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Abstract

Purpose: In an ultrahigh‐resolution CT (U‐HRCT), deep learning‐based reconstruc-

tion (DLR) is expected to drastically reduce image noise without degrading spatial

resolution. We assessed a new algorithm's effect on image quality at different radia-

tion doses assuming an abdominal CT protocol.

Methods: For the normal‐sized abdominal models, a Catphan 600 was scanned by

U‐HRCT with 100%, 50%, and 25% radiation doses. In all acquisitions, DLR was

compared to model‐based iterative reconstruction (MBIR), filtered back projection

(FBP), and hybrid iterative reconstruction (HIR). For the quantitative assessment, we

compared image noise, which was defined as the standard deviation of the CT num-

ber, and spatial resolution among all reconstruction algorithms.

Results: Deep learning‐based reconstruction yielded lower image noise than FBP

and HIR at each radiation dose. DLR yielded higher image noise than MBIR at the

100% and 50% radiation doses (100%, 50%, DLR: 15.4, 16.9 vs MBIR: 10.2, 15.6

Hounsfield units: HU). However, at the 25% radiation dose, the image noise in DLR

was lower than that in MBIR (16.7 vs. 26.6 HU). The spatial frequency at 10% of

the modulation transfer function (MTF) in DLR was 1.0 cycles/mm, slightly lower

than that in MBIR (1.05 cycles/mm) at the 100% radiation dose. Even when the

radiation dose decreased, the spatial frequency at 10% of the MTF of DLR did not

change significantly (50% and 25% doses, 0.98 and 0.99 cycles/mm, respectively).

Conclusion: Deep learning‐based reconstruction performs more consistently at

decreasing dose in abdominal ultrahigh‐resolution CT compared to all other com-

mercially available reconstruction algorithms evaluated.
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1 | INTRODUCTION

An ultrahigh‐resolution CT (U‐HRCT) scanner became available for

clinical practice in 2017, and several studies have reported its advan-

tages.1–6 However, the increased image noise that occurs when U‐
HRCT is applied (along with the improved spatial resolution) is a com-

mon concern,1,3–8 because the amount of image noise is affected by

the slice thickness and matrix size. Abdominal dynamic CT is an essen-

tial imaging modality for malignant liver tumors such as hepatocellular

carcinoma, cholangiocellular carcinoma, and metastatic tumors.9–11 U‐
HRCT is expected to demonstrate tiny vessels and pathological condi-

tions in greater detail. With U‐HRCT, it is difficult to successfully con-

trol the appropriate radiation dose because the tube current is limited

by the combination of focal spot size and exposure time. In addition,

for multiphase scanning, it is necessary to minimize the radiation dose

in each phase while maintaining a diagnostically adequate image qual-

ity.12–15 Although model‐based iterative reconstruction (MBIR) is used

to reduce the image noise that accompanies an insufficient radiation

dose, the use of MBIR requires considerable computational time for

image reconstruction,16 which can affect clinical practice.

A deep learning‐based reconstruction (DLR) algorithm was

recently released in U‐HRCT and is expected to reduce image noise

dramatically without degrading spatial resolution.16,17 Compared to

MBIR, DLR can reconstruct images more quickly and is expected to

minimize a change in noise texture that is specific to the iterative

reconstruction derived from a low radiation dose or the level of iter-

ative reconstruction.18–20 Therefore, we evaluated DLR in abdominal

dynamic CT using U‐HRCT. In the present study, we assessed the

image noise and spatial resolution characteristics of the DLR algo-

rithm at different radiation doses on abdominal U‐HRCT compared

with filtered back projection (FBP), hybrid iterative reconstruction

(HIR), and MBIR.

2 | METHODS

Our present study was performed with a phantom imaging experi-

ment. Therefore, there was no need for institutional review board

approval.

