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Vascular remodeling (VR) is a structural and functional change of blood vessels

to adapt to the changes of internal and external environment. It is one of the

common pathological features of many vascular proliferative diseases. The

process of VR is mainly manifested in the changes of vascular wall structure

and function, including intimal hyperplasia, thickening or thinning of media,

fibrosis of adventitia, etc. These changes are also the pathological basis of

aging and various cardiovascular diseases. Mechanical force is the basis of

cardiovascular biomechanics, and the newly discovered mechanical sensitive

ion channel Piezo1 is widely distributed in the whole cardiovascular system.

Studies have confirmed that Piezo1, a mechanically sensitive ion channel,

plays an important role in cardiovascular remodeling diseases. This article

reviews the molecular mechanism of Piezo1 in atherosclerosis, hypertension

and pulmonary hypertension, in order to provide a theoretical basis for the

further study of vascular remodeling.

KEYWORDS

vascular remodeling,mechanosensitive ion channel Piezo1, endothelial cells, vascular

smooth muscle cell, pathology

Introduction

Vascular remodeling (VR) is a frontier field in the research of various cardiovascular

diseases in recent years. As a dynamic pathological process, it is the change of the

structure and function of blood vessels to adapt to the changes in the internal and

external environment (1–3). The functional changes are manifested as alterations in

vascular compliance and derangements in vascular regulation, while the structural

changes are reflected in the synthesis, degradation and reorganization of the extracellular

matrix (ECM) and the excessive proliferation, migration and apoptosis of vascular

endothelial cells and smoothmuscle cells (2, 4–8). VR is a key pathological characteristics

of the development of a variety of cardiovascular diseases, and many biological

processes can lead to pathological VR, such as endothelial cell dysfunction and damage,
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vascular smooth muscle cell migration, proliferation, apoptosis,

oxidative stress, lipid accumulation, inflammatory response

and imbalance of ECM synthesis and degradation (9–13). In

addition, VR is also regulated by vascular growth factors,

the vasoactive substances and hemodynamics (1, 14, 15). The

molecular mechanisms of action of pathological VR are not

well understood, which makes the treatment of VR disorders

difficult and the prognosis poor (12). Therefore, exploring

the pathogenesis and treatment strategies of VR disorders has

become a hot topic in basic research, and it is also an urgent

medical problem to be solved in clinical work.

The mechanosensitive ion channel Piezo1 is a mechanically

activated, non-selective cation channel that efficiently converts

mechanical forces into electrochemical signals (16). Piezo1 has

been studied in a variety of disciplines, including biology,

pathology and pathophysiology, and is manifested in a variety

of biological functions such as touch, proprioception, pain,

vascular development and blood pressure regulation (17–

20). It has been established that Piezo1 is expressed on

vascular endothelial cells, blood cells, epithelial cells and

cardiomyocytes, etc and plays an important regulatory role in

the physiopathological processes of the body (21, 22). Piezo1 acts

in the cardiovascular system mainly by sensing the fluid shear

stress caused by blood flow and non-selectively mediating the

entry of cations such as Na+, Ca2+ into the cells (23, 24). Piezo1-

mediated Ca2+ inward flow in vascular endothelial cells can

affect vascular remodeling by regulating downstream signaling

pathways related to vascular tension, vascular development,

lymphatic valve formation and epithelial cell homeostasis,

among other effects (25–30). Therefore, the present paper

investigates the effects of Piezo1 on vascular remodeling. Thus,

the present paper reviews the mechanosensitive ion channel

Piezo1 in cardiovascular remodeling diseases, with the aim of

providing a theoretical basis for the diagnosis and treatment of

cardiovascular remodeling diseases.

Piezo1 channels structure-function

Piezo1 protein, first reported in 2006, is a Ca2+ ion channel

membrane protein (31). At the beginning of 2010, Patapoutian’s

team first screened Neuron2A cell lines to determine that they

could sense mechanical stress, and then used modern molecular

biology techniques such as gene silencing and membrane clamp

to silence 72 candidate genes with RNA, followed by stress

testing and recording of currents in the treated cells (32). Coste

et al. (32) eventually identified Fam38A, the gene that mediates

mechanosensitive ionic currents, and found that knocking out

the Fam38A gene eliminated currents activated by mechanical

forces, naming it Piezo1, a discovery that was also awarded the

Nobel Prize in Physiology or Medicine in 2021.

The Piezo1 protein contains 2,547 amino acids. It is

a trimeric propeller-shaped channel protein (∼900 kDa),

consisting of a central anchor, three long beams and three

blade-like structures (33). Observed under high-resolution cryo-

electron microscopy (cryo-EM), it shows a three-leafed helical

structural state (33–35). It is the unique structure of Piezo1 that

allows it to respond with very specific mechanosensitivity to

external stimuli and to internal signals generated by the cell (36).

It was demonstrated that Piezo1 can sense and transmit a

variety of mechanical forces, including cell membrane tension

(37), shear stress (17, 38), cellular stretch (32), and cyclic

pressure (39). Increasingly, Piezo1 has been confirmed to play

an important role in the maintenance of vascular development

and vascular function, particularly in the regulation of vascular

endothelial cell function (40). It was found that Piezo1 is highly

expressed on vascular endothelial cells, and when researchers

knocked out Piezo1 on mouse endothelial cells, it was observed

that blood vessels failed to form in mouse embryos, resulting

in embryonic death; experiments confirmed that Piezo1 has an

important role in vascular development and molding (17, 41,

42). In addition, Retailleau et al. (43) found that in arterial

smooth muscle cells, Piezo1 induced small arterial vascular

neovascularization by activating TG and promoting thickening

of small arterial blood vessel walls.

It has also been reported that vascular endothelial

cells constantly interact with the intra- and extra-luminal

extracellular environment and that endothelial cells are

endowed with physical stresses, such as shear stresses and tensile

forces, which are sensed and transmitted by Piezo1, leading

to altered cell behavior with excessive proliferation, migration

and aggregation, forming primitive vascular vasculature and

further leading to pathological vascular remodeling (28, 44–

46). In summary, Piezo1 has a major function in vascular

remodeling and may be a potential therapeutic target for

vascular remodeling diseases.

Pharmacological modulators of
Piezo1 channels

Piezo1 channel activator

In addition to physical-mechanical forces, Piezo1 also

allows gating by chemical means. Syeda et al. (47) recently

used high-throughput screening techniques to screen 3.25

million low molecular compounds one by one, eventually

identifying the first chemical activator of the Piezo1 channel and

naming it Yoda1, which activates Piezo1 without mechanical

stimulation by acting on the intracellular region at the C-

terminus of the Piezo1 channel protein (48–51). The results of

the experimental research showed that the activation current

of Piezo1 channels was found to be significantly reduced

after depletion of extracellular Ca2+ with Ca2+ chelators, but

was not altered when intracellular Ca2+ was depleted by the

application of toxic carotene (Thapsigargin, A potent inhibitor
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of intracellular calcium transport enzymes), indicating that the

Yoda1-induced Ca2+ response is likely to be dependent on the

inward flow of extracellular Ca2+. In addition, it was found

that the administration of certain mechanical stimuli enhanced

the kinetic process of Yoda1-induced Piezo1 channels and

prolonged the inactivation of transient currents (36, 49, 52, 53).

Jedi1/2 is a new recently discovered hydrophilic Piezo1

channel chemical activator that acts by acting on a distal

paddle at the cell periphery, using a peripheral lever-like device

consisting of a blade and a light beam to control the central

Piezo1 ion conductance pore (54, 55). However, the specific

mechanisms by which these chemicals activate Piezo1 channels

remain elusive, and their role in cardiovascular remodeling

needs to be further investigated.

Piezo1 channel non-specific inhibitor

Only a few drugs have been used in pharmacological studies

of Piezo1 channel Non-specific inhibitors, broadly classified as

Gd3+, Dooku1, and La3+ in the lanthanide family, gentamicin

and streptomycin in the aminoglycoside group, ruthenium red

(RR) and the spider venom peptide GsMTx-4 isolated from

tarantula toxin (16, 32, 56–60). GsMTx-4 is a cation channel-

specific blocker that not only blocks Piezo1 ion channels but

also has the effect of inhibiting Piezo1-induced mechanically

activated (MA) current generation (61–64). Mechanistically,

GsMTx4 binds to the cell membrane and, by inserting its

hydrophobic domain into the lipid bilayer, acts directly on the

backbone proteins of the membrane, blocking mechanical force

transmission by altering the tension in the membrane and thus

achieving a blockade of the Piezo1 ion channel (62, 65, 66). It has

been confirmed that two drugs, such as Phosphatidic acid (PA)

and lysophosphatidylcholine (LPC), also exert a blocking effect

on the mechanical ion channel Piezo1 via the above pathway

(20, 66–69).

Previous research in the author’s laboratory has revealed

that the effective extract of the Chinese medicine tubeimoside

I (TBMS1) antagonizes the activation of Piezo1 channels

by Yoda1 through competing with Yoda1 for the target

of action, thereby inhibiting the Yoda1-induced aortic

diastole. Meanwhile, it was also found that although TBMS1

did not significantly inhibit phenylephrine-induced aortic

ring contraction, it significantly reduced Yoda1-induced

vasodilation, suggesting that TBMS1 directly inhibits Piezo1

channel activity or functions through other unknown

mechanisms, thus speculating that TBMS1 may act on

Piezo1 in vascular smooth muscle cells to partially inhibit

vasoconstriction and thus slow down the onset of vascular

remodeling (50). The above findings also confirm that herbal

compounds can act through Piezo1 ion channels for the

treatment of vascular remodeling diseases, which may also

provide new targets for the development of disease-targeting

drugs (Table 1).

The role of Piezo1 in atherosclerotic
vascular remodeling

Atherosclerosis (AS) is the most common type of

atherosclerosis, which is characterized by the accumulation

of lipids and necrotic tissue in the intima of arteries, forming

yellow atheromatous plaques (61, 70). AS is a chronic

inflammatory disease and the pathological basis of many

cardiovascular diseases. As the disease progresses, the lumen

gradually becomes thickened, stiffened, and less elastic until it

becomes occluded, eventually leading to myocardial infarction,

stroke and other diseases (71–73).

It is well known that inflammation is a key factor driving the

development and progression of AS, and that disturbed blood

flow shear stress can exacerbate the inflammatory response

by damaging vascular endothelial cells (28, 74–76). Albarran-

Juarez et al. (77) demonstrated that Piezo1 activates P2Y2

receptors and Gq/G11 protein-mediated integrins after sensing

vascular perturbations, which in turn activates adhesion kinase-

dependent activation of the pro-inflammatory star factor NF-κB,

thereby exacerbating the development of atherosclerosis. It was

also found that when endothelial-specific Piezo1 or Gq/G11-

deficient mice were induced, activation of integrins, activation

of inflammatory signaling pathways was found to be reduced,

and the area of atherosclerosis and the extent of atherosclerosis

were both reduced to some extent. Further studies revealed that

under high shear stress laminar flow, Piezo1-mediated vascular

remodeling-related signaling pathways P2Y2 and Gq/G11 were

inhibited, but activated downstream eNOS signaling pathways,

which were instead protective against atherosclerotic disease

(77–80). Experiments have shown that Piezo1 plays a regulatory

role in the development of atherosclerotic pathology by

mediating different downstream signaling pathways through

sensing different blood flow patterns such as laminar and

perturbed flow.

Proliferation, apoptosis and migration of vascular smooth

muscle cells are important pathological changes in diseases such

as atherosclerosis and restenosis and are major pathological

features of arterial reconstruction due to mechanical stress

(81, 82). Piezo1, as a mechanosensitive ion channel protein, is

essential for the sensing and transduction of mechanical forces

such as shear stress and tensile force (83, 84). Randolph et al. (41,

85, 86) showed that Piezo1 mediates cell proliferation-related

factors such as matrix metalloproteinase-2 (MMP-2), matrix

metalloproteinase-9 (MMP-9), and Platelet derived growth

factor (PDGF) expression directly mediates the proliferation of

vascular smooth muscle cells. In addition, the application of a

15%mechanical stretching force to mouse aortic smooth muscle
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TABLE 1 Summarization of current Piezo1 pharmacology.

Category Drugs Selectivity Binding site (domain) References

Activating agents Yoda1 Selective C-terminal (ATM area) (36, 48–52)

Jedi1/2 L15-16/L19-20 area

Inhibiting agents GsMTx4 Non-selective Pore of the channel (53, 56–59)

Ruthenium red (RR) (32, 54)

Gd3+ (54, 55)

Tubeimoside 1 Compete with Yoda1 (48, 60)

Dooku1

Modulating agents lysophosphatidylcholine (LPC) Non-selective Membrane lipid environmental alterations (20, 59–62)

Phosphatidic acid

cells in cell culture using the Flexcell cellular fluid shear stress

system revealed that the expression of proteins and genes related

to the Akt signaling pathway, which regulates cell proliferation,

migration and anti-apoptosis, was upregulated, leading to

sustained smooth muscle cell proliferation and exacerbating the

progression of atherosclerotic disease (87–91). Meanwhile Jufri

et al. (92) suggested that physiological mechanical stretch helps

maintain vascular health and that pathological stretch leads

to further disease development. When endothelial cells were

stretched by pathological mechanical forces, elevated expression

of specific vascular smooth muscle cell marker genes (SM22,

SMA, Caldesmon-1, SM MHC and Calponin) and decreased

expression of endothelial markers were observed, suggesting

that endothelial cells are gradually damaged after a certain

mechanical stretch force and smooth muscle cells proliferate

abnormally, which is also driving plaque This is one of the

important reasons for the progression of plaque (93–95).

This suggests that inhibition of Piezo1 overexpression may

have a therapeutic effect on atherosclerotic disease. Recent

studies in the author’s laboratory have found that silencing

the expression of Piezo1 in human umbilical vein endothelial

cells (HUVEC) and murine liver endothelial cells (MLEC)

has a protective effect against atherosclerosis. It was also

demonstrated that the Chinese herbal medicine monomer

salvianolic acid B could inhibit Ca2+ influx following Piezo1

activation by Yoda1, which inhibited pathological aortic

luminal hypoelasticity and thus slowed down the formation of

atherosclerotic plaques (96).

The role of Piezo1 in vascular remodeling
in pulmonary hypertension

Pulmonary arterial hypertension (PAH) is a complex,

progressive cardiopulmonary disease characterized by non-

specific symptoms such as dyspnoea, fatigue, weakness, angina,

and syncope. Themain features of PAH are increased pulmonary

vascular resistance and elevated pulmonary arterial pressure,

ultimately leading to right heart failure and death (97–99). It

has been shown that the main factors contributing to increased

pulmonary vascular resistance during the development of

PAH are abnormal systolic function of the small pulmonary

arteries and remodeling of the pulmonary arteries (100–102).

An increase in cytoplasmic free Ca2+ concentration ([Ca2+]

cyt) in pulmonary arterial smooth muscle cells (PASMCs)

is the main cause of pulmonary vasoconstriction, while

an imbalance in intracellular calcium (Ca2+) homeostasis

stimulates PASMCs to proliferate and inhibits their apoptosis,

leading to pulmonary vascular remodeling. The imbalance in

intracellular calcium (Ca2+) homeostasis stimulates PASMCs

to proliferate and inhibits their apoptosis, leading to pulmonary

vascular remodeling and driving PAH disease progression

(53, 101–105). Under physiological conditions, pulmonary

endothelial cells Piezo1 regulate endothelium-dependent

pulmonary vasodilation by mediating Ca2+ inward flow

(83, 105–107). It has been hypothesized that upregulation

of Piezo1 expression in pulmonary arterial endothelial cells

(PAECs) and pulmonary artery smooth muscle cells may

play a key role in vascular remodeling in PAH disease.

Piezo1 high expression induced Ca2+ influx in PAECs, and

upregulated Notch ligands (JAG-1, and DLL4) in PAECs. The

increased Notch ligands in PAECs, as signal-sending cells,

then activate Notch receptors in PASMCs, as signal-receiving

cells, and result in pulmonary arteriole muscularization and

concentric pulmonary vascular remodeling (105). This suggests

that Piezo1 plays a key role in regulating endothelial cell

Ca2+ homeostasis and is important for pulmonary artery

vascular remodeling.

Pulmonary vasodilation is closely related to the regulatory

role of PAECs, but the biological mechanism of Piezo1 in

PASMCs is unclear. It has been proposed that alterations in

hemodynamics cause endothelial damage in the pulmonary

vasculature to some extent and also play a regulatory role in

the phenotypic transformation and morphological structure

of PASMCs, and that hemodynamics are also necessary for

the development and maintenance of vascular remodeling
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FIGURE 1

The pathological mechanisms of vascular remodeling disease. Gq/G11, Gprotein alpha-subunits Galphaq/Galpha11; AKT, protein kinase B; PI3K,

phosphatidylinositol 3 kinase; NF-κB, nuclear factor kappa B; EndMT, endothelial-to-mesenchymal transition; [Ca2+]cyt, cytoplasmic free Ca2+

concentration; eNOS, endothelial nitric oxide synthase; NO, endothelial nitric oxide; sGC, soluble guanylate cyclase; cGMP, cyclic guanosine

monophosphate.

in pulmonary hypertension (105, 108, 109). It has been

hypothesized that one of the important factors contributing

to pulmonary artery remodeling is the increase in intracellular

free calcium concentration ([Ca2+] i) caused by mechanical

stimulation of PASMCs (93, 94). Experimental studies have

shown that under pulmonary hypertension, elevated [Ca2+]

i in PASMCs occurs, which also upregulates the expression

of genes activating Ca2+-sensitive transcription factors

such as STIM2, TRPC6 and Orai2, thereby differentiating

the phenotype of PASMCs from a contractile/resting

phenotype to a proliferative/synthetic phenotype, leading

to vascular remodeling (94, 110, 111). In addition, it has

been proposed that Piezo1 activates Ca2+-dependent signal

transduction pathways such as YAP and other related

transcription factors following an increase in intracellular

cytoplasmic free calcium concentration, resulting in increased

mechanosensitivity of the pulmonary vasculature to regulate

cell proliferation and pulmonary vascular remodeling,

and that aberrant mechanical stimulation of Piezo1 in

PASMCs exacerbates blood flow disturbances, a process that

circumferentially also promotes progression of pulmonary

hypertension (53).

Fernandez et al. (94) found that Piezo1-mediated increases

in [Ca2+] i were associated with contraction and abnormal

proliferation of PASMCs. A dose-dependent relationship with

vasoconstriction was found after stimulation of endothelium-

denuded rat intrapulmonary arteries by applying Yoda1, and

Piezo1 activity was significantly upregulated and increased in

idiopathic PAH-PASMCs compared with donor PASMCs, which

also explains the effect of proliferation caused by elevated

Piezo1-mediated [Ca2+] i in PASMCs under PAH on pulmonary

artery of the molecular mechanisms of vascular remodeling. In

conclusion, these studies further elucidate the role of Piezo1

in vascular remodeling in pulmonary arterial hypertension,

which has the potential to be an effective intervention molecule

and potential target of action in the treatment of pulmonary

hypertension in the future (Figure 1).

Conclusions

Cardiopulmonary diseases, e.g., hypertension,

atherosclerosis, pulmonary hypertension, asthma and chronic

obstructive pulmonary disease, are among the most common

causes of death worldwide. A common pathophysiological
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theme to these diseases is vascular remodeling, which is

contributed by changes in expression and activation of piezo1

ion channels critical for either excitability or growth. In recent

years, many scholars havemade remarkable achievements in this

field, and we have initially understood that it plays an important

role in coupling various signaling pathways to promote vascular

development and maintain vascular homeostasis by sensing

blood flow shear stress and non-selectively mediating the flow

of cations such as Na+ and Ca2+.

However, our investigation of the role of Piezo1 in vascular

remodeling is still in its infancy, and further studies are

needed to clarify whether Piezo1 and other mechanosensitive

ion channels and membrane proteins act together, and the

regulation of upstream and downstream specific signaling

pathways when Piezo1 channels act. We believe that with

further research on the mechanosensitive ion channel Piezo1,

Piezo1 is likely to become a new target for the diagnosis

and treatment of vascular remodeling diseases such as

hypertension, atherosclerosis and pulmonary hypertension,

opening up new ideas for the clinical treatment of vascular

remodeling diseases.
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