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ABSTRACT

Despite a recent surge of interest in database-independent peptide
identifications, accurate de novo peptide sequencing remains
an elusive goal. While the recently introduced spectral network
approach resulted in accurate peptide sequencing in low-complexity
samples, its success depends on the chance of presence of spectra
from overlapping peptides. On the other hand, while multistage
mass spectrometry (collecting multiple MS3 spectra from each MS2

spectrum) can be applied to all spectra in a complex sample, there
are currently no software tools for de novo peptide sequencing by
multistage mass spectrometry. We describe a rigorous probabilistic
framework for analyzing spectra of overlapping peptides and show
how to apply it for multistage mass spectrometry. Our software
results in both accurate de novo peptide sequencing from multistage
mass spectra (despite the inferior quality of MS3 spectra) and
improved interpretation of spectral networks. We further study
the problem of de novo peptide sequencing with accurate parent
mass (but inaccurate fragment masses), the protocol that may
soon become the dominant mode of spectral acquisition. Most
existing peptide sequencing algorithms (based on the spectrum
graph approach) do not track the accurate parent mass and are
thus not equipped for solving this problem. We describe a de novo
peptide sequencing algorithm aimed at this experimental protocol
and show that it improves the sequencing accuracy on both tandem
and multistage mass spectrometry.
Availability: The open-source implementation of our software is
available at http://proteomics.bioprojects.org.
Contact: bandeira@ucsd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The coupling of tandem mass spectrometry (MS2) with database
search tools (Perkins et al., 1999; Tanner et al., 2005; Yates
et al., 1995) is the enabling core behind high-throughput protein
identification (Aebersold and Mann, 2003). Unfortunately, this
successful strategy is not applicable to unknown protein sequences.
Particularly important examples of value derived from initially
unknown proteins include antibody drugs such as Herceptin™ or
Avastin™ (Haurum, 2006) and drugs derived from venom proteins
(Pimenta and De Lima, 2005). Antibodies illustrate the scenario
where the universe of possible protein sequences is very large
and constantly altered by recombination and somatic hypermutation
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(Maizels, 2005). Additionally, drugs derived from venom proteins
exemplify benefits of exploring the viable proteins already probed
by natural biodiversity. Another recently emerged application of
de novo peptide sequencing is proteogenomics, using mass spectra
to predict new genes and alternatively spliced variants (Edwards,
2007; Gupta et al., 2007; Tanner et al., 2007). Proteogenomics
studies would greatly benefit from searching 6-frame translations
of entire genomes that amounts to roughly 6 billion amino acids
for the mammalian genomes. The database search approaches are
impractical for such large searches while de novo-based approaches
to protein identifications (e.g. Alves and Yu, 2005) are not seriously
affected by the database size.

MS-based studies of unknown proteins rely on de novo peptide
sequencing techniques that attempt to recover the peptides directly
from the spectra. Unfortunately, despite decades of research,
accurate de novo peptide sequencing remains an elusive goal
with only 30–40% of all peptides (depending on the sample
and peptide size) reconstructed correctly (Pevtsov et al., 2006).
While algorithms have been developed to find a best-‘scoring’
peptide for a given spectrum (Bafna and Edwards, 2003; Chen
et al., 2001; Dancík et al., 1999; Fischer et al., 2005; Frank and
Pevzner, 2005; Ma et al., 2003), their sequencing accuracy is
still affected by incomplete fragmentation, noise and ambiguity
in ion-type assignments. In abundant, low-complexity samples,
these difficulties may be attenuated by generating overlapping
peptides and combining the resulting MS2 spectra to yield higher
accuracy de novo sequences—examples include 16O/18O labeling
(Shevchenko et al., 1997) or Shotgun Protein Sequencing (Bandeira
et al., 2004, 2007a). While Shotgun Protein Sequencing was
shown to work well for low-complexity samples it remains unclear
how it will scale up for complex samples. Multistage MS (e.g.
generating multiple MS3 spectra for each MS2 spectrum) could
be an ideal method to address the potential limitations of Shotgun
Protein Sequencing in a controlled and even experiment-driven
fashion. However, while various groups recently demonstrated
the advantages of multistage MS for database search (Kalkum
et al., 2003; Olsen and Mann, 2004; Ulintz et al., 2008),
there are currently no software tools for de novo interpretation
of multistage MS data. As a result, the multistage MS data
are still manually interpreted, not unlike tandem MS in mid-
1990s, before the first de novo peptide sequencing tools were
developed.

Given a spectrum s, de novo peptide sequencing algorithms
attempt to find a peptide π that best ‘explains’ the spectrum
(e.g. maximizes the probability of generating the spectrum s).
In multi-spectra peptide sequencing, one attempts to find a peptide π

that best explains multiple spectra s1,...,sk at once. Multistage MS is
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Table 1. Spectrum ion statistics for the yeast dataset

Type of spectra Number of spectra Intensity (%) Number of peaks p (b) p (y)

b y Satellite Unexplained

a) MS/MS (MS2) 890 13 30 20 37 542 0.81 0.84
MS/MS/MS (MS3) 4447

from y-ions 2592 11 17 23 49 62 0.41 0.51
from b-ions 1039 11 1 25 64 47 0.27 0.09

b) Scored MS2 890 28 28 23 31 80 0.81 0.81
Scored MS3 4447

from y-ions 2592 20 20 16 44 41 0.53 0.53
from b-ions 1039 14 3 22 61 36 0.30 0.12

c) Merged (MS2 + MS3) 602 66 8 7 19 83 0.89 0.77

d) Merged + sequenced 602 92 1 1 6 11 0.82 0.01

a) Ion statistics for RAW spectra. b) Ion statistics after replacing each peak’s raw intensity with a likelihood score (Frank and Pevzner, 2005). c) Ion statistics of the consensus
spectra obtained by merging each MS2 spectrum with its dependent MS3 spectra (after scoring). This category has less spectra (602) than the others (890) mainly because not all
MS2 spectra had at least one ‘usable’ MS3 spectrum (details in main text). d) Ion statistics for the peaks selected by de novo sequencing on the merged spectra.

an example of the multi-spectra peptide sequencing problem. In
certain aspects, interpretation of multistage MS data is more
challenging than interpretation of multiple tandem mass spectra (as
in Bandeira et al., 2007a,b) since MS3 spectra typically have lower
quality than MS2 spectra. The manual usage of MS3 spectra as an
aid to de novo sequencing dates back to a decade ago (Lin and
Glish, 1998). To the best of our knowledge, the only automated
approach to multistage MS is a heuristic approach proposed by
Zhang and McElvain (2000). However, the sequencing accuracy of
this approach remains unknown since Zhang and McElvain were
limited to only 42 sets of multistage spectra and the accuracy
gains from the proposed heuristics were described qualitatively
rather than quantitatively. Moreover, this approach has not enthused
further MS2/MS3 sequencing efforts because no implementation is
publicly available. Our multi-spectra peptide sequencing algorithm
was benchmarked on a set of 602 MS2 spectra with varying
numbers of dependent MS3 spectra (yeast dataset). To further
evaluate our algorithm we also tested it on 10 517 MS2 spectra
for which spectra from overlapping prefix/suffix peptides were
available.

Sequencing an MS2 spectrum in conjunction with k dependent
MS3 spectra entails searching for the best-scoring peptide while
considering every possible combination of fragment types for
the MS3 spectra (i.e. was the MS3 generated from a b- or a
y-ion). Our approach explores this search space by using dynamic
programming to find the best peptide for each of 2k possible
MS3 fragment-type assignments. We build on a probabilistic model
(Frank and Pevzner, 2005) to score peptide-spectrum matches and
extend it to include the particularities of MS2/MS3 sequencing. By
incorporating these readily available experimental capabilities into a
rigorous algorithmic framework, we show that overlapping spectra
can significantly increase de novo sequencing accuracy and even
make it almost error free when enough ‘usable’ MS3 spectra are
available. As an addition (or alternative) to overlapping spectra,
we also propose an efficient dynamic programming algorithm
for de novo peptide sequencing with accurate peptide masses

and evaluate the resulting contribution to de novo sequencing
accuracy.

2 METHODS
Datasets The yeast dataset was acquired from a trypsin digestion of a
yeast whole-cell lysate on a Thermo LTQ-FT instrument configured for
the acquisition of up to five MS3 spectra from each MS2 spectrum with
a doubly charged precursor; precursor masses for the MS3 spectra were
restricted to masses higher than the MS2 precursor mass. As a result, we
obtained a total of 3184 MS2 spectra with 15 770 dependent MS3 spectra.
These spectra were searched against a yeast database using InsPecT (details
are provided in Supplementary Materials) and resulted in the identification
of 890 out of all 3148 MS2 spectra (28%), having a total of 4447 dependent
MS3 spectra.1 In general, we observed that MS3 spectra tend to have less
explained intensity and less b/y-ion peaks than MS2 spectra (details shown in
Table 1). The shewanella dataset was acquired on Thermo LTQ instruments
over many LC/MS/MS runs with different multi-dimensional separation
techniques (Gupta et al., 2007). For the purpose of this study we arbitrarily
selected 34 326 MS2 spectra from different peptides, resulting in 10 517
MS2 spectra with between one and five other MS2 spectra from prefix/suffix
peptides. From a computational perspective, this shewanella MS2 dataset
mimics the yeast MS2/MS3 dataset with unrealistically high quality of MS3

spectra and thus allows one to establish an upper bound on the performance
of our multistage MS approach.