2.A | DLR algorithm

DLR incorporates a deep convolutional neural networks (DCNN)

restoration process into the reconstruction flow. For the deep

learning‐based approach, given HIR images and high‐dose MBIR

images as training pairs, statistical features that differentiate signal

from the noise and artifacts could be “learned” in the training pro-

cess and then be “updated” in the DCNN kernel for future inference

use. Millions of image pairs were used in the training of DLR. The

gold standard clinical reference images were acquired with high tube

current and reconstructed with true MBIR, and the true MBIR used

a greater number of iterations than could be otherwise used in a

clinical setting due to time constraints. No phantom data were

included in the gold standard reference images. This training process

was previously completed during the development phase with no

off‐site unsupervised training—which could alter the algorithm per-

formance—taking place.

2.B | Body phantom

For normal‐sized abdominal models, we used the Catphan 600 (The

Phantom Laboratory, Salem, NY, USA) attached with an oval annulus

(25 × 35 cm; 95‐cm circumference, Fig. 1). We used three different

modules, CTP 404, CTP 486, and CTP 515, for the image assessment.

2.C | CT scanning

The phantom was scanned using the U‐HRCT scanner (Aquilion

Precision; Canon Medical Systems, Otawara, Japan). This scanner has

three scan modes: normal‐, high‐, and superhigh‐resolution modes.5

In the present study, we used the high‐resolution mode with an 80‐
row detector configuration of 0.5 mm detectors (1792 channels).

Image reconstruction was performed with a 1024 × 1024 matrix

size. The nominal focal spot size of the X‐ray tube was

0.9 × 1.2 mm, which was equivalent to the small focus of the con-

ventional area detector CT (Aquilion ONE ViSION edition; Canon

Medical Systems, Otawara, Japan). The combination of scan mode

and focal spot size was selected assuming abdominal dynamic CT

because the selected focal spot size limits the maximum tube current

and exposure time. The other imaging parameters were as follows:

Tube voltage was set to 120 kVp and the rotation time was set

to 0.5 s. Tube current was varied from 590 to 300 to 150 mA as

F I G . 1 . Axial image of the body phantom. A Catphan phantom
attached to an oval annulus (25 × 35 cm; 95‐cm circumference). The
CTP 404, 486, and 515 modules were used to assess the in‐plane
spatial resolution, the image noise, and the low contrast
detectability, respectively. The high‐ (estimated value of 340 HU),
moderate‐ (estimated value of 120 HU), and low‐ (estimated value of
−35 HU) signal objects were located at 9, 11, and 1 o'clock,
respectively.

SHIRASAKA ET AL. | 287



100%, 50%, and 25% radiation doses, respectively. Images were

reconstructed at a 0.5‐mm thickness with a 400 mm of field of view.

For evaluation of low contrast detectability, images were recon-

structed at a 5‐mm thickness. In all acquisitions, DLR (Advanced

Intelligent Clear‐IQ Engine [AiCE], Canon Medical Systems) with a

clinically optimized body parameter, “body standard” and FBP recon-

struction with the FC13 kernel were performed. In addition, two

types of iterative reconstruction were conducted: HIR with the

FC13 kernel, and MBIR reconstruction (AIDR 3D standard and FIRST

body standard, respectively; Canon Medical Systems) (Table 1).

2.D | Image assessment

For the quantitative assessment, the CT number, image noise, fre-

quency characteristics of the image noise, signal visibility, and spatial

resolution in all of the reconstruction algorithms were compared using

Image J 1.52a (National Institutes of Health, Bethesda, MD, USA) and

Excel 2016 (Microsoft, Redmond, WA). These quantitative analyses

were obtained from one scan series. For the assessment of the low con-

trast detectability, a visual evaluation was performed by two radiolo-

gists.

2.D.1 | CT number

The CT numbers obtained with each reconstruction algorithm in the

phantom experiments were compared using the CTP 404 module.21

Three different disk‐shaped objects with a diameter of 12 mm were

used as the assumed abdominal structures (lumen of a contrast‐
enhanced aorta, contrast‐enhanced tumor, and adipose tissue22). We

used a delrin rod (estimated value of 340 Hounsfield units: HU), an

acrylic rod (estimated value of 120 HU), and a polystyrene rod

(estimated value of −35 HU) as the high‐, moderate‐, and low‐signal
objects, respectively (Fig. 1). The CT numbers of these objects for

each reconstruction algorithm were recorded radially around the

object centers at 1° intervals using a line region of interest (ROI)

(1 × 27 pixels, 5 mm circle‐radius). Mean CT numbers were obtained

using the individual line ROI measurements [Fig. 2(a)].

2.D.2 | Image noise magnitude

The standard deviation (SD) of the CT number was defined as the image

noise in the axial image. A square ROI (256 × 256 pixels) was placed at

the center of each axial image of the CTP 486 module. We calculated

the mean image noise magnitude using 50 sequential images.

2.D.3 | Noise power spectrum

To evaluate the frequency characteristics of the image noise, we cal-

culated the noise power spectrum (NPS) by the radial frequency

method23 using the CTP 486 module. The NPS curve was obtained

from the center (256 × 256 pixels) ROIs used to analyze image

noise. We also normalized the NPS by dividing the NPS value by the

area‐under‐the‐curve of the NPS.

2.D.4 | Low contrast detectability

Two board‐certified radiologists (Y.U. and A.N.) with 22 and 27 years

of experience in abdominal radiology, respectively, and blinded to

the radiation dose and reconstruction method independently evalu-

ated the low contrast detectability using axial images of the CTP

515 module (Fig. 3). The diameters of the low contrast object at the

1.0% contrast level were 15, 9, 8, 7, 6, 5, 4, 3, and 2 mm. Each

observer recorded the detectable minimum diameter of the low con-

trast object. Sixty images (three radiation doses × five scans × four

types of reconstruction algorithms) were presented in random order

to the two observers. Images were displayed with a window level

and width of 60 and 250 HU, respectively. The low contrast

detectability for each reconstruction algorithm was the median of

the diameters reported by the two observers.

2.D.5 | Signal visibility

For the evaluation of the visibility of signals on axial images, attenuation

profile curves (APCs) for all reconstruction algorithms were compared

using the CTP 404 module. To obtain the mean APCs of the high‐,
moderate‐, and low‐signal objects for each reconstruction algorithm, we

recorded 360 APCs radially around the object's center at 1° intervals

using a line ROI [1 × 51 pixels, 10 mm circle‐radius; Fig. 2(b)].

2.D.6 | Modulation transfer function

For in‐plane spatial resolution, modulation transfer function (MTF)

curves for all reconstruction algorithms were calculated from the

phantom experiments with the CTP 404 module. The MTF curves

TAB L E 1 CT scanning and reconstruction settings for the four
algorithms.

FBP HIR MBIR DLR

Acquisition mode High‐resolution mode (1,792 channels)

Focal spot size 0.9 × 1.2 mm

Tube voltage 120 kVp

Tube current

(CTDIvol)

590, 300, 150‐mA (26.3, 13.4, 6.7‐mGy)

Rotation time 0.5 s

Collimation

(configuration)

40 mm (80 × 0.5 mm)

Pitch 0.8

Field of view 400 mm

Slice thickness 0.5 mm, 5 mm

Image matrix 1024 × 1024

Kernel/

parameter

FC13 FC13/

standard

Body

standard

Body

standard

Abbreviations: CTDIvol, volume computed tomography dose index; DLR,

deep learning‐based reconstruction; FBP, filtered back projection; HIR,

hybrid iterative reconstruction; MBIR, model‐based iterative reconstruction.
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were calculated using an inserted disk‐shaped object (Teflon, esti-

mated value of 990 HU) surrounded by a square ROI according to

the disk methodology.24 First, a signal‐averaging image was gener-

ated from the 50 sequential images to reduce image noise. Ten con-

secutive signal‐averaging images reconstructed at 0.1‐mm intervals

were used to obtain the mean MTF value. Then, the edge of the

object was analyzed to determine the edge‐spread function, which

was differentiated to obtain the line‐spread function. Finally, an

object‐specific MTF was generated by Fourier transformation of the

line‐spread function.

