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Abstract

Isocyanate chemicals known to cause adverse health effects when inhaled are essential to

making important products and are used in multiple industries. Glutathione (GSH), a major

antioxidant of the lower airways with a well described role in xenobiotic metabolism, is a pri-

mary reaction target for di-isocyantes. However, GSHs reactivity with poly-isocyanates

which have largely replaced diisocyanates (particularly aliphatic) in most end-user settings

remains uncertain. We hypothesized aliphatic polyisocyanates would readily react with glu-

tathione under physiologic conditions and the products could be identified using liquid chro-

matography (LC) coupled-mass spectrometry (MS) and tandem MS/MS. The data identified

(tris)GSH-isocyanate adducts as the major reaction product of GSH with the most com-

monly used contemporary polymeric (tri-isocyanate) formulations of hexamethylene diiso-

cyanate (HDI), the isocyanurate and biuret, as [M+H]+ ions of 1426.53 and 1400.55 m/z

respectively in reverse phase LC-MS using electrospray in positive ion mode. The uretdione

form of HDI, a stabilized dimer, formed two reaction products with GSH, a tris(GSH)-isocya-

nate reaction product recognized as a 1258.44 m/z [M+H]+ ion, and a bis(GSH)-isocyanate

product identified as a 951.36 m/z [M+H]+ ion. Predicted structures for the newly described

GSH-polyisocyanate reaction products, modeled based on collision induced dissociation

(CID) fragmentation patterns in tandem MS/MS, support S-linkage of the GSH to N = C = O

groups. In summary, industrially-used aliphatic polyisocyanates readily react with GSH to

form primarily S-linked tris(GSH)-conjugates, a process that may play an important role in

response to respiratory tract exposure.

Introduction

Isocyanate (N = C = O), a reactive chemical group that readily undergoes nucleophilic addi-

tion reactions, is essential to numerous industries [1, 2]. Isocyanate groups attached to aro-

matic vs. aliphatic carbon backbones have distinct physical properties that influence their

reaction products and industrial use [3–6]. Aromatic isocyanates primarily are used to pro-

duce solid and flexible polyurethane foam [7, 8], however, its products are susceptible to dam-

age by ultraviolet radiation and oxidation and are prone to discoloration over time [9]. In

comparison, aliphatic isocyanates generate products with superior durability under harsh con-

ditions and primarily are used in paint and surface coatings (e.g., automotive, aerospace,
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military) [10–12]. Aliphatic isocyanates also have specialty applications in solid propellants

[13, 14], polymer bonded explosives [13, 15], and medical devices [16, 17].

Adverse health effects from inhaling isocyanate (pulmonary irritation, asthma) are a well-

recognized occupational hazard in diverse industries [4, 18]. Workplace isocyanate use

requires appropriate personal protective equipment and industrial hygiene to prevent expo-

sure [10, 19]. Endogenous host mechanisms that mediate pathogenic vs. (potentially) protec-

tive responses against respiratory tract exposure are unclear but have been suggested to

involve glutathione (GSH), a major anti-oxidant of the lower respiratory tract known to play

an important role in chemical metabolism [20–25].

The most commonly used aliphatic diisocyanate, hexamethylene diisocyanate (HDI),

reacts readily with GSH under physiologic conditions [26]. When HDI is inhaled into the

lungs in an animal model, bis(GSH)-HDI is identified as a major product in the airway fluid

[27]. In vitro, bis(GSH)-HDI reaction products can be cleaved by human gamma-glutamyl

transpeptidase, a critical step along the mercapturic acid pathway of metabolism and elimi-

nation [22].

In contemporary industrial settings HDI has been largely replaced with polymeric hexam-

ethylene diisocyanate formulations, as they have reduced volatility and thus less potential for

lower respiratory tract exposure [12]. The most commonly used formulations (Fig 1) are “tri-

mers” of HDI, the isocyanurate and the biuret (prepared with limited addition of water), with

slightly different properties that impart distinct advantages/disadvantages in the final product

[12, 15]. A “dimeric” form of HDI containing an internally blocked uretdione moiety is also

employed for specialty applications and has reduced viscosity making it useful as a “thinning”

agent suitable for mixing with other isocyanates [12, 28].