Spectrum identification Similar to the protocol used for the identification
of spectra in the shewanella dataset (Gupta et al., 2007), InsPecT (Tanner
et al., 2005) was used to search a database containing 7517 Saccharomyces
cerevisiae protein sequences (SwissPROT, October 8, 2006) and sequences
of common contaminant proteins. The database additionally contained 7517
decoy protein sequences used to enforce the selected 5% false-discovery
rate. InsPecT was configured to allow for 0.5 Da fragment mass tolerance
and 2.5 Da precursor mass tolerance; the high accuracy of the experimental
precursor masses was used to confirm identifications rather than to restrict the

1A total of 1039 MS3 spectra were annotated as prefix fragments (b-ions),
2592 MS3 spectra were annotated as suffix fragments (y-ions) and
320 spectra were annotated as prefix/suffix fragments after loss of H2O
or NH3.
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A B

Fig. 1. (A) Probability P(x|y) of a peptide symbol y generating a spectrum symbol x. Thus, the probability of a spectrum s=s1,...,sn being generated by a
peptide π =π1,...,πn is defined as P(s|π )=�n

i=1P(si|πi). (B) Construction of a HMM G for a graph G. The bold (hidden) path corresponds to the G-peptide
10101001.

space of possible peptides. The set of allowed modifications was oxidation
(M), phosphorylation (S, T and Y), acetylation (N-term), deamidation (Q) and
13C6

15N2 SILAC label (K). Since our approach does not address sequencing
with post-translational modifications, we discarded all modified peptides
with a single exception of the abundant SILAC-K whose mass was added as
a 21st amino acid.

The search identified 890 out of all 3148 MS2 spectra (28%). However,
only 1282 MS3 spectra out of 15 770 (8%) resulted in a significant match
to the database. To further increase the number of annotated MS3 spectra,
we matched each MS3 precursor mass to the theoretical fragment masses
from the peptide assigned to the parent MS2 spectrum. Note that this
procedure does not increase the number of identified peptides, but rather
allows us to better characterize the data and evaluate the algorithms described
below. The selection of unambiguous MS3 precursor mass matches resulted
in 1039 MS3 spectra annotated as prefix fragments (b-ions), 2592 MS3

spectra annotated as suffix fragments (y-ions) and 320 spectra annotated
as prefix/suffix fragments after loss of H2O or NH3. All dependent MS3

spectra from all identified MS2 spectra were used for de novo sequencing.
The ion statistics for all identified yeast spectra (shown in Table 1) allow

us to quantify the differences between MS2 and MS3 spectra. In general, the
latter tend to have less explained intensity and less b/y-ion peaks. Note that
these observations are not entirely surprising, because we only consider the
MS2 spectra that had a strong match to the database while most MS3 spectra
were identified only by their precursor mass.

We note that the different number of spectra in Table 1(b, c) stems from
the fact that 202 MS2 spectra did not generate any usable MS3 spectrum and
also because 86 MS2 spectra contained modified residues not considered for
our current de novo sequencing purposes. The only exception to the latter was
SILAC-labeled Lysine because of the high number of peptides containing
this modification.

De novo-peptide sequencing problem The best de novo sequencing
algorithms use probabilistic models that capture multiple features such as
peak intensities and expected propensities of the different ion types (Dancík
et al., 1999; Fischer et al., 2005; Frank and Pevzner, 2005; Ma et al., 2003).
We start by introducing a model that seemingly has nothing to do with de novo
peptide sequencing, but rather describes a very general probabilistic process
that transforms one Boolean string into another. We will show later that
this process not only generalizes the probabilistic model from (Dancík et al.,
1999) but also allows one to study de novo peptide sequencing from multiple
spectra.

Let s=s1,...,sn be a Boolean string called a spectrum and π =π1,...,πn

be a Boolean string called a peptide. The probability of peptide π generating
spectrum s is defined as P(s|π )=∏n

i=1 P(si|πi), where P(x|y) is a 2×2
matrix.

Given a spectrum s and a set of strings �, we are interested in solving
the optimization problem of finding maxπ∈�P(s|π ). Below we focus on
the sets � that are relevant in the context of tandem MS. Let V ={1,...,n}
and G(V ,E) be a topological ordering of a Directed Acyclic Graph (DAG)
such that i < j for every directed edge (i, j) in E. Every path from 1 to n in
graph G corresponds to a G-peptide π =π1,...,πn such that πi =1 iff vertex
i belongs to the path. We are interested in the following peptide sequencing
(PS) problem.

PS problem Given a spectrum s and a DAG G, find a G-peptide π

maximizing P(s|π ) over all G-peptides.
We impose no restrictions on the graph G(V , E), but in practical

applications it is usually assumed that (i, j)∈E iff ( j− i) equals the integer
mass of an amino acid. Such graphs are referred to as spectrum graphs
(Bartels, 1990; in MS, they usually encode all peptides of a given parent
mass n).

The relation between this abstract Boolean strings model and de novo
peptide sequencing is straightforward. In reality, an MS/MS spectrum can
be represented as a string of ones (peak present) and zeros (no peak present),
with a 0/1 for every consecutive 1 Da interval. Similarly, sequences of amino
acid masses (peptides) can also be represented as strings of zeros and ones.
Every amino acid can be represented as a string of α−1 zeros followed by
a single one, where α is the integer amino acid mass. Then, a peptide is
simply a concatenation of Boolean strings corresponding to its amino acids.
In this context, θ ≈0.05 (probability of observing a noise peak) and ρ ≈0.7
(probability of observing a b-ion) represent typical values of θ and ρ for
ion-trap MS/MS spectra (see table in Fig. 1A). This somewhat simplistic
Boolean string model can be modified for any mass resolution, peptide-
fragmentation rules and peak intensities (Bafna and Edwards, 2003; Chen
et al., 2001; Frank and Pevzner, 2005). Moreover making this model more
realistic typically does not affect the algorithmic solution. In particular,
(Bandeira et al., 2007b) recently showed how spectral alignment can be
used to separate between b/y-ions and thus generate strings as in this
model.

The PS Problem has an easy solution first described by (Dancík et al.,
1999). We will find it convenient to cast the approach in (Dancík et al.,
1999) as an application of the Viterbi algorithm (Durbin et al., 1999; Viterbi,
1967) in an appropriately constructed hidden Markov model (HMM) G.
Figure 1 shows a graph G with every edge (i, j) substituted by a path with
new j−i−1 traversal vertices that starts at i and ends at j. The resulting
graph with vertex set V ∪T (where V ={1,...,n} and T is the set of all
traversal vertices) represents the hidden states of the HMM G and all possible
transitions between the states. The emission probabilities of the HMM are
defined by the matrix P(x|y) with P(x|y=0) for T states and P(x|y=1) for
all other states (see Fig. 1A). The transition probabilities of all edges in
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this HMM are defined to be 1.2 Finding an optimal path in this HMM is a
straightforward application of the Viterbi algorithm.

The model above does not capture the fact that MS/MS spectra represent
both prefix ions (b-ions series) and suffix ions (y-ions series). To reflect this
we represent peptides as strings in 3-letter alphabet: 1 (theoretical b-cut), −1
(theoretical y-cut) and 0 (no cut). Given a peptide π =π1,...,πn, we define
its reverse as the peptide π∗ =−πn,...,−π1, i.e. π∗

i =−πn−i+1. We now
redefine the probability of peptide π generating spectrum s as Prob (s|π )=∏n

i=1 Prob(si|πi) ·Prob (si|π∗
i ), where Prob (x|y) is a 2 × 3 matrix. In general,

k ions can be modeled by k+1 parameter columns in this matrix; note that
using additional ion-types only changes the emission probabilities but not
the construction of the HMM.

However, this and other formulations of the peptide sequencing problem
encode a particular bias toward peptides that have b-ions bi, bj such that
bi and bj add up to the peptide mass. In these cases, both ions use the
same masses in the spectrum to artificially increase the score of the peptide
but do so with conflicting ion type assignments (because bi =yj and bj =yi).
Peptides that do not have such pairs of b-ions are referred to as anti-symmetric
peptides and efficient algorithms are available to find the maximum scoring
anti-symmetric peptide for any given spectrum (Bafna and Edwards, 2003;
Chen et al., 2001).3 Nevertheless, ambiguous b/y-ion assignments remain
one of the main sources of de novo sequencing errors. We show below how
MS3 spectra can help resolve these ambiguities.

Although this model still essentially amounts to maximizing the weighted
number of matched masses between a spectrum and a peptide, it already
captures enough detail to allow us to describe the proposed extensions for
combining MS2/MS3 spectra. In practice, this same framework is used to
model more elaborate events to take into consideration the intensity of the
peaks in the spectrum and to account for the presence/absence of other ion
types (e.g. b−H2O ions). As shown in Table 1, using more elaborate scoring
from (Frank and Pevzner, 2005), one can replace raw intensities with peak
scores to significantly increase the signal-to-noise ratio over all collected
spectra. The resulting scored spectra have more intensity assigned to true
fragment masses and feature a much smaller number of noise peaks while
simultaneously retaining almost all b/y-ions.

Multi-spectra peptide sequencing problem The simultaneous sequencing
of spectra from multiple peptides (e.g. PEPTIDE, PEPTID and EPTIDE)
requires solving two problems: (i) finding the correct multiple alignment
between all spectra (described in the next subsection) and (ii) reconstructing
a maximal-scoring peptide from the aligned spectra. In the following we
assume that the spectra are already aligned (as shown in Fig. 2) and describe
the problem of peptide sequencing from multiple aligned spectra. We do not
limit ourselves to MS2/MS3 (when all MS3 spectra correspond to prefixes or
suffixes of the peptide corresponding to MS2 spectrum), but rather consider
arbitrary sets of overlapping peptides.

MS3 spectra contain additional information in the form of corroborating
fragmentation peaks at the expected fragment masses in the MS2 and all
MS3 spectra. When the MS3 spectra are aligned with the MS2 spectrum,
the corroborating b-ions match ‘vertically’ while the matching y-ions are
found at different positions depending on the parent mass of each MS3

spectrum (Fig. 2). As such, we now consider the problem of finding
the most probable peptide π =π1,...,πn for a set of multiple (possibly
overlapping) spectra s1,...,sk . Thus, the alignment between the MS2/MS3

spectra defines a substring mapping where φ (si)={si
start,...,s

i
end} is the

sequence of consecutive numbers from si
start to si

end (1≤si
start ≤si

start ≤n)

such that the substring πφ(si) =πsi
start

,...,πsi
end

generates the spectrum si.

2Although these transition probabilities do not add up to 1, we prefer not
to normalize them. This keeps the resulting probabilities of hidden paths
consistent with the Dančik model and does not affect the Viterbi algorithm
for finding an optimal path.
3In practice, peptides that are not anti-symmetric are not excluded
from consideration, but special care is taken to avoid multiple ion-type
assignments to the same spectrum peaks in the scoring function.

MS2

(PEPTIDE)

First MS3

(PEPTID)

Second MS3

(EPTIDE)

m M−m

M 

Score of mass m = + Score of mass M-m = +

Fig. 2. Conceptual illustration of peak scoring on an MS2 spectrum (e.g.
from PEPTIDE) aligned with its dependent MS3 spectra (e.g. S1 from
PEPTID and S2 from EPTIDE). Since the correct alignment between
MS2/MS3 spectra is not known a priori, our algorithm finds the highest
scoring peptide over all possible alignments. M indicates the parent mass of
the MS2 spectrum and complementary masses (e.g. b/y-ions whose masses
add up to the corresponding parent mass) are connected by arcs under each
spectrum. Colors indicate the sets of masses accounted for when scoring
different peaks; the colored squares in the equations represent the summed
scores of all peaks of the same color; violet peaks indicate the b-ion masses
dictated by the parent masses of the MS3 spectra. Intuitively, the score of a
mass m summarizes all corroborating evidence for it being generated from
a prefix fragment. The red and blue peaks illustrate the contribution of the
MS3 spectra to the separation of b/y-ions in the MS2 spectrum—intuitively,
if m is a b-ion and M −m is not then the red peaks should be more prominent
than the blue peaks.

We now consider the following Multi-spectra peptide sequencing (MSPS)
problem.

MSPS problem Given spectra s1,...,sk and a substring mapping φ, find
a G-peptide π maximizing P(s1,...,sk |π )=∏k

i=1 P(si|πφ(si)).
It is easy to see that the HMM constructed for the PS Problem (described

above) can also solve the MSPS problem. The only difference between the
two HMMs resides in the types of symbols emitted by the hidden states.
Let S(i) be the set of all spectrum values generated from πi (defined by
spectra s1,...,sk and the mapping φ). Then, each hidden state now emits
a set of independent values S (i)={vj}, with P (vj|πi) given by the table in
Figure 1 as before: P(x|y=0) for T states and P (x|y=1) for all other states.
Assuming all vj are independent observations, the probability of observing
any given set S(i) is

∏
vj∈S (i) P (vj,πi). Once again, the MSPS problem can be

solved by an anti-symmetric sequencing algorithm on G (Bafna and Edwards,
2003; Chen et al., 2001). We note that although multiple ion-type assignments
can be avoided in the MS2 spectrum, the resulting peptide may be somewhat
biased by conflicting ion-type assignments in the MS3 spectra. While these
conflicts could be readily avoided when only one overlapping spectrum is
available (as described in Bandeira et al., 2007b), extending the algorithm to
more overlapping spectra would lead to a significant computational burden
unlikely to result in relevant gains in terms of sequencing accuracy.

A possible change to the MSPS problem would be to require the start/end
positions of each spectrum as mandatory 1s in the returned peptide π . This
modified problem can also be solved using the strategy described above if
we modify the HMM G by removing all T states at the start/end positions
of every spectrum. As such, every path through this modified HMM G will
be forced to use the states corresponding to these start/end positions and
thus results only in peptides that are consistent with the alignment of MS3

spectra.
Aligning MS2/MS3 spectra Under common experimental conditions, the

highest intensity peaks in MS2 spectra typically correspond to y- and, to a
lesser extent, b-ions. Another common source of high-intensity peaks are
doubly charged ions. However, on MS2 from doubly charged peptides one
can avoid doubly charged fragment ions by considering only peaks with
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Fig. 3. Dynamic programming recursion for de novo peptide sequencing of a spectrum S with accurate parent mass M. The variable S[u,v,k] represents
the maximum gapped-peptide score over all anti-symmetric gapped-peptides with a prefix ending at peak u, a suffix starting at peak v and with cumulative
mass error k; a gapped-peptide at position S[u,v,k] is defined as a (possibly incomplete) peptide consisting of a prefix peptide ending at peak u, a gap of
mass m(v)−m(u) and a suffix peptide starting at peak v. Used notation: m(x)—mass of peak x; s(x)—score of peak x; A—set of amino acid masses; δ is
the mass error incurred by modeling the peak mass difference m(x)−m(x′) with the amino acid mass a. In reality, user-specified fragment mass tolerances
are allowed when appropriate. Also, the set of amino acid masses A may include summed masses of pairs of amino acids (to allow for missing ions in the
spectrum).

a mass higher than that of the precursor ion. By restricting the selection
of MS3 precursor ions to this high-mass region our experimental setup (i)
implicitly selected singly charged MS3 precursors from doubly charged MS2

precursors and (ii) biased toward MS3 spectra generated from b/y-ions.4 As
such, determining the correct alignment between an MS3 spectrum and its
parent MS2 spectrum essentially reduces to determining the b/y-ion type of
the MS3 precursor ion.

Given an MS2 spectrum from a particular peptide (e.g. PEPTIDE), the
generation of an MS3 spectrum from one of its b-ions yields additional
information about the corresponding prefix peptide (e.g. PEPTID). The
converse reasoning applies to MS3 spectra from y-ions and suffix peptides
(e.g. PTIDE). As such, the assignment of an MS3 spectrum to the correct
ion type allows one to match the corroborating fragmentation from the same
peptide regions and thus reinforce the confidence in co-occurring fragment
masses. Since the correct ion-type assignments are not known in advance,
one needs to explore 2k possible combinations of assignments—an easy
task since k is usually small. Using the set of peaks with matching masses
between the MS2 and MS3 spectrum (in either ion-type assignment), we
define an MS3 spectrum as usable if the summed scores of the matched
peaks include at least 25% of the total summed peak scores (in each
spectrum).

Using the peptide sequencing framework described here, our approach
explores all 2k possible ion-type assignments for an MS2 spectrum with
k usable dependent MS3 spectra and selects the combination of assignments
resulting in the highest scoring peptide. The same algorithm was used for
the case of overlapping MS2 spectra, with the peptide dependencies (but
not the b/y-ion assignments) determined from InsPecT identifications (see
Bandeira et al., 2007b; for a blind approach to the detection of spectra from
overlapping peptides).

De novo-peptide sequencing with accurate parent masses Nearly all
de novo peptide sequencing algorithms use spectrum graphs (Bartels,
1990; Chen et al., 2001; Dancík et al., 1999; Fernández-de Cossío et al.,
1995; Frank and Pevzner, 2005) for interpreting the spectra. The spectrum
graph approach, while very useful, has an important (and often overlooked)
shortcoming when it comes to handling the parent-mass tolerance. Indeed,
due to errors in mass measurements, the lengths of edges in the spectrum
graph may deviate from the exact masses of amino acids by as much as
0.5 Da for ion-trap instruments. In the case when all errors are +0.5 Da
(unlikely but possible case), this can result in 0.5 × n error in the parent
mass for a peptide of length n. Such large deviations may result in optimal
but inadequate solutions thus reducing the accuracy of de novo peptide
sequencing. While such inconsistent solutions represent a minor nuisance

4The only notable exceptions (≈7% of all identified MS3 spectra) were the
selection of MS3 precursors from neutral-loss ions (e.g. b−H2O, y−NH3).

in the low-accuracy setting, they turn into a major problem in the case of
highly accurate parent mass measurements. Indeed, in this case it becomes
necessary to find the best solution with a given parent mass rather than the
best solutions among all peptides encoded by the spectrum graph.

The accurate handling of accurate parent masses (with tolerances of
0.05 Da or lower) can be achieved by adding a third dimension to the standard
anti-symmetric recursion (Chen et al., 2001; Dancík et al., 1999) to keep
track of the cumulative mass errors (Fig. 3).

In practical terms, the memory requirements for the third dimension
spanned by k can be controlled by binning the cumulative mass errors at
a chosen resolution r. For typical values of t =0.5 Da, r =0.01 Da and T � t
this results in a need for 100× more memory than would have otherwise
been needed. The memory requirements are on the order of O(m2/r), where
m is the number of peaks in the spectrum. Since m is usually ≤100, these
requirements can be easily met on any current desktop computer.5 We further
note that the mass-error tolerances can easily be adjusted for each individual
peak by varying the allowed range for k. In particular, peaks derived from
the parent masses of overlapping peptides may be set to much lower mass
tolerances than peaks from fragment masses.

3 RESULTS
When analyzed in isolation, individual MS3 spectra are less useful
than individual MS2 spectra. Lower amounts of substrate, low
charge and a bias toward shorter peptides result in spectra with
generally inferior-ion statistics (Table 1) and consequently a much
smaller percentage of identified spectra—8% of all MS3 spectra
versus 28% of all MS2 spectra in the yeast dataset (using traditional
database search). However, the combination of dependent MS3

spectra with the parent MS2 spectrum promptly reveals matching
peaks from true peptide fragments and non-matching peaks from
unexplained noise masses. Capitalizing on this corroborating
fragmentation leads to a significant increase in signal-to-noise ratio
with 19% intensity in non-explained peaks versus 31%/49% in
MS2/MS3 spectra. Also, the distinct locations of b/y-ions in the

5An alternative approach used to enforce strict parent-mass tolerances is
the mass array data structure (Mo et al., 2007), which defines mass bins
with resolution r =0.01 Da over the whole spectrum. However, we note that
extending the mass-array approach to enforce the anti-symmetric condition
would result in prohibitive-memory requirements on the order of O(M2/r),
where M could be anywhere between 400 and 6000 (for triple-charged
precursor ions).
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aligned MS2/MS3 spectra (Fig. 2) allow one to separate between
these ion types. Separating b/y-ions alleviates the uncertainties
in peak ion-type assignments and thus reduces the probability
of high-scoring incorrect peptide identifications. Furthermore, the
parent masses of the MS3 spectra create a strong bias toward
the corresponding b-ion masses. Since the overwhelming majority
of all usable MS3 spectra come from true fragment masses, the
resulting set of essentially mandatory b-ions significantly reinforces
the score of the correct peptide, while severely reducing the
probability of an incorrect high-scoring peptide match (see Fig. S1
Supplementary Materials). This feature is very important for de
novo-based approaches to peptide identifications (like RAId-DbS,
Alves and Yu, 2005). The main bottleneck of such approaches
is a large set of full-length suboptimal peptides that need to be
generated to ensure that the correct peptide is searched against a
database. As shown in Figure S1, multistage mass spectrometry has
a potential to reduce the number of such peptides by several orders
of magnitude. The gains obtained from merging MS3 spectra with
the corresponding parent MS2 spectra are summarized in Table 1c.

Our analysis revealed that scored MS3 spectra sometimes have
b/y-ions absent in MS2 spectra. Such additional fragmentation is
especially important in a de novo sequencing context because one
implicity searches for the best peptide match over the space of
all possible peptides of the observed parent mass. The combined
contributions of the factors described above results in a strong bias
toward the correct peptide sequence reflected in a significant increase
in the average percentage of correctly predicted amino acids (from
85.7 to 90.7%, Fig. 4). Moreover, we note that this increase in
sequencing accuracy is not achieved at the cost of making less
predictions—sequencing MS2/MS3 spectra resulted in 4922 amino
acid predictions versus 4772 for MS2 spectra only. As expected,
having more usable MS3 spectra results in increasing de novo
sequencing accuracy, generating almost-error-free sequences as
soon as four usable MS3 spectra are available.

As illustrated by the blue lines in Figure 4, the gain in de novo
sequencing accuracy is considerably higher when combining
multiple MS2 spectra from overlapping peptides (shewanella
dataset). The larger gains seem to be due to two distinct factors—(i)
the lower average quality of MS2 spectra not yielding MS3 spectra
(as compared to yeast MS2 spectra) and (ii) the better ion statistics
of the MS2 spectra from overlapping peptides (as compared to yeast
MS3 spectra). These two factors are clearly illustrated in Figure 4
by the differences between the blue/green dashed (case i) and full
(case ii) lines. Nevertheless, increasing numbers of overlapping
spectra also resulted in the the same trend of better sequencing
accuracy.6 In addition to these blue/green cases where the peptides
from the yeast and shewanella datasets were most similar, we
also observed significant improvements in the traditionally difficult
de novo sequencing of long peptides (13+ amino acids). Since these
peptides tend to generate less singly charged b/y-ion fragments
in the MS2 spectrum (especially for triply charged precursors),
these cases gain the most from the additional fragmentation in the

6We note that the lower average sequencing accuracy with 5 overlapping MS2

spectra (in the blue line, shewanella dataset) was due to inaccurate parent
masses and was thus surpassed when accurate parent masses were available.
Also, even with perfect sequencing accuracy, these spectra sometimes lacked
tags of length six because of missing peaks, even though tags of length five
were readily available.

additional spectra from overlapping peptides. Thus, the sequencing
accuracy of long peptides becomes essentially indistinguishable
from that of short peptides and doubly charged precursors. Also,
while the sequencing accuracy on MS2 spectra from triply charged
precursors still remains slightly inferior, it roughly approaches (or
exceeds, when accurate parent masses are available) the sequencing
accuracy previously achievable only for spectra from doubly
charged precursors.

The higher sequencing accuracy in combined MS2/MS3 spectra
increases the number of spectra for which one can recover long
subsequences (i.e. tags) of at least six consecutive amino acids.
The availability of MS3 ameliorates but does not completely
eliminate the difficulties in de novo sequencing of complete peptides
caused by missing fragment masses and high-intensity noise peaks.
Nevertheless, one is often able to confidently recover tags that may
uniquely identify the peptide using a simple (and very efficient)
text-based database search. Even when these long tags happen
to match multiple locations in larger databases, the number of
possibilities tends to be very small and can be quickly resolved
by matching the N/C-terminal masses (tags are usually recovered
from the middle of the spectrum) and additional peaks not included
in the tag. These factors are especially relevant when de novo
sequencing is followed by homology-tolerant searches such as those
enabled by MS-Alignment (Tsur et al., 2005). In these cases, the
tag-based efficiency gains (Bandeira et al., 2007b; Tanner et al.,
2005) should combine with the improved ion statistics shown
in Table 1d to simultaneously deliver faster and more accurate
results.

4 CONCLUSION
High-throughput studies of unknown proteins such as recombinant
(Pham et al., 2006) or venom (Birrell et al., 2007) proteins remain
burdened by low-throughput experimental procedures such as
Edman sequencing and the limited accuracy of de novo sequencing
of individual tandem mass spectra. While related approaches
increase the sequencing accuracy by combining multiple MS2

spectra from overlapping peptides (Bandeira et al., 2004; Bandeira
et al., 2007a; Shevchenko et al., 1997), the experimental setup
described here requires fewer sample handling steps (no need to
digest with multiple enzymes) and should thus be applicable to
smaller amounts of substrate.

We have demonstrated the utility of MS3 spectra for de novo
peptide sequencing and compared the resulting gains with those
obtainable from overlapping MS2 spectra. Although the ion statistics
in individual MS3 spectra are usually too weak to allow reliable
identification via database searching, the combination of multiple
MS3 spectra with the parent MS2 spectrum results in higher signal-
to-noise ratios and much improved separability of b/y-ions. By
combining the corroborating fragmentation in multiple spectra our
approach leads to increasing accuracy with higher numbers of usable
MS3 spectra and even achieves almost error-free sequencing as
soon as four usable MS3 spectra are available. The algorithmic
incorporation of accurate parent masses was also shown to contribute
to higher sequencing accuracy.

When applied to sets of overlapping MS2 spectra, the approach
described here also resulted in sequencing accuracy improvements
and practically erased the distinction between de novo sequencing
of short and long peptides. These gains were even more pronounced
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Fig. 4. Improvements in de novo peptide sequencing from overlapping spectra and accurate parent masses. (A) Changes in amino acid prediction accuracy,
defined as percentage of correct amino acids out of all amino acid predictions; (B) Changes in number of spectra yielding a correct tag of six amino acids or
longer (see Bandeira et al., 2007b, for a discussion of how these long tags could suffice for peptide identification). Four different scenarios were found to result
in significantly different sequencing results (shown in four different colors), with the yeast dataset mostly resembling the blue subset of the shewanella dataset
(charge two precursors with average peptide length ≈11.5). Values for single spectra are marked with triangle and the corresponding de novo sequencing
gains (from additional overlapping spectra) are marked with a diamond of the same color and in the same column; values from the same peptide subset are
connected by either dashed (single spectra) or full (multiple spectra) lines. The plots for the single peptides are not perfectly horizontal since there are small
variations in the spectral quality of subsets of MS2 spectra with i dependent MS3 spectra (for 1≤ i≤5).

for spectra of long peptides, including the traditionally difficult case
of spectra from triply charged precursors.

The major reason why database search is more accurate than
de novo sequencing is that the former only matches each spectrum
to a relatively small number of peptides in the database, while the
latter searches the space of all possible peptides. This distinction
is especially relevant because peptide fragmentation is usually
incomplete and generally confounded by noise peaks. Rather than
requiring an a priori guess of the set of possible peptides, the
simultaneous analysis of sets of spectra from distinct fragments
of the same peptide provides an independent experimental bias
toward the correct peptide and largely reduces the set of possible

high-scoring alternatives. Since more spectra lead to increasingly
restricted sets of high-scoring peptides, it follows that increasing the
number of usable MS3 spectra should result in yet higher sequencing
accuracy. Experimentally, higher fragment mass accuracy would
significantly reduce the chances of spurious peak matches and
should seamlessly increase the percentage of usable MS3 spectra.
Alternatively, more elaborate statistical models could be used to
predict the ion-types of MS3 precursor ions and eventually allow
the utilization of MS3 spectra from doubly charged precursor ions.
We further note that the approach described here is applicable to
peptides of any length and could, in principle, be used in the context
of top-down or middle-down (via limited proteolysis) proteomics
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experiments. However, algorithmic extensions may be necessary to
account for MS3 spectra of internal peptide fragments.
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