2.E | Statistical analysis

Data of the CT number are expressed as the mean ± standard devia-

tion (SD). Data of the image noise magnitude and spatial resolution

are expressed as the mean ± standard error (SE). The Cohen’s kappa

test was used to assess the degree of agreement between the

observers, with a kappa value of 0.01–0.20 for slight agreement,

0.21–0.40 for fair, 0.41–0.60 for moderate, 0.61–0.80 for substantial

and 0.81–1.00 for almost perfect agreement. These analyses were

performed using GraphPad Prism, version 7.01 (GraphPad Software,

La Jolla, CA, USA).

3 | RESULTS

3.A | CT number and image noise magnitude

Figure 4 shows the clipped axial images of each reconstruction algo-

rithm obtained at the different radiation doses. Although the CT

number of the signal object part was slightly affected by the recon-

struction algorithm that was used, all of the CT numbers obtained

with all of reconstruction algorithms were similar (Table 2). With the

MBIR, the CT number of the high‐signal object was slightly lower

than the estimated value of 340 HU (100%, 50%, and 25% radiation

doses: 318.5, 320.3, and 319 HU, respectively).

Table 3 shows the image noise magnitude of each reconstruction

algorithm at each relative radiation dose. As the radiation dose

decreased, the image noise magnitude of MBIR increased. The image

noise magnitude was 153% (15.6 HU) for the 50% dose and 261%

(26.6 HU) for the 25% dose compared to that of the 100% radiation

F I G . 2 . Alignment of the line ROI to record the CT number and attenuation profile curves. The CTP 404 module was used to record the CT
number and attenuation profile curves of the high‐, moderate‐, and low‐signal objects. (a) The CT numbers of these objects for each
reconstruction algorithm were recorded radially around the object centers at 1° intervals using a line region of interest (1 × 27 pixels, 5‐mm
circle‐radius). (b) The attenuation profile curves of these objects for each reconstruction algorithm were recorded radially around the object
centers at 1° intervals using a line region of interest (1 × 51 pixels, radius of the circle of 10 mm).

F I G . 3 . Axial image and schema of the low‐
contrast objects (CTP515 module). Two
observers recorded the detectable minimum
diameter of the low‐contrast object. The
diameters of the low‐contrast object were 15,
9, 8, 7, 6, 5, 4, 3, and 2 mm at the 1.0%
contrast level.
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dose (10.2 HU), respectively. In contrast, the image noise magnitude

of DLR did not increase substantially with the decrease in the radia-

tion dose. The image noise magnitude was 110% (16.9 HU) for the

50% dose and 108% (16.7 HU) for the 25% dose compared to that

of the 100% radiation dose (15.4 HU), respectively.

3.B | Noise power spectrum

Figure 5(a)–5(d) provides the NPS curves of each reconstruction

algorithm obtained at the different radiation doses. Figure 6(a)–6(d)
shows the normalized NPS.

F I G . 4 . The clipped axial images (CTP404 module) of each reconstruction algorithm obtained at the 100%, 50%, and 25% radiation doses. As
assumed abdominal structures (lumen of a contrast‐enhanced aorta, contrast‐enhanced tumor, and adipose tissue), three different disk‐shaped
objects (high, moderate, and low) with a 12‐mm dia. were used to evaluate the signal visibility.

TAB L E 2 CT number in each reconstruction algorithm at different radiation doses.

Radiation dose Contrast

Reconstruction algorithm

FBP HIR MBIR DLR

CT number 100% High (340 HU) 333.4 ± 16.3 330.4 ± 8.7 318.5 ± 16.4 337.2 ± 7.7

Moderate (120 HU) 124.1 ± 16.1 121.7 ± 8.1 121.0 ± 6.4 120.1 ± 6.5

Low (−35 HU) −35.4 ± 14.8 −31.6 ± 11 −32.8 ± 8.8 −34.8 ± 10.4

50% High (340 HU) 335.9 ± 33 334.6 ± 14.3 320.3 ± 16.9 342.7 ± 12.4

Moderate (120 HU) 112.8 ± 32.6 118.3 ± 10.7 119.2 ± 7.5 116.6 ± 7.2

Low (−35 HU) −33 ± 17.3 −32.6 ± 7.7 −33.8 ± 6.5 −34.6 ± 6.5

25% High (340 HU) 335.9 ± 45.8 327.7 ± 9.7 319 ± 10.5 334.5 ± 11

Moderate (120 HU) 125.3 ± 36.7 124.2 ± 11.5 126.2 ± 10.7 120.9 ± 8.1

Low (−35 HU) −39.3 ± 34.8 −28.9 ± 8.2 −31.8 ± 6.7 −30.6 ± 7.5

Abbreviations: DLR, deep learning‐based reconstruction; FBP, filtered back projection; HIR, hybrid iterative reconstruction; HU, Hounsfield units; MBIR,

model‐based iterative reconstruction.

290 | SHIRASAKA ET AL.



3.C | Low contrast detectability

Table 4 shows the detectable minimum diameter of each reconstruc-

tion algorithm at each relative radiation dose. As the radiation dose

decreased, the detectable minimum diameters of the low‐contrast
object increased at all reconstruction algorithms. A substantial inter-

rater agreement was observed (k = 0.713). Figure 7 shows the

clipped axial images of each reconstruction algorithm obtained at the

different radiation doses.

3.D | Attenuation profile curves

For the high‐signal objects, the APC of each reconstruction algorithm

except for FBP was somewhat consistent within the signal test

object under the lower radiation doses [Fig. 8(a)–5(c)]. With the

moderate‐signal object [Fig. 8(d)–8(f)] (with the exception of FBP),

the APCs of the signal test object had moderate amplitude, and it

could be identified from the boundary of the background. For the

low‐signal object [Fig. 8(g)–8(i)] (with the exception of FBP), the

APCs were nearly constant in the signal test object.

3.E | Spatial resolution

Table 5 shows the spatial frequency at 50% and 10% of MTF in each

reconstruction algorithm generated with the different radiation doses.

The spatial frequencies at 50% and 10% of the MTF of DLR scanned

with the 100% radiation dose were 0.62 and 1.00 cycles/mm, respec-

tively. When the radiation dose was decreased, the spatial frequency

at the 50% value of the MTF of DLR declined slightly, but that of the

TAB L E 3 Image noise in each reconstruction algorithm at different
radiation doses.

Radiation
dose

Reconstruction algorithm

FBP HIR MBIR DLR

Image

noise

100% 54.0

(0.09)

19.3

(0.05)

10.2

(0.12)

15.4

(0.06)

50% 76.8

(0.17)

22.7

(0.05)

15.6

(0.09)

16.9

(0.09)

25% 115.7

(0.23)

24.2

(0.03)

26.6

(0.05)

16.7

(0.04)

Hounsfield units (SE)

Abbreviations: DLR, deep learning‐based reconstruction; FBP, filtered

back projection; HIR, hybrid iterative reconstruction; MBIR, model‐based
iterative reconstruction; SE, standard error.

F I G . 5 . The noise power spectrum (NPS) curves of each reconstruction algorithm obtained at 100%, 50%, and 25% radiation doses. (a)
Filtered back projection (FBP). (b) Hybrid iterative reconstruction (HIR). (c) Model‐based iterative reconstruction (MBIR). (d) Deep
learning‑based reconstruction (DLR). As the radiation dose decreases, the NPS curves move upward in each reconstruction algorithm. The NPS
curves in DLR were more similar to those in HIR than in the other reconstruction algorithms.
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10% value did not change significantly (50% and 25% doses, 0.98 and

0.99 cycles/mm, respectively).

4 | DISCUSSION

The results of these experiments demonstrated that the DLR main-

tained the same image noise magnitude and spatial resolution at all

radiation doses with less change in signal visibility than the

commercially available reconstruction methods analyzed. The DLR

algorithm may provide image quality benefits to U‐HRCT platforms

over those of the other techniques. It is notable that the image noise

in the DLR was relatively consistent across a wide range of radiation

doses. In the comparison of the DLR and MBIR algorithms, the

image noise was higher in DLR than in MBIR at the highest radiation

dose. However, at the lowest radiation dose, the image noise in DLR

was lower than that in MBIR. We speculate that the MBIR algorithm

might sacrifice de‐noising in order to maintain the spatial resolution

at lower radiation doses, whereas DLR provided a better tradeoff in

terms of noise versus dose. Therefore, for the range of radiation

doses investigated, the DLR algorithm can improve image noise per-

formance at low CT doses, which is critical for the larger matrix uti-

lized in U‐HRCT.

The frequency characteristics of the image noise in DLR were

similar to those in HIR although the training image of DLR is gener-

ated using a high‐dose MBIR image. The HIR image is reconstructed

first and used internally as an input image for the DLR image pro-

cess.16 Therefore, the shape of the NPS of the DLR image might be

similar to those of HIR.

The shape of the normalized NPS for DLR minimally varied at

the different radiation doses, while that of MBIR shifted slightly to a

F I G . 6 . The normalized noise power spectrum (NPS) curves of each reconstruction algorithm obtained at 100%, 50%, and 25% radiation
doses. (a) Filtered back projection (FBP). (b) Hybrid iterative reconstruction (HIR). (c) Model‐based iterative reconstruction (MBIR). (d) Deep
learning‑based reconstruction (DLR). The shapes of the normalized NPS for DLR hardly varied at the different doses, while those of MBIR
shifted slightly to a higher frequency as the radiation dose decreased.

TAB L E 4 The detectable minimum diameters of the low‐contrast
object at different radiation doses.

Radiation
dose

Reconstruction algorithm

FBP HIR MBIR DLR

Detectable minimum

diameter

100% 7.0 6.5 5.0 6.0

50% 8.0 8.0 7.0 7.5

25% 9.0 9.0 9.0 8.0

mm

Abbreviations: DLR, deep learning‐based reconstruction; FBP, filtered

back projection; HIR, hybrid iterative reconstruction; MBIR, model‐based
iterative reconstruction.
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higher frequency as the radiation dose decreased. It is notable that

the normalized NPS of DLR did not vary according to the radiation

dose, and thus DLR can provide de‐noising without a change in

noise texture compared to MBIR. The image noise frequency charac-

teristics in MBIR observed in this study contrasted with findings of

previous studies.18,19 We believe these differences may be due to

photon starvation from the low doses utilized in this study, the num-

ber of channels in the CT system (conventional CT, U‐HRCT: approx-

imately 890 channels, 1792 channels, respectively), and the

increased phantom size (circular phantoms of 15.0 and 21.5 cm

diameter, in previous studies, versus an oval phantom of 25 × 35 cm

in the present study). The MBIR performance in this study appears

be much more dose‐dependent than DLR performance. Therefore,

DLR appears more likely to provide superior reconstruction capabili-

ties under the necessary low‐dose conditions of U‐HRCT. We thus

consider DLR to be useful for dynamic abdominal CT on U‐HRCT,

which tends to have excessive noise.

In terms of low‐contrast detectability, DLR showed the second

smallest detectable diameter of a low contrast object after MBIR at

the 100% and 50% doses. At a 25% dose, DLR showed the smallest

detectable diameter of a low‐contrast object among the reconstruc-

tion algorithms. Thus, DLR demonstrated superior performance in

low contrast detectability at reduced dose compared to the other

reconstruction algorithms. This trend may reflect the relative consis-

tency of the image noise magnitude across a wide range of radiation

doses. Therefore, DLR may be more useful under low‐dose condi-

tions than other reconstruction algorithms.

DLR allowed less change in signal visibility compared to other

reconstruction algorithms. In the conventionally used FBP and HIR

algorithms, the reduction in X‐ray photons affects the visibility of

the signal itself and the formation of the contour. Both edges of the

signal test object were slightly blurred in the HIR compared to the

other reconstruction algorithms under all three radiation doses.

However, DLR allows less change in signal visibility even at a lower

radiation dose. This may be due to the impact of the DLR algorithm

being generated using high‐dose MBIR images which were obtained

with many iterative computations as training data. We thus specu-

late that it may be possible to obtain accurate signal depictions that

are not inferior to the MBIR images generated by a CT scanner.

In comparison with the other reconstruction algorithms, the spa-

tial frequency at 10% of MTF of DLR was slightly higher than that

of FBP (0.97 cycles/mm) and lower than that of MBIR (1.05 cycles/

mm) scanned with the 100% radiation dose. As expected, the spatial

frequency at 10% of the MTF curves of the DLR, FBP, and MBIR

tended to be equivalent to each other after the radiation dose was

decreased. However, the MTF of the HIR showed the lowest spatial

resolution at each radiation dose. The 10% of the MTF with the

DLR algorithm was not significantly inferior to that obtained with

the MBIR algorithm. This is because the DLR algorithm is generated

using a high‐dose MBIR image as a training image. As a result, the

DLR algorithm has the MBIR feature of higher spatial resolution gen-

erated from an optical model, and its use achieves a spatial resolu-

tion that is not inferior to that of MBIR16,17 Regarding HIR, at a

radiation dose of 25%, HIR demonstrated superior noise reduction

F I G . 7 . The clipped axial images (CTP515
module) of each reconstruction algorithm
obtained at the 100%, 50%, and 25%
radiation doses. Images were displayed with a
window level and width of 60 and 250 HU.

F I G . 8 . Attenuation profile curves (APCs) for all reconstruction algorithms obtained at 100%, 50%, and 25% radiation doses. The APCs of
the (a–c) high‐signal object, (d–f) moderate‐signal object, and (g–i) low‐signal object obtained at 100%, 50%, and 25% radiation doses,
respectively. The APCs were affected by the applied reconstruction algorithm. With the moderate‐signal object, the APCs had some amplitude
and could be identified from the boundary of the background, except for the filtered back projection (FBP) algorithm. FBP, filtered back
projection; HIR, hybrid iterative reconstruction; MBIR, model‐based iterative reconstruction; DLR, deep learning‐based reconstruction.
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than MBIR. However, HIR significantly degraded the spatial fre-

quency. We thus suspect that the low‐dose DLR images will be

easier for radiologists to accept compared to low‐dose HIR and

MBIR images in particular.

The modest increase in computational time for DRL yields sub-

stantial improvements in image quality over HIR with respect to spa-

tial resolution and image noise, where the substantial additional time

for MBIR only yields modest gains in spatial resolution (e.g., for

reconstruction of images in the 20‐cm range, the computational time

is approximately 20 s for FBP and HIR, approximately 9 min for

MBIR, and approximately 90 s for DRL). In addition, for abdominal

dynamic CT requiring multiphasic images, the requirement of hun-

dreds of images multiplies the reconstruction time and affects the

throughput in clinical practice.

Several limitations of this study should be acknowledged. First,

we did not evaluate clinical images for individual abdominal dynamic

CT on U‐HRCT. Rather, we focused on the quantitative evaluation

of the behavior of the DLR algorithm at different dose settings

assuming various body sizes on U‐HRCT. Further studies of diagnos-

tic performances in clinical situations are needed. Second, this evalu-

ation was limited to high resolution mode. Future analyses will be

needed to evaluate superhigh‐resolution mode, which is expected to

have higher image noise. We preliminarily evaluated this mode,

though, with the lower dose setting that will partially imitate perfor-

mance in the superhigh‐resolution mode. Further studies are needed

to investigate DLR images using the superhigh‐resolution mode.

5 | CONCLUSIONS

The present quantitative evaluations showed that the DLR performs

more consistently at decreasing dose than MBIR, HIR, or FBP with-

out extraordinary compromises in spatial resolution and low contrast

detectability as compared with other reconstruction algorithms, and

without a significant computation penalty. In particular, at lower

radiation doses, DRL quantitatively performed better than MBIR and

is expected to reduce image noise. For abdominal dynamic CT on U‐
HRCT, DLR may be a promising tool to compensate for the

increased image noise from smaller detectors in a larger matrix.
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