The present investigation explores the reactivity of GSH with aliphatic polyisocyanates

most commonly used in industry today. LC-MS and LC-MS/MS are used to characterize reac-

tion products generated under physiologic conditions and model their chemical structures.

The findings and their potential implications with regard to protection against isocyanate

exposure are discussed.

Fig 1. Three most common aliphatic polyisocyanates. Three different polyisocyanates are generated from hexamethylene

diisocyanate monomer as shown. The biuret contains one partially hydrolyzed HDI. The 6-member ring structure of the isocyanurate

is stable, however one of the internally blocked NCOs of the 4 member ring of the uretdione can react under appropriate conditions.

https://doi.org/10.1371/journal.pone.0271471.g001
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Materials and methods

Aliphatic polyisocyanates

Commercially available preparations of HDI isocyanurate (CAS # 3779-63-3), biuret (CAS #

4035-89-6), and uretdione (CAS # 23501-81-7), the common names for (a) (2,4,6-trioxotriazine-

1,3,5(2H,4H,6H)-triyl)tris(hexamethylene) isocyanate, (b) 1,3,5-tris(6-isocyanatohexyl)biuret,

and (c) 2,4-dioxo-1,3-diazetidine-1,3-bis(hexamethylene) diisocyanate, were obtained from

Covestro (Pittsburgh, PA). HDI biuret was also obtained from Sigma-Aldrich (St. Louis, MO).

Generation of GSH-isocyanate conjugates

Reduced glutathione, GSH (CAS # 70-18-8), from Sigma-Aldrich was reacted with aliphatic

polyisocyanates of HDI as previously described with slight modifications [29]. Briefly, HDI

polyisocyanate were diluted 1:10 in acetone to achieve a 10% (v/v) solution, and further diluted

100-fold into GSH solutions to achieve a final reaction concentration of 0.1% (v/v). Ten milli-

molar GSH solutions were prepared in LC-MS grade water (�note, without buffer GSH solu-

tions are acidic with pH <4) and in solution buffered to pH 7.4 with 200 mM sodium

phosphate. The reaction mixture was rotated end-over-end for 2 hours at 37˚C, and then cen-

trifuged at 10,000 g, and 0.2 μm filtered before analysis.

LC-MS and LC-MS/MS

Samples were analyzed on a 1290 model Infinity LC system coupled to a 6550 model Q-TOF

MS system using a rapid resolution HT Zorbax Eclipse Plus C18 column (2.1 × 50 mm,

1.8 μm); all from Agilent Technologies (Santa Clara, CA) as previously described [30]. For

analysis, samples were mixed with water containing 0.1% formic acid, and 3 μL of diluted sam-

ple was loaded and eluted with water/0.1% formic acid and increasing concentrations of aceto-

nitrile, also containing 0.1% formic acid. The acetonitrile gradient gradually increased to 40%

acetonitrile by 3 minutes, followed by increase to 98% by 4.0 minutes and return to 2% aceto-

nitrile by 5 minutes, although the gradient was extended slightly in studies with HDI uretdione

to better separate two reaction products. Positive electrospray ionization (ESI) was performed

using the following parameters: gas temp- 280˚C, gas flow- 11 l/min, nebulizer-40 psig, sheath

gas temp- 350˚C, sheath gas flow-11, Vcap-4000 V, nozzle voltage-2000 V, fragmentor volt-

age– 175 V, skimmer voltage 65 V, octopole RF peak voltage 750 V. For MS/MS analyses, the

collision energy was automatically set using Agilent MassHunter Acquisition software accord-

ing to the formula, slope × (m/z)/100 + offset; with the slope of 5 and offset of 2.5. The m/z val-

ues of all ions present in the mass spectra were corrected against two reference ions (purine,

[M+H]+ m/z 112.9856 and 1H, 1H, 3H tetra(fluoropropoxy)phosphazine, [M+H]+ m/z

922.0097). The data acquisition range was from 110–1700 m/z. Quantitation of selected reac-

tion products was based on the area under the curve (AUC) of peaks for [M+H]+ ions with

defined m/z ratios and retention times in total and extracted ion chromatograms (TICs, EICs)

and/or from A210 spectra.

Data analysis and chemical structures

MassHunter software from Agilent was used for LC-MS and MS/MS acquisition and analysis,

including total and extracted ion chromatograms (TIC and EICs), and integration of area

under the curve (AUC) for peaks of interest. ChemDraw Professional v.20 was used to model

chemical structures and fragmentation patterns and to calculate exact mass of expected

products.
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Supporting information studies

Preliminary studies described in S14 and S15 Figs, used pooled IgG from de-identified human

serum and animal samples. Human Subject use was approved by the Yale University Human

Investigation Committee’s (HIC) Institutional Review Board (IRB), under protocol number

2000027806. Consent was not obtained since the study used de-identified cryopreserved sam-

ples. Animal samples were from studies that received ethical approval by Yale University’s

Institutional Animal Care and Use Committee (IACUC), protocol number 2021–20076. Ani-

mals were sacrificed according to guidelines established by the American Veterinary Medical

Association (AVMA), via an intraperitoneal injection of 0.1 mL of Euthasol1 (Virbac AH,

Inc.; Westlake, TX), a solution containing 390 mg pentobarbital sodium (barbituric acid deriv-

ative) and 50 mg phenytoin sodium per mL.

Results

HDI isocyanurate

When HDI isocyanurate was reacted with GSH at physiologic pH (7.4) a single reaction prod-

uct was observed in the LC-MS total ion current (TIC), an [M+H]+ ion with a 1426.53 m/z,

which was detected largely as doubly and triply charged species (Figs 2 and 3). Notably, the

1426.53 m/z [M+H]+ ion was also the single reaction product detectable quantitatively based

on A210 absorbance (see S1 Fig). When reactions were carried out without buffer, the pH

was< 4.0 due to GSH’s acidity, and limited amounts of a 760.40 m/z rather than a 1426.53 m/z
[M+H]+ product was instead observed. In the absence of GSH, very little reaction product was

observed, and we speculate HDI isocyanurate likely self-polymerized and became insoluble or

exceeded size detection limits for the LC-MS conditions.

Further LC-MS/MS analysis was performed to better characterize the 1426.53 m/z [M+H]+

product formed when GSH was reacted with HDI isocyanurate at physiologic pH. As shown in

Fig 2B, prominent CID fragments are observed corresponding to the neutral loss of 3 gamma-

Fig 2. LC-MS analysis of GSH reaction products with HDI isocyanurate. TICs are shown for reaction products

generated when HDI isocyanurate was reacted with GSH (A and B) and without GSH (C and D), in solution buffered

to pH 7.4 (A and C) or without buffer, pH< 4.0 (B and D). The m/z for the major products recognized as new [M

+H]+ ions are labeled, along with peaks reflecting GSH, GSSG. Unlabeled peak eluting ~0.5 min (A and C) is due to

sodium phosphate.

https://doi.org/10.1371/journal.pone.0271471.g002
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glutamate groups, consistent with a tris, S-linked GSH compound. Additional CID fragments

expected from CID fragmentation of the tris(GSH)-HDI isocyanurate were prominent in the

MS/MS spectra, including the 861 m/z [M+H]+ GSH-isocyanurate fragment and the 179 m/z
[M+H]+ expected for the cys-gly and other known fragments of GSH (see S2 Fig) [31].

Together the data are consistent with the predicted structure modeled in Fig 2C. LC-MS/MS

analysis and chemical structure models for the 760.40 m/z [M+H]+ that forms when GSH

reacts with HDI isocyanurate without buffer (at low pH) are shown in supporting information

and are consistent with a single S-linked GSH conjugated to a partially hydrolyzed HDI isocya-

nurate molecule, e.g., two of the three free NCO groups hydrolyzed to primary amines (S3 Fig).

HDI biuret

When commercial HDI biuret was reacted with GSH at physiologic pH (7.4) three reaction

products were observed in the LC-MS total ion current (TIC). The dominant product was an

[M+H]+ ion with a 1400.55 m/z, which was detected primarily as doubly and triply charged

species (Figs 4 and 5). A minor product eluting at 2.3 minutes was a 783.26 m/z [M+H]+ (S4

Fig) consistent with that previously described for bis(GSH)-HDI [26] and the known presence

of low level HDI monomer in commercial biuret products. A third product, a 1258.44 m/z [M

+H]+ ion, was initially unexpected and is described in more detail below (see HDI uretdione

section). Notably, the major reaction products of HDI biuret with GSH under physiologic con-

ditions observed in the TIC were proportionally observed in the A210 spectra (S5 Fig), with

ratios of 1:3:12, for the 783.26, 1258.44 and 1400.55 m/z [M+H]+ species respectively, deduced

by integration of the AUC for the corresponding peaks.

Fig 3. Characterization of GSH reaction product with HDI isocyanurate at physiologic pH. (A) Mass spec analysis of sample eluting

from reverse phase LC column ~3 minutes, note dominance of doubly and triply charged species corresponding to the major product,

the 1426.53 m/z [M+H]+ ion. (B) the CID fragmentation spectra of the 1426.53 m/z [M+H]+ ion upon MS/MS. (C) structural model for

the major reaction product of GSH with HDI isocyanurate based on exact mass and expected fragmentation pattern (S2 Fig).

https://doi.org/10.1371/journal.pone.0271471.g003
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When reactions were carried out without buffer, limited amounts of 734.42 and 1067.49

m/z [M+H]+ products were observed in contrast to the major 1400.55 m/z [M+H]+ ion formed

at physiologic pH. In the absence of GSH at pH 7.4 very little reaction product was observed,

however without buffer a 427.34 m/z [M+H]+ was detected, consistent with partial hydrolysis

followed by intramolecular-reactivity of the biuret (see S7 Fig).

Fig 4. LC-MS analysis of GSH reaction products with HDI biuret. TICs are shown for reaction products generated

when HDI biuret was reacted with GSH (A and B) and without GSH (C and D), in solution buffered to pH 7.4 (A and

C) or without buffer, pH< 4.0 (B and D). The m/z for the major products recognized as new [M+H]+ ions are labeled,

along with peaks reflecting GSH, GSSG. Unlabeled peak eluting ~0.5 min (A and C) is due to sodium phosphate.

https://doi.org/10.1371/journal.pone.0271471.g004

Fig 5. Characterization of major GSH reaction product with HDI biuret at physiologic pH. (A) Mass spec analysis of major product

eluting from reverse phase LC column ~2.8 minutes, note dominance of doubly and triply charged species corresponding to the 1400.55

m/z [M+H]+ ion. (B) the CID fragmentation spectra of the 1400.55 m/z [M+H]+ ion upon MS/MS. (C) structural model for the major

reaction product of GSH with HDI biuret based on exact mass and expected fragmentation pattern (S6 Fig).

https://doi.org/10.1371/journal.pone.0271471.g005
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Further LC-MS/MS analysis was performed to better characterize the major 1400.55 m/z
[M+H]+ product formed when GSH was reacted with HDI biuret at physiologic pH. As shown

in Fig 5, prominent CID fragments are observed corresponding to the neutral loss of 3

gamma-glutamate groups from intact tris(GSH)-HDI biuret. Additional CID fragments

expected from an S-linked tris(GSH)-HDI biuret were prominent in the MS/MS spectra,

including 321.15 and 450.20 m/z [M+H]+ ions expected from GSH-HDI biuret fragments, the

143.12 m/z expected from one partial HDI subunit, and 179.05 and 233.06 m/z [M+H]+ ions

expected for GSH (cys-gly and glu-cys) fragments (S6 Fig). Together the data are consistent

with the predicted tris(GSH)-HDI biuret structure modeled in Fig 5c.

LC-MS/MS analysis of the 734.42 and 1067.49 m/z [M+H]+ products that formed when

GSH was reacted with HDI biuret in solution without buffer (pH<4) was consistent with

those expected for mono and bis(GSH) conjugated to partially hydrolyzed HDI biuret, e.g.,

with hydrolysis of the non-GSH bound NCO(s) to primary amine(s). MS/MS data and pro-

posed structures are provided in S8 and S9 Figs.

HDI uretdione

HDI uretdione is formed from two HDI ‘monomers” and contains 2 free NCO groups and 2

additional NCO groups that exist in equilibrium as a cyclized moiety, essentially creating an

internally blocked NCO. While technically a HDI dimer, the uretdione exhibits trifunctional-

lity as one of the internally stabilized NCO groups can undergo nucleophilic addition under

appropriate conditions. When commercial HDI uretdione was reacted with GSH at physio-

logic pH 7.4, two major reaction products were observed in the TIC (Figs 6A, 7 and 8). The

dominant products, 1258.44 and 951.36 m/z [M+H]+ ions, were present at a 9:1 ratio based on

corresponding peaks in the A210 spectra. In contrast, when HDI uretdione was reacted with

GSH without buffer (pH<4) quantitatively limited reaction products observed in A210 spectra

corresponded to 592.31 and 618.29 m/z [M+H]+ products (Fig 6B).

Fig 6. LC-MS analysis of GSH reaction products with HDI uretdione. TICs (A and B) and A210 chromatograms (C

and D) are shown for reaction products generated when GSH was reacted with HDI uretdione (solid black line) or

without (dashed red line). The m/z for the major products recognized as new [M+H]+ ions are labeled, along with

GSH and GSSG.

https://doi.org/10.1371/journal.pone.0271471.g006
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Further LC-MS/MS analysis was performed to better characterize the major 1258.44 and

951.36 m/z [M+H]+ products that formed when GSH was reacted with HDI uretdione at phys-

iologic pH. As shown in Fig 7B for the1258.44 m/z [M+H]+ ion, CID fragments are observed

corresponding to the neutral loss of 3 gamma-glutamate groups, consistent with an S-linked

(tris)GSH compound. Additional CID fragments expected from CID fragmentation of tris

(GSH)-HDI uretdione were prominent in the MS/MS spectra, including the 925.36, 765.25,

654.22. 525.18, 401.15, and 347.14 m/z [M+H]+ ions, along with the 179 m/z [M+H]+ expected

for the cys-gly portion of GSH (see S10 Fig). Together the data support the structure for tris

(GSH)-HDI uretdione presented in Fig 7C, however alternative conformations cannot be

definitively ruled out from the data.

LC-MS/MS data (Fig 8B) on the 951.36 m/z [M+H]+ ion was analyzed to better characterize

this minor product. Notably, the CID spectra contained a 708.23 m/z [M+H]+ ion, consistent

with neutral loss of one HDI (168.09 amu) and one gly moiety (75.03 amu), as described in

(S11 Fig). Such a fragment would likely only arise from a compound where one GSH conjuga-

tion site is on the uretdione ring and the 2 terminal N = C = O groups are stabilized (without

changing the mass) by cross-linking a second GSH group, as shown in Fig 8C. The CID spectra

of the 951.36 m/z [M+H]+ ion contained numerous other fragments consistent with a bis

(GSH)-uretdione, including 644.27, 569.24, 476.18, 401.18, 347.14, 321.16, 179.05, and 143.12

m/z [M+H]+ ions.

LC-MS/MS analysis was also performed on the of 592.31 and 618.29 m/z [M+H]+ products

that formed when GSH was reacted with HDI uretdione in solution without buffer (pH<4).

The data (S12 and S13 Figs) are consistent with mono(GSH) conjugates with partially

Fig 7. Characterization of major GSH reaction product with HDI uretdione at physiologic pH. (A) Mass spec analysis of sample

eluting from reverse phase LC column ~ 2.1 minutes, note dominance of doubly and triply charged species corresponding to the 1258.44

m/z [M+H]+ ion. (B) the CID fragmentation spectra of the 1258.44 m/z [M+H]+ ion upon MS/MS. (C) structural model for the major

reaction product of GSH with HDI uretdione based on exact mass and expected fragmentation pattern (S10 Fig).

https://doi.org/10.1371/journal.pone.0271471.g007
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hydrolyzed HDI uretdione, either with two NCO groups hydrolyzed to amines or with one

NCO group hydrolyzed and one NCO group bound to GSH’s amino terminus, possibly in a

cyclized manner as previously described for di-isocyanates [21, 26].

Discussion

GSH, an important mediator of xenobiotic metabolism, was shown to react with isocyanates

of the aliphatic polymeric type used most commonly in making coatings and elastomers.

LC-MS/MS data demonstrate reactivity of GSH with free NCOs in trimers of HDI (isocyanu-

rate and biuret) resulting in S-linked tris(GSH) reaction products at physiologic pH. Tris

(GSH) reaction products, and to a lesser extent bis(GSH) were also observed with dimerized

HDI formulations that contain two free NCO groups and an additional two NCO groups stabi-

lized in a uretdione moiety (e.g., internally blocked), consistent with multi-functionality of the

chemical recognized industrially. The data highlight the reactivity of isocyanate groups on dis-

tinct organic backbones, including those stabilized in uretdione structures, with the unique

thiol in the cysteine of GSH.

Reactivity of GSH with aliphatic polyisocyanates extends observations of studies with di-

isocyanates (both aromatic and aliphatic) and suggests a common susceptibility of NCO com-

pounds toward reactivity with GSH’s uniquely reactive thiol. GSH concentrations are relatively

high in the lower airway [25], the primary site for isocyanate toxicity [32], and most com-

monly, but not always, protect self-molecules (DNA, proteins) against alkylating electrophilic

xenobiotics [24, 33]. Further understanding of the fate of GSH-isocyanate adducts in exposed

airways in vivo, as recently described for monomeric MDI [21, 34, 35], may help understand

chemical metabolism and potentially pathogenic outcomes of exposure.

Fig 8. Characterization of minor GSH reaction product with HDI uretdione at physiologic pH. (A) Mass spec analysis of sample eluting from

reverse phase LC column ~ 2.3 minutes, note dominance of doubly and triply charged species corresponding to the 951.36 m/z [M+H]+ ion. (B)

the CID fragmentation spectra of the 951.36 m/z [M+H]+ ion upon MS/MS. (C) structural model for the minor reaction product of GSH with HDI

uretdione based on exact mass and expected fragmentation pattern (S11 Fig).

https://doi.org/10.1371/journal.pone.0271471.g008
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The reaction pH was found to markedly influence the reaction between polyisocyantes and

GSH. In the absence of buffer the reaction pH was low (pH< 4) due to GSH’s innate acidity

and tris(GSH) reaction products were not observed. Instead, we observed evidence for isocya-

nate hydrolysis and/or [M+H]+ ions expected for intramolecularly-reacted (cyclized) products,

with S- and N-linkage of a single GSH molecules, as previously reported with HDI “monomer”

[21, 26]. In the absence of GSH or other reactive compounds, reactivity of NCO groups with

water (hydrolysis) likely resulted in free amine groups, with subsequent polymerization to

products above detection limits of the LC-MS methodology or which precipitated and were

filtered from solution before final analysis. HDI biuret was the exception among the three

polyisocyanates tested; in water it yielded small amounts of a low molecular weight (427 m/z
[M+H]+) ion with characteristics of an intramolecularly-linked (cyclized) urea.

Characteristics of the reaction products and methodology are important aspects of the pres-

ent study. The workup conditions of the LC-MS (dilution in formic acid buffer) likely stabi-

lized the thiol-isocyanate reaction products, which can undergo hydrolysis at higher pH. The

analytical conditions also highlighted trimeric reaction products in LC-MS, which were

detected primarily as triply charged species, consistent with trivalent adducts. CID fragmenta-

tion patterns in LC-MS/MS analysis provided further evidence for S- linkage of GSH, most

notably, loss of g-glutamyl groups as described for other GSH conjugates [31].

The strengths and weakness of the study should be recognized in considering the signifi-

cance of the findings. A major strength was the use of highly precise LC-MS/MS techniques

to identify and characterize GSH reaction products with aliphatic polyisocyanates, which sup-

port chemical structural models. The major weakness of the study is the ex-vivo nature of the

experiments. While the reaction products were generated under physiologic pH, their stability

and potential ability to subsequently transfer polyisocyanate to self-molecules remains unclear.

Preliminary data from ongoing studies in our laboratory suggest GSH-polyisocyanate can

transfer polyisocyanate to (carbamylate) albumin in vitro and in vivo, creating antigenic

changes recognized by serum IgG specifically from exposed workers and anti-aliphatic isocya-

nate mAbs (S14 and S15 Figs). However, the precise role of GSH in protective (vs pathogenic)

responses to occupational isocyanate exposure remains unclear to date.

A minor weakness of the study is its qualitative design, which was not intended to compute

mass-balance or quantitate differences in GSH reactivity with different polyisocyanates. The

three isocyanate oligomers under study are liquids and were used at constant volumes (as com-

monly done industrially, specifically 0.1% which is slightly above the regulatory limit estab-

lished by the European Union), but which differed slightly in molarity [4, 36]. None-the-less,

substantially greater reactivity of GSH with (uretdione) HDI dimer vs. trimers (beyond that

expected from molar difference) was suggested based on A210 absorbance spectra of reaction

products, which showed greater decrease in reactant (GSH) and increase in total GSH-isocya-

nate reaction products.

In summary, the present data extend our understanding of isocyanate reactivity with GSH,

a molecule of vital importance in human health and major anti-oxidant in the fluid that lines

the lower airways and helps protect against inhaled toxicants. The findings demonstrate the

ready reactivity under physiologic conditions of GSH’s unique thiol with multiple NCO

groups attached to diverse aliphatic backbones of varying size/structure, including the “inter-

nally blocked” NCO groups of HDI uretdione. The data are consistent with studies demon-

strating GSH as a primary reactant in vivo for aliphatic HDI (which serves as the building

block for the aliphatic polyisocyanates studied herein), methyl isocyanate (cause of the “Bho-

pal” chemical disaster), and 2-chloroethyl-isocycanate (a metabolic bi-product of an experi-

mental cancer drug). Further studies will help define the potentially central role of GSH in
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response to NCO exposure, whether from occupational (di-, poly-isocyanate), or recently rec-

ognized environmental sources (e.g., hydrogen isocyanate) [37, 38].

Supporting information

S1 Fig. Comparison of TIC and A210 spectra for GSH reaction products with HDI isocya-

nurate at pH 7.4. The TIC (red dashed line) and A210 spectra (black solid line) of end-prod-

ucts from GSH reaction with HDI isocyanurate are overlayed and normalized to the highest

peak in each spectrum (GSH). The major new peak in the A210 spectra when GSH is reacted

with HDI isocyanurate corresponds to the 1426.53 m/z [M+H]+ in the TIC.

(PDF)

S2 Fig. Expected fragmentation pattern for tri(GSH)-HDI isocyanurate upon CID in MS/

MS. The [M+H]+ ions predicted to result from CID of the major reaction product of GSH

with HDI isocyanurate under physiologic pH.

(PDF)

S3 Fig. Characterization of major GSH reaction product with HDI isocyanurate in solution

without pH buffer (i.e., pH < 4). (A) Mass spec analysis of sample eluting from reverse phase

LC column ~ 2.6 minutes (i.e., the major reaction product without buffer) and (B) structural

model for this major reaction product of GSH with HDI isocyanurate that occurs in the

absence of pH buffer (i.e., pH < 4.0) based on exact mass and fragmentation pattern.

(PDF)

S4 Fig. LC-MS of minor GSH reaction product with HDI biuret at physiologic pH. The

minor product of GSH with commercial HDI biuret exhibits characteristics consistent with

GSH-HDI (monomer).

(PDF)

S5 Fig. Comparison of TIC and A210 spectra for GSH reaction products with HDI biuret at

pH 7.4. The TIC (red dashed line) and A210 spectra (black solid line) of end-products from

GSH reaction with HDI biuret are overlayed and normalized to the highest peak in each spec-

trum (GSH). The major new peak in the A210 spectra when GSH is reacted with HDI biuret

corresponds to the 1400.55 m/z [M+H]+ in the TIC.

(PDF)

S6 Fig. Expected fragmentation pattern for tri(GSH)-HDI biuret upon CID in MS/MS. The

[M+H]+ ions predicted to result from CID of the major reaction product of GSH with HDI

biuret under physiologic pH.

(PDF)

S7 Fig. LC-MS of dominant peak when HDI biuret is “reacted” in water (without buffer).

The minor product of HDI biuret following control reaction in water without GSH or buffer

possess characteristics consistent with the intramolecularly reacted product shown.

(PDF)

S8 Fig. Characterization of GSH reaction products with HDI biuret in solution without

pH buffer (i.e., pH < 4). (A) Mass spec analysis of sample eluting from reverse phase LC col-

umn ~2.4 minutes. (B) the CID fragmentation spectra of the 734.42 m/z [M+H]+ ion upon

MS/MS. (C) structural model for one reaction product of GSH with HDI biuret that occurs in

the absence of pH buffer (i.e., pH< 4.0) based on exact mass and fragmentation pattern.

(PDF)
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S9 Fig. Characterization of GSH reaction products with HDI biuret in solution without

pH buffer (i.e., pH < 4). (A) Mass spec analysis of sample eluting from reverse phase LC col-

umn ~2.6 minutes. (B) the CID fragmentation spectra of the 1067.49 m/z [M+H]+ ion upon

MS/MS. (C) structural model for a second reaction product of GSH with HDI biuret that

occurs in the absence of pH buffer (i.e., pH < 4.0) based on exact mass and expected fragmen-

tation pattern.

(PDF)

S10 Fig. Expected fragmentation pattern for tris(GSH)-HDI uretdione upon CID in MS/

MS. The [M+H]+ ions predicted to result from CID of the major reaction product of GSH

with HDI uretdione under physiologic pH.

(PDF)

S11 Fig. Expected fragmentation pattern for bis(GSH)-HDI uretdione upon CID in MS/

MS. The [M+H]+ ions predicted to result from CID of the minor reaction product of GSH

with HDI uretdione under physiologic pH.

(PDF)

S12 Fig. Characterization of GSH reaction products with HDI uretdione in solution with-

out pH buffer (i.e., pH < 4). (A) Mass spec analysis of sample eluting from reverse phase LC

column ~ 1.72 minutes. (B) the CID fragmentation spectra of the 592.31 m/z [M+H]+ ion

upon MS/MS. (C) structural model for one reaction product of GSH with HDI uretdione that

occurs in the absence of pH buffer (i.e., pH < 4.0) based on exact mass and fragmentation pat-

tern.

(PDF)

S13 Fig. Characterization of GSH reaction products with HDI uretdione in solution with-

out pH buffer (i.e., pH < 4). (A) Mass spec analysis of sample eluting from reverse phase LC

column ~ 2.2 minutes. (B) the CID fragmentation spectra of the 618.29 m/z [M+H]+ ion upon

MS/MS. (C) structural model for a second reaction product of GSH with HDI uretdione that

occurs in the absence of pH buffer (i.e., pH < 4.0) based on exact mass and expected fragmen-

tation pattern.

(PDF)

S14 Fig. Carbamylating capacity of GSH-HDI isocyanurate reaction products in vitro.

Human albumin was co-incubated with control (lanes 1, 3, 5) or GSH-HDI isocyanurate reac-

tion products (lanes 2, 4, 6) overnight at 37˚C, pH 9.0 followed by SDS-PAGE under reducing

conditions and Coomassie blue staining or Western blotting with pooled serum IgG from

unexposed individuals or HDI isocyanurate exposed workers as labeled. Note shift in electro-

phoretic migration of albumin following co-incubation with GSH-HDI isocyanurate consis-

tent with conformational change that is recognized specifically by pooled serum IgG from

exposed workers. (B) Right side shows hypothetical carbamylation of human albumin by

GSH-isocyanurate reaction product, resulting in stable conjugation to lysine residues. Di-

lysine motifs of albumin are preferred reaction sites for di-isocyanates, including “monomeric”

HDI vapor [21, 27].

(PDF)

S15 Fig. Carbamylating capacity of GSH-HDI uretdione reaction products in vivo. Bronch-

oalveolar lavage fluid from different mice given GSH-HDI uretdione reaction products (EU)

or controls (C), once daily X 5 days, were western blotted with a mAb that specifically recog-

nizes aliphatic isocyanate conjugated proteins (Panel A). The band at ~68 kDa likely reflects

albumin, the best recognized “carrier” protein for diisocyanates in vivo and dominant airway
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fluid protein. Western blots were negative with polyclonal antibody that specifically recognizes

HDI (monomer)-conjugated proteins (not shown) and control murine IgM (Panel B). �Note

BAL fluid was depleted of immunoglobulin using protein G, mice were B-cell deficient, and

anti-aliphatic isocyanate mAb is IgM isotype.

(PDF)
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