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1 | INTRODUCTION

Periodontal diseases affect the integrity of one or several tissues
of the periodontium, which is comprised of the gingiva, periodontal

Abstract

Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic
pathogenic microbial communities accumulate in the gingival crevice. Neutrophils
are a major component of the innate host response against bacterial challenge, and
under homeostatic conditions, their microbicidal functions typically protect the
host against periodontitis. However, a number of periodontal pathogens developed
survival strategies to evade neutrophil microbicidal functions while promoting in-
flammation, which provides a source of nutrients for bacterial growth. Research on
periodontal pathogens has largely focused on a few established species: Tannerella
forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomy-
cetemcomitans, and Porphyromonas gingivalis. However, advances in culture-inde-
pendent techniques have facilitated the identification of new bacterial species in
periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and
Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not
been fully described. Additionally, there is not a full understanding of the pathogenic
mechanisms used against neutrophils by organisms that are abundant in periodontal
lesions. This presents a substantial barrier to the development of new approaches to
prevent or ameliorate the disease. In this review, we first summarize the neutrophil
functions affected by the established periodontal pathogens listed above, denoting
unknown areas that still merit a closer look. Then, we review the literature on neu-
trophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis,
comparing the effects of the emerging microbes to that of established pathogens,
and speculate on the contribution of these putative pathogens to the progression of

periodontal disease.
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ligament, cementum, and alveolar bone. Periodontitis is an irrevers-
ible, chronic inflammatory disease that causes the loss of connec-
tive tissue, alveolar bone, and eventually the loss of teeth (Pihlstrom
et al., 2005). Preventative and treatment measures aim to control or
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remove the periodontal biofilm (Douglass, 2006); but unfortunately,
their efficacy is transient since the infection almost always returns.
Even in cases where inflammation is resolved and some tissue is re-
generated, it is impossible for the lost tooth support to be restored.

Under homeostatic conditions, colonizing bacteria initially as-
semble into physiologically compatible communities that can com-
municate through sophisticated signaling mechanisms (Plancak
et al., 2015). Any overgrowth or pathology is efficiently controlled
by the host inflammatory response, and the gingiva will return
to its normal, mild inflammatory state called para-inflammation
(Borenstein et al., 2018). However, changes in host immune compe-
tence, diet, or behaviors like smoking can affect microenvironmen-
tal factors including inflammation, pH, redox potential, or nutrient
availability, which can drive the selection and enrichment of specific
pathogenic bacteria. Under the poly-microbial synergy and dysbiosis
(PSD) model, a perturbation of the symbiotic microbial community
will result in an increase in the diversity and abundance of oral mi-
crobes (Hajishengallis & Lamont, 2012). The microbial community is
rendered dysbiotic by the actions of specialized microorganisms, and
once a dysbiotic environment is established, it is stabilized by the na-
ture of the microbes present. As the dysbiotic community develops,
an inflammatory response occurs, which includes elevated neutro-
phil recruitment, but which is nonetheless ineffective at confining
the bacterial community. Aggravated and dysregulated immune re-
sponses, in the context of periodontal inflammation, contribute to
tissue destruction that affords a source of nutrients for the microbial
community's growth, and thus a continuous cycle of dysbiosis and
inflammation ensues.

Neutrophils are the most abundant white blood cell in the gingi-
val crevice or periodontal pocket (Delima & Van Dyke, 2003), where
they are indispensable in the innate immune response against bacte-
rial infection and are critical for maintaining homeostasis in the oral
cavity (Uriarte et al., 2016). This is best illustrated in patients with
neutropenic diseases or genetic defects that affect neutrophil func-
tions, who develop severe periodontitis (Hajishengallis et al., 2016;
Silva et al., 2019). Despite their beneficial role in homeostasis, neu-
trophils are implicated as the main immune cells responsible for the
progression of periodontitis (Hernandez et al., 2010; Lee et al., 1995).

This review summarizes the current understanding of the eva-
sion strategies utilized by established and emerging periodontal
pathogens to disarm neutrophil effector functions (Tables 1 and 2).
Out of the growing list of emerging oral microbes, Filifactor alocis
and Peptoanaerobacter stomatis will be the focus of the second half
of this review because they have the most characterized interaction

with neutrophils of all emerging periodontal pathogens.

2 | AMOVING TARGET: MAKING AN
INVENTORY OF ORAL MICROBES IN
PERIODONTITIS

The microbial shift from a symbiotic microbiota to a dysbi-

otic polymicrobial community has been tracked and refined as

culture-independent techniques that have advanced (Berezow &
Darveau, 2011; Hajishengallis, 2014; Hajishengallis & Lamont, 2016;
Lamont & Hajishengallis, 2015). Together, the pioneer traditional
studies and the more advanced sequencing analyses have identi-
fied the presence of approximately 700 predominant taxa in the
oral microbiome, of which approximately one-third are ‘yet-to-be-
cultivated’ (Krishnan et al., 2017). Plaque analysis from periodon-
titis-diseased sites has revealed the presence of Porphyromonas
gingivalis, Tannerella forsythia, and Treponema denticola related
with disease severity (Socransky & Haffajee, 2005; Socransky
et al., 1998), whereas the presence of Aggregatibacter actinomy-
cetemcomitans has been associated with aggressive periodontitis
(Feres et al., 2004). Fusobacterium nucleatum is considered a com-
mensal species in the oral cavity that increases in abundance in dis-
eased individuals; however, it has been associated with most types
of periodontal diseases due to its highly synergistic interactions
with P. gingivalis and T. forsythia (Han, 2015).

The microbes described above are the most well-studied and
are therefore well established as periodontal pathogens. However,
there are 17 newly identified species that have a moderate associa-
tion with the etiology of periodontitis. This list is comprised of four
species in the not-yet-cultivable group (Desulfobulbus sp. oral taxon
0441, Fretibacterium sp. oral taxon 360, Fretibacterium sp. oral taxon
362, TM7 [G-5] sp. oral taxon 356), eight Gram-negative species
(Bacteroidales [G-2] sp. oral taxon 274, Porphyromonas endodontalis,
Treponema lecithinolyticum, Treponema medium, Treponema vincentii,
Anaeroglobus geminatus, Selenomonas sputigena, and Fretibacterium
fastidiuosum), and five Gram-positive species (Eubacterium saphenum,
Enterococcus faecalis, Mogibacterium timidum, Peptoanaerobacter
stomatis, and Filifactor alocis; Perez-Chaparro et al., 2014). Out of
these newly identified species, P. endodontalis is known to induce
cytokine and chemokine release from neutrophils and intraperito-
neal injection of E. saphenum can recruit murine neