt0 þ gðt0 � Dt0Þipi�1;kðt0; tÞDt0
þ½1� ðbaaðt0 � Dt0Þ þ gðt0 � Dt0Þ þ bahðt0 � Dt0Þ ÞiDt0 �pi;kðt0; tÞ þ oðDt0Þ

subtracting p (t , t), dividing by Dt and letting Dt / 0þ yield
i,k 0 0 0

�vpi;kðt0; tÞ
vt0

¼ baaðt0Þipiþ1;kðt0; tÞ þ gðt0Þipi�1;kðt0; tÞ � ½baaðt0Þ þ gðt0Þ þ bahðt0Þ �ipi;kðt0; tÞ (7)

the probability of animal disease extinction at time t (with no human spillover) from one infected animal at time t equals
0

p1;0ðt0; tÞ ¼ G1ð0; t0; tÞ: (8)
It follows from the branching process assumption of independence that Giðu; t0; tÞ ¼ ½G1ðu; t0; tÞ�i (Harris, 1963). This
property also applies to pi,0(t0, t) when u ¼ 0. In particular,

pi;0ðt0; tÞ ¼
h
p1;0ðt0; tÞ

ii
: (9)

using the identity (9) in the right side of equation (7) when i ¼ 1 and k ¼ 0, setting p0,0(t0, t) ¼ 1 and simplifying yield

�vp1;0ðt0; tÞ
vt0

¼ baaðt0Þ
h
p1;0ðt0; tÞ

i2 þ gðt0Þ � ½baaðt0Þ þ gðt0Þ þ bahðt0Þ �p1;0ðt0; tÞ;

¼ðbaaðt0Þ þ gðt0Þ þ bahðt0Þ Þ
h
f
�
p1;0ðt0; tÞ; t0

�
� p1;0ðt0; tÞ

i
;

(10)

where f is defined as

f ðu; t0Þ ¼
baaðt0Þu2 þ gðt0Þ

baaðt0Þ þ gðt0Þ þ bahðt0Þ
: (11)

the generating function f has the term bah(t0) in the denominator implying animal disease extinction is conditional on no
human spillover.

The partial differential equation in (10) does not depend explicitly on t. Therefore, fix t and make a change of variable
s ¼ t � t0 in equation (10) so that P(s) ¼ p1,0(t0, t). The following equation is solved backward in time:
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dPðsÞ
ds

¼ ðbaaðt � sÞ þ gðt � sÞ þ bahðt � sÞ Þ½f ðPðsÞ; t � s Þ � PðsÞ �; Pð0Þ ¼ 0: (12)

application of Theorem B.1 and Proposition B.1 in Appendix B show that P(s) converges monotonically and uniformly to a

periodic solution F(s) on s 2 [0, T]. In particular,

Pðsþ kTÞ/FðsÞ as the integer k/∞ for 0 � s � T: (13)
For this branching process, the solutions of the backward and forward Kolmogorov differential equations for Ia(t0) ¼ 1 are
in agreement (Feller, 1940). After a change of variable, the asymptotic solution in (13) can be applied forward in time to p1,0(t0,
t) as t / ∞:

p1;0ðt0; tÞ/FðT � t0Þ; t02½0; T�:
thus, given Ia(t0) ¼ 1, the asymptotic periodic probability for disease extinction in the animal population equals
Pextð1; t0Þ ¼ FðT � t0Þ; t02½0; T�: (14)
It follows that the asymptotic probability of spillover for Ia(t0) ¼ 1 equals 1� Pextð1; t0Þ. Finally, the branching process
assumption (9) leads to the expression for the asymptotic probability of spillover when Ia(t0) ¼ i:

Pspillði; t0Þ ¼ 1� ½Pextð1; t0Þ�i; t02½0; T�: (15)
To compute Pspillði; t0Þ numerically, first we solve equation (12) for sufficiently large s > 0 to obtain an accurate approx-
imation of the periodic solution F(s). Second, we define Pextð1; t0Þ ¼ FðT �t0Þ and finally, we apply formula (15) which gives
the desired probability of spillover.

In some special cases, the probability of spillover may have a trivial periodic solution, i.e., a constant solution. One obvious
case is when the coefficients baa, bah and g are constant. Another case is when f(u, t0) in (11) is independent of t0, f(u, t0) ≡ f(u).
More generally, a trivial periodic probability of spillover occurs if there exists q2 (0,1) such that f(q, t0)¼ q for all t02 [0, T]. In
these cases, the probability of spillover isPspillð1;t0Þ ¼ 1� q. These results are stated in the next theorem. The Proof is given in
Appendix B.

Theorem 3.1. Assume the transmission and recovery rates are positive, continuous and periodic functions defined on R with
common period T > 0. In addition, assume that there exists a constant q2 (0, 1) such that f(q, t0)¼ q for all t02 [0, T]. Then q is the
unique fixed point with this property. In addition, given Ia(t0)¼ i, the asymptotic probability of spillover from the branching process
approximation is constant,

Pspillði; t0Þ ¼ 1� qi

for all t0 2 [0, T]. In the particular case that the following ratios are constant,
Raa ¼ baaðt0Þ
gðt0Þ

and Rah ¼ bahðt0Þ
gðt0Þ

; (16)

an explicit expression for q is given by
q ¼ ðRaa þRah þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRaa þRah þ 1Þ2 � 4Raa

q
2Raa

: (17)
When the parameter values baa, bah and g are constant, the two ratios Raa and Rah can be characterized as reproduction
numbers. The ratio Raa is the basic reproduction number for the animal population, i.e., the average number of secondary
infections caused by one infected animal during the animal’s infectious period (van den Driessche & Watmough, 2002). The
ratioRah is the spillover reproduction number, i.e., the average number of spillover infections caused by one infected animal
during the animal’s infectious period.
4. Numerical examples

Several numerical examples are presented to illustrate how the probability of spillover depends on the three parameters,
baa, bah and g. In the first example, we illustrate this dependence when the parameter values are constant and therefore, the
two reproduction numbers, Raa and Rah, in Theorem 3.1 are constant. In Fig. 3, the probability of spillover is graphed as a
function of these two reproduction numbers. An increase in either of these two reproduction numbers increases the prob-
ability of spillover. Interestingly, even if the basic reproduction number for the animal population is less than one,Raa <1 (no
519



Fig. 3. The probability of spillover, Pspill , as a function of Raa and Rah when parameter values are constant (Theorem 3.1).
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major outbreaks), there may still be a spillover in the human population. But in this latter case, the spillover reproduction
number Rah must be sufficiently large. When Raa <1, Pspill is sensitive to the value of Rah. When Raa >1, there are either
major or minor outbreaks. For Ia(t0) ¼ 1, the probability of a minor animal outbreak is 1=Raa while a major outbreak is 1� 1=
Raa (Whittle, 1955). Hence, the probability of no spillover, conditional on a minor animal outbreak, is q=ð1 =RaaÞ ¼ qRaa and
the probability of a spillover, conditional on a minor animal outbreak, is 1� qRaa. Fig. 3 illustrates the difference between the
probability of a spillover when there is a minor or a major outbreak. Fig. 3 agrees with Fig. 2 in Singh et al. (2014).

In the remaining numerical examples, we assume periodic transmission and recovery rates and compare the estimate of
the probability of spillover in equation (15) to the value obtained from the sample paths of the time-nonhomogeneous
process. For illustration purposes, suppose the transmission and recovery rates are trigonometric functions with period
T ¼ 4 seasons (one season z 90 days):

biðtÞ ¼ bi

�
1þ εicos

�
2pt
T

��
; i ¼ aa; ah; (18)

gðtÞ ¼ g

�
1þ εgcos

�
2pt
T

��
; (19)

and other parameter values are given in Table 3. The rates have units per season. The average values of the transmission and
recovery rates are b

̄

i, i¼ aa, ah and g
̄
, respectively. The absolute values of the εi, i¼ aa, ah, g are the amplitudes of the seasonal

rates.
In the numerical simulations of the Markov time-nonhomogeneous process, the events are defined as in Table 1. A total of

104 sample paths are generated for each of five different initial time points t0 ¼ 0, 1, 2, 3, 4, during the period T ¼ 4. The
proportions of the 104 sample paths that result in a human spillover provide numerical estimates of the probabilities of a
spillover. The remaining proportions are those sample paths that result in disease extinction in the animal populationwith no
human spillover.

In Fig. 4, it can be seen that the estimate of the spillover probabilities from the branching process solution of equation (15)
are in good agreement with the numerical simulations of the time-nonhomogeneous process (blue circles) when Ia(t0) ¼ 1 or
5. The peak values of the probabilities of spillover are close to, but shifted left of the peak values of one of the transmission
rates, either baa(t0) (rows (b) and (c)) or bah(t0) (row (d)).
Table 3
Parameter values for the stochastic spillover model.

Parameter Value Parameter Value

Na 1000 animals εi, i ¼ aa, ah ±0.9
Nh 1000 humans

b
̄

aa
4/season

T 4 seasons
b
̄

ah
1/season

εg ±0.9
g
̄
a

6/season
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Fig. 4. Probabilities of spillover for different combinations of the periodic parameters g(t), baa(t) and bah(t). Graphs of the periodic parameters are in the left
panels. The branching process estimate of probability of spillover is graphed in the middle and right panels when either one or five infected animals are
introduced, Ia(t0) ¼ 1 or 5 (black curves). Probabilities of spillover from simulation of 104 sample paths of the time-nonhomogeneous process are marked by blue
circles at t0 ¼ 0, 1, 2, 3, 4. Parameter values are in Table 3 and periodic parameters are in equations (18)-(19). (a) First row: εaa ¼ εah ¼ εg ¼ 0.9. (b) Second row:
εaa ¼ εah ¼ 0.9 and εg ¼ �0.9. (c) Third row: εaa ¼ �0.9 and εah ¼ εg ¼ 0.9. (d) Fourth row: εaa ¼ εah ¼ �0.9 and εg ¼ 0.9.
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In Fig. 5 are the graphs of the mean and standard deviation for the time until the first spillover when Ia(t0) ¼ 1 or 5,
corresponding to each of the four cases in Fig. 4. The times at which infection is initiated are t0 ¼ 0, 0.5, 1,…, 3.5. The longest
mean times and greatest variability occur in case (a) when the three periodic functions have the same shape and they are all
close to zero (slow change in the dynamics). The shortest mean times occur for case (c) when the transmission and the
recovery rates have the reverse amplitudes, i.e., the recovery rate is fast and the transmission rates are slow.

The average probability of a spillover is computed as follows:

P
̄

spillðiÞ ¼
1
T

ZT
0

Pspillði; t0Þ dt0 for Iaðt0Þ ¼ i: (20)

the average probabilities for Ia(t0)¼ 1 or 5 are computed for each of the periodic spillover probabilities graphed in Fig. 4. They
are summarized in Table 4. The results depend on the values of the periodic parameters and the initial number of animals
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Fig. 5. Plots of the mean and standard deviation for the time until the first spillover event for the transmission and recovery rates given in Fig. 4 (a)e(d) when
Ia(t0) ¼ 1 or 5. The times when infected animals are introduced are t0 ¼ 0, 0.5, 1, …3.5.

A. Nandi, L.J.S. Allen Infectious Disease Modelling 6 (2021) 514e531
infected. For the particular examples in Fig. 4, the average probabilities of spillover with periodic rates in (b), (c) or (d) may be
greater or less than the values in case (a) which correspond to constant rates.

The role of the transmission and recovery rates in predicting the peak values of the spillover probabilities is investigated.
We let the recovery rate be constant and assume the transmission rates are periodic. In Fig. 6, the probabilities of spillover are
graphed for four different constant recovery rates g ¼ 2, 4, 6, 8. The transmission rates, given in equation (18), are periodic
with fundamental period T ¼ 4. In Fig. 6 (a), the transmission rates are synchronized in time with baa(t) ¼ 4bah(t) (similar to
Fig. 4 (a) and (c)). In Fig. 6 (b), the transmission rates are desynchronized in time, with baa(t) shifted right T/2 units of bah(t)
(similar to Fig. 4 (b) and (d)). The four graphs, top to bottom, in the right panels of Fig. 6 correspond to the four recovery rates:
g ¼ 2, 4, 6, 8. As the parameter g is increased, the minima and maxima of the probability of spillover switch from being
dominated by the extrema of baa(t) to those of bah(t). When g increases, the average reproduction numbers decrease: R

̄
aa ¼

b
̄

aa=g ¼ 2;1;2=3;1=2 andR
̄

ah ¼ b
̄

ah=g ¼ 1=2;1=4;1=6;1=8. In Fig. 6, if R
̄
aa � 1, the times of the peak values of the animal to

animal transmission rate are more closely related to the times of highest risk of spillover than the time of the peak values of
the animal to human transmission, whereas if R

̄
aa ¼ 1=2, the reverse is true. For R

̄
aa ¼ 2=3 and R

̄

ah ¼ 1= 6, the spillover
probability is constant,Pspillð1; t0Þ ¼ 0:25 (Theorem 3.1 and Figure B.1 in Appendix B). A similar phenomenon can be observed
if g ¼ 6 is fixed and the mean value of the animal to human transmission rate, b

̄

ah, is increased from values less than one to
greater than one.

5. Application to avian influenza

Avian Influenza (AI) is caused by influenza A viruses that are classified according to two surface proteins, hemagglutinin
(H, 16 subtypes) and neuraminidase (N, 9 subtypes) (CDC, 2017). The AI viruses that infect humans are generally associated
with either H5, H7 or H9 subtypes (CDC, 2019b). Outbreaks around theworld of H5N1 from 2003 to July 2020, recorded by the
World Health Organization, resulted in 861 confirmed human cases and 455 deaths (WHO, 2020a). An H7N9 outbreak in
China from 2013 to 2015, resulted in 568 confirmed human cases and 212 deaths (WHO, 2015). A few sporadic and mild
human cases have been reported for H9N2 (CDC, 2019b). Currently, none of these AI viruses have sustained human-to-human
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Table 4
The average probability of spillover P

̄

spillðiÞ when the initial infected animal
population is Ia(t0) ¼ 1 or 5, based on the periodic spillover probabilities graphed in
Fig. 4 (a)e(d).

Fig. 4 P
̄

spillð1Þ P
̄

spillð5Þ
(a) 0.250 0.763
(b) 0.397 0.785
(c) 0.373 0.626
(d) 0.304 0.676
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transmission (WHO, 2015; 2020a). The natural reservoir for AI is wild birds, specifically migrating waterfowl. Spread to
humans often comes from an intermediate host, such as domestic poultry. AI viruses are also classified according to low or
highly pathogenic AI (LPAI or HPAI) which refers to the severity of disease in domestic poultry (CDC, 2017). Human infection
with H5N1 is often associated with HPAI while the other two, H7N9 and H9N2, are LPAI (CDC, 2017). Seasonal outbreaks of
HPAI are frequently seen in domestic poultry (OIE, 2018; Tuncer & Martcheva, 2013), especially for HPAI, where seasonal
migration patterns of wild birds have a strong connection with outbreaks in domestic poultry (Bui et al., 2016).

A variety of models for AI include transmission between birds and humans but only a few include seasonal variability, e.g.,
(Liu et al., 2017; Tuncer&Martcheva, 2013; Zhang et al., 2019). Tuncer andMartcheva (2013) applied an ODEmodel for spread
of HPAI H5N1 between domestic poultry and humans and fit seven different models to cumulative number of human cases.
The models included seasonality in domestic bird-to-bird transmission, wild birdmigration, environmental transmission or a
combination of all three types of seasonality. We apply the seasonal HPAI H5N1 model formulated by Tuncer and Martcheva
(2013) that provided the best fit to cumulative number of human cases, the model with seasonal bird-to-bird transmission.
The model also assumes replacement, removal and disease-related mortality of domestic birds but no recovery. Parameter L
is the bird replacement rate, m is the removal rate and n is the disease-related mortality. In the absence of disease, the bird
population is maintained at a constant population size of Sa ¼ L/m ¼ Na. The total human population is Nh. The seasonal bird-
to-bird transmission is baa(t). We also consider a case with seasonal bird-to-human transmission, bah(t). The ODEmodel (1) is
replaced by the following system:

Domestic Birds

8>>><
>>>:

dSa
dt

¼ L� baaðtÞ
IaSa
Na

� mSa;

dIa
dt

¼ baaðtÞ
IaSa
Na

� ðmþ nÞIa;
(21)

and the human population is modeled by system (2).
A Markov time-nonhomogeneous stochastic process can be defined based on the rates in the ODE models (2)e(21) as in

Table 1. In this new stochastic model, there are events for replacement, removal and disease-relatedmortality in the domestic
bird population. Approximation of the stochastic process near the DFE, Sa ¼ Na and Sh ¼ Nh, leads to a branching process
approximation of the time-nonhomogeneous process. Similar to the derivation of the differential equation (12), assuming
Ia(t0) ¼ 1 and defining s ¼ t � t0, leads to a new differential equation for the probability of no spillover for the branching
process approximation of the stochastic model:

dPðsÞ
ds

¼ ðbaaðt� sÞþmþ nþ bahðt� sÞÞ½f ðPðsÞ; t� sÞÞ� PðsÞ�; Pð0Þ ¼ 0; (22)
where the new generating function f equals:

f ðu; t0Þ ¼
baaðt0Þu2 þ mþ n

baaðt0Þ þ mþ nþ bahðt0Þ
: (23)
Table 5
Parameter values for domestic birds and humans. Parameter values are taken from Tuncer and Martcheva (2013) with the exception of Na,
Nh and b

̄

ah .

Parameter Poultry Parameter Human

Na 20,000 animals Nh 200 humans

b
̄

aa
0.1075/day

b
̄

ah
0.1235/day

n 0.1/day T 365 days
m 0.5/T/day
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The periodic probability of spillover for Ia(t0) ¼ 1 is found by solving the differential equation (22) with the generating
function in equation (23). To test the branching process estimate for the probability of spillover, we use the parameter values
in Tuncer and Martcheva (2013), but we adjust the bird and human population sizes Na and Nh so that they correspond to
population sizes on a single large poultry farm. We also adjust b

̄

ah so that the average reproduction numbers correspond to
those in Tuncer and Martcheva (2013) (Table 5). In our model, population sizes for birds and humans are Na ¼ 20, 000 and
Nh ¼ 200 and the average reproduction numbers equal

R
̄
aa ¼ b

̄

aa

nþ m
¼ 1:0605; R

̄

ah ¼ b
̄

ah

nþ m
¼ 1:218:
Three different sets of periodic transmission rates for HPAI H5N1 are applied to the domestic bird-human stochastic
model:

ðiÞ

8><
>:

baaðtÞ ¼ 0:1075
�
1þ 0:1015sin

�
2pt
365

þ 107:75
��

;

bahðtÞ ¼ 0:1235;

(24)

ðiiÞ

8><
>:

baaðtÞ ¼ 0:1075
�
1þ 0:9sin

�
2pt
365

þ 107:75
��

;

bahðtÞ ¼ 0:1235;

(25)

ðiiiÞ

8>>><
>>>:

baaðtÞ ¼ 0:1075
�
1þ 0:9sin

�
2pt
365

þ 107:75
��

;

bahðtÞ ¼ 0:1235
�
1þ 0:9sin

�
2pt
365

þ 107:75
�� (26)

case (i) is applied in Tuncer and Martcheva (2013). The periodic probability of spillover for these three cases are graphed in
Fig. 7. There is good agreement between the branching process approximation for t 2 [0, 360] and the numerical simulations
0
of the time-nonhomogeneous stochastic process for initial times t0 ¼ 0, 30, 60, 90, …, 360 when Ia(t0) ¼ 1 or 2 (104 sample
paths at each initial time point). The differences in amplitude and shape of the periodic transmission rates over time have a
large impact on the probability of spillover. The average values of the probability of spillover are summarized in Table 6. In
case (i), the average values are close to those in themodel with constant transmission rates, e.g., baaðtÞ ¼ b

̄

aa and bahðtÞ ¼ b
̄

ah.
In cases (ii) and (iii) with more variability in the seasonality, the average values are smaller than in case (i).

5.1. Generalization to multiple stages

The results apply to more general spillover models that include multiple stages and seasonality. We illustrate how the
spillover probabilities changewith inclusion of a latent stage in the animal population. If deaths occur during the latent stage,
then the probabilities of spillover will be decreased. Let the latent stage be denoted as Ea. Let the mortality rate (natural plus
disease-related) be m þ a and the transition rate to the infectious stage be d. The ODE model for the domestic bird population
is

Domestic Birds

8>>>>>>>><
>>>>>>>>:

dSa
dt

¼ L� baa

�
t
�
IaSa
Na

� mSa;

dEa
dt

¼ baaðtÞ
IaSa
Na

� ðmþ aþ dÞEa;

dIa
dt

¼ dEa � ðmþ nÞIa;

(27)

Table 6

Average probability of spillover when the initial domestic bird population equals
Ia(t0) ¼ i, i ¼ 1, 2 based on the branching process approximation with seasonal
transmission rates as in cases (i), (ii), (iii).

Case
P
̄

spillð1Þ P
̄

spillð2Þ
(i) 0.657 0.882
(ii) 0.651 0.875
(iii) 0.564 0.758
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The rates in the domestic bird ODE model (27), coupled with the rates in the human ODE model (2), can be used to define
transition probabilities for the time-nonhomogeneous stochastic model. The branching process approximation of the sto-
chastic model at the DFE, Sa ¼ L/m ¼ Na and Sh ¼ Nh, and the backward Kolmogorov differential equations can be used to
derive two differential equations, one for each of the variables Ea and Ia (similar to themethod for derivation of (10)). A change
of variable in the two differential equations, s ¼ t � t0, leads to the following system of differential equations:

dP1ðsÞ
ds

¼
�
dþ mþ a

�
½f1ðP1ðsÞ; P2ðsÞ; t � sÞ � P1ðsÞ�

dP2ðsÞ
ds

¼
�
baa

�
t � s

�
þ mþ nþ bah

�
t � s

��
½f2ðP1ðsÞ; P2ðsÞ; t � sÞ � P2ðsÞ�

(28)

with initial conditions P1(0) ¼ P2(0) ¼ 0 and the two generating functions
f1ðu1;u2; t0Þ ¼
du2 þ mþ a

dþ mþ a
;

f2ðu1;u2; t0Þ ¼
baaðt0Þu1u2 þ mþ n

baaðt0Þ þ mþ nþ bahðt0Þ
:

The generating function f1, given Ea(t0) ¼ 1, accounts for two events. Either Ea transitions to stage Ia with probability d/
(dþ mþ a) or dies with probability (mþ a)/(dþ mþ a). The generating function f2, given Ia(t0)¼ 1, also accounts for two events,
conditional on no spillover. Either Ia infects another animal resulting in a new exposed animal Ea with probability baa(t0)/
(baa(t0) þ m þ n þ bah(t0)) or dies with probability (m þ n)/(baa(t0) þ mþ n þ bah(t0)). Numerical solution of system (28) leads to
an estimate for the periodic probability of spillover:

Piðsþ kTÞ/FiðsÞ; s2½0; T�;

for i ¼ 1, 2, as k / ∞. Thus, Pextð1;0; t0Þ ¼ F1ðT � t0Þ, Pextð0;1; t0Þ ¼ F2ðT �t0Þ and
Pspillðj; i; t0Þ ¼ 1� ½Pextð1;0; t0Þ�j½Pextð0;1; t0Þ�i; t02½0; T�: (29)
In Figure (8) are graphs of the branching process estimates of the spillover probabilities when the transmission rates are
given by case (ii). Spillover is initiated by domestic birds with either one exposed bird or one infected bird:
ðEaðt0Þ; Iaðt0Þ ¼ ð1;0Þ or (0, 1). The new parameters are d ¼ 0.2/day and a ¼ 0.1/day with other parameter values in Table 5.

The average value of the periodic probability of spillover depends on the initial conditions (Ea(t0), Ia(t0))¼ (j, i), t02 [0, T]. It
can be computed similar to formula (22) as

P
̄

spillðj; iÞ ¼
1
T

ZT
0

Pspillðj; i; t0Þ dt0:

Table 7 is a summary of the average values for the probability of spillover for cases (i), (ii) and (iii) with either 1 or 2 exposed or
infected birds.

The average values of the probabilities of spillover with an exposed stage differ from thosewithout an exposed stage, Table
6 versus Table 7. As the exposed stage includes deaths, average values are smaller if spillover is initiated by exposed rather
than by infected birds. Other generalizations of the branching process method are possible, such as spillover from indirect
transmission through the environment or transmission involving several species, a natural reservoir, an intermediate host
and humans.
Table 7
Average probability of spillover from the branching process approximation of the time-nonhomogeneous process corresponding to ODE model (2)e(27) for
cases (i)-(iii) for either 1 or 2 exposed or infected birds introduced into the domestic bird population.

Case
P
̄

spillð1;0Þ P
̄

spillð2;0Þ P
̄

spillð0;1Þ P
̄

spillð0;2Þ
(i) 0.414 0.656 0.624 0.858
(ii) 0.412 0.654 0.621 0.855
(iii) 0.358 0.566 0.539 0.739
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Fig. 6. Probability of spillover when g is a fixed constant and baa(t) and bah(t) are periodic. The periodic transmission rates are graphed in the left panels and the
corresponding probabilities of spillover, as computed from the branching process approximation, are graphed in right panels for four different values of g ¼ 2, 4,
6, 8. In the two panels on the right, the times at which there is greatest risk of a spillover (maximum values of Pð1; t0Þ) are marked with blue plus sign þ and the
times of lowest risk (minimum values of Pð1; t0Þ) are marked with a red dot ,.
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6. Discussion

Seasonality plays a crucial role in the timing of first human spillover in zoonotic diseases (Glass et al., 2000; Plowright
et al., 2017; Schmidt et al., 2017). In this investigation, we generalized the mathematical results of Singh et al. (2014) by
including the effects of seasonality during the early stages of an epidemic. We applied branching process theory and the
backward Kolmogorov differential equations to derive an analytical approximation for the probability of the first human
spillover when parameters such as the transmission and recovery rates vary seasonally. The probability of spillover depends
on the time during the season when infection is introduced into the animal population. Prediction of the time of highest risk
of human spillover depends on how seasonality affects the parameter rates and generally, may not be obtained by observation
of a single parameter (Figs. 4 and 6).

The assumption of unbounded population sizes in the branching process limits the application of these results to large
population sizes. The branching process estimates should be tested against the Markov time-nonhomogeneous process.

From a public health perspective, prevention and management of spillover require medical and veterinary approaches
such as vaccination and treatment as well as ecological considerations that target transmission pathways at the human-
animal interface (Karesh et al., 2012; Lloyd-Smith et al., 2009; Sokolow et al., 2019). Seasonality and changing climate are
important drivers of this spillover. Understanding the role of seasonality in spillover prevention and management requires
models coupled with data. Important questions for models to address are the effects of medical, veterinary and ecological
interventions on public health outcomes when transmission is seasonal (Karesh et al., 2012; Lloyd-Smith et al., 2009; Schmidt
et al., 2017; Sokolow et al., 2019).
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Fig. 7. Probability of spillover from the branching process approximation of the time-nonhomogeneous process derived from the ODE model (2)e(21). The
transmission rates baa and bah are graphed in the left panels for each of the three cases (i), (ii) and (iii), equations (24)e(26), respectively. Other parameter values
are given in Table 5. In the two panels on the right are the probability of human spillover, computed from the branching process approximation when either 1 or 2
infected birds are introduced into the population (black curves). From simulation of the time-nonhomogeneous process at t0 ¼ 0, 30, 60, 90, …, 360, the pro-
portions of sample paths out of a total of 104 that result in a human spillover before death or removal of birds are also plotted (blue circles).

Fig. 8. Probability of spillover for the AI time-nonhomogeneous stochastic process corresponding to (2)e(27) with transmission rates baa and bah for case (ii).
Parameters are d ¼ 0.2/day, a ¼ 0.1/day with other parameter values in Table 5. Numerical simulations from the time-nonhomogeneous process show the
proportions of sample paths out of 104 that result in a human spillover before death or removal of all of the domestic birds (blue circles) at t0 ¼ 0, 30, 60, 90, …,
360.

A. Nandi, L.J.S. Allen Infectious Disease Modelling 6 (2021) 514e531
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Appendix
A. Gillespie-type algorithm

Another method to simulate sample paths and the interevent times for the time-nonhomogeneous process is to apply a
Gillespie-type algorithm. Let ftng∞n¼0 be the times of the nth event with t0 the starting time. Let S(t þ tn) be the sum of the
transition rates at time t þ tn < tnþ1 and sa, ia and ih be the values of the state variables at time tn (Nh and Na are constant). For
the time-nonhomogeneous process defined in Table 1 and the identity (4), the value of

Sðtþ tnÞ ¼ baaðtþ tnÞia saNa
þ gaðtþ tnÞia þ bahðtþ tnÞia shNh

:

to simulate the time until the next event (i), (ii) or (iii), the value of t ¼ tnþ1 is found by inverting the following function:

HðtÞ ¼ 1� exp
�
�
Zt
0

Sðtþ tnÞdt
�

that is, tnþ1 ¼ H�1(1 � U) ¼ H�1(U), where U is a uniform randomvariable on [0, 1] (Ross, 2014). This method simplifies to the
well-known Gillespie algorithm when the parameters baa, bah and ga are constant (Gillespie, 1977).

B. Theorems

We apply the following theorems to show that P(s) converges to a periodic solution F(s), s 2 [0, T].

Theorem B.1. (Theorem 4.11, p. 116 Hale and Koçak (2012)). Let dx/dt ¼ h(x, t) with h(x, t þ T) ¼ h(x, t), where h : R� R/ R. In
addition, let the mapping (x, t)/ h(x, t) be a continuous function and C1 in the variable x. If a solution x(t) is bounded for t� 0, then
there is a periodic solution F(t) of period T such that

xðtþ kTÞ/FðtÞ as the integer k/±∞ (B.1)

monotonically and uniformly for 0 � t � T.

To apply Theorem B.1 to P(s), we show that the conditions of the theorem hold for the solution of equation (12). The
function h of dP/ds¼ h(P, s) is a T�periodic function of s and the mapping (P, s)/ h(P, s) is a continuous function and C1 in the
variable P. The following proposition also shows that P is bounded for s � 0.

Proposition B.1. Assume the transmission and recovery rates are positive, continuous and periodic functions defined on R with
common period T. Then the solution of the initial value problem (12) is bounded for s � 0 and P(s) X (0, 1) for s > 0.

Proof. From the initial value problem in (12) it follows that dP/ds|s¼0 > 0. Therefore, for small s, P(s) > 0. If the solution of the
differential equation in (12) satisfies P(s);(0, 1) for some s > 0, then there exists a first time s1 > 0, where the solution crosses
the boundary of [0, 1], either P(s1) ¼ 0 or P(s1) ¼ 1. If P(s1) ¼ 0, from equation (12) it follows that dPðsÞ=dsjs¼s1 >0 which
contradicts the fact that P(s) must be nonincreasing to cross the boundary at 0. Similarly, if P(s1) ¼ 1, then from equation (12),
dPðsÞ=dsjs¼s1 <0 which contradicts the fact that P(s) must be nondecreasing to cross the boundary at 1. Therefore, P(s)2 (0, 1)
for s > 0.

It follows from Theorem B.1 that P(s) converges monotonically and uniformly to a periodic solution F(s) on s 2 [0, T]. In
particular,

Pðsþ kTÞ/FðsÞ as the integer k/∞ for 0 � s � T:
The Proof of Theorem 3.1 shows in special cases that the probability of spillover is constant for all initial times t0 2 [0, T].
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Proof of Theorem 3.1. Dividing the numerator and the denominator of the generating function in equation (11) by g(t0) leads
to

f ðu; t0Þ ¼
Raaðt0Þu2 þ 1

Raaðt0Þ þ Rahðt0Þ þ 1
: (B.2)

If f(q, t0) ¼ q for all t0 2 [0, T], then the identity holds for all t02R as the coefficients are periodic with period T. Rewriting
the differential equation for P in equation (12) in terms of the generating function in equation (B.2) yields

dP
ds

¼ aðt � sÞ
"

Raaðt � sÞP2 þ 1
Raaðt � sÞ þ Rahðt � sÞ þ 1

� P

#
¼ aðt � sÞ

R aaðt � sÞ þR ahðt � sÞ þ 1
h

 
P; t � s

!
;

where u ¼ P, t0 ¼ t � s,

aðt� sÞ ¼ baaðt� sÞ þ gðt� sÞ þ bahðt� sÞ

and

hðP; t� sÞ ¼ Raaðt� sÞP2 � ðRaaðt� sÞþRahðt� sÞþ1ÞP þ 1: (B.3)

Since f(q, t � s) ¼ q for fixed t and all s2R, then h(q, t � s) ¼ 0 for all s2R. Rewrite the equation h(q, t � s) ¼ 0 as

Raaðt� sÞqþRahðt� sÞ q
1� q

¼ 1:

Suppose 0 < q1 < q < 1. Then q1/(1 � q1) < q/(1 � q), which implies

Raaðt� sÞq1 þRahðt� sÞ q1
1� q1

<1

for all s2R. The preceding inequality implies h(q1, t� s) > 0 for all s2R. A similar argument shows for 0 < q < q2 < 1 that h(q2,
t � s) < 0 for all s2R. Consequently, q is the unique constant in (0, 1) with the property h(q, t � s) ¼ 0 or equivalently f(q,
t0) ¼ q. We have shown that h(P, t � s) > 0 for 0 � P < q and h(P, t � s) < 0 for q < P � 1. Since a(t � s) is strictly positive and
bounded, it follows that P(s) converges monotonically to q. TheoremB.1 impliesF(s)¼ q and it follows thatPextð1;t0Þ ¼FðT �
t0Þ ¼ q. In the special case that Raa and Rah are constants, equation (B.3) and application of the quadratic formula yield the
explicit formula for q, expressed in equation (17).

Fig. B.1 illustrates the fixed point for the generating function f(P, t0) corresponding to Fig. 6 (b) based on Theorem 3.1.

Fig. B.1. Graph of the generating function f(P, t0) and the contours for the example in Fig. 6 (b) for g ¼ 6. Evident in the contours is the constant value of f(P, t0)
when P ¼ 0.75, the fixed point of f for all time t0.
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C. Probability density for time to spillover

In Fig. C.1 are graphed the approximate probability densities for the time to first spillover in the human population based
on the transmission and recovery rates in Fig. 4 (a)e(d). Probability histograms in Fig. C.1 record the frequencies
(probability � 500) based on 104 sample paths of the time-nonhomogeneous stochastic model that result in the first human
spillover for Ia(t0) ¼ 1 at t0 ¼ 0, 1, 2, 3 in cases (a)-(d), respectively. The approximate means and standard deviations for these
probability densities are graphed in Fig. 5 (a)e(d).

Fig. C.1. Probability histograms (frequency ¼ prob � 500) of the time to the first human spillover, given Ia(t0) ¼ 1 at t0 ¼ 0, 1, 2, 3 in the time-nonhomogeneous
stochastic model. Transition rates given in Table 1. Transmission and recovery rates are the same as in Fig. 4 (a)e(d). The means and standard deviations (mean,
std) are recorded on the top of each panel.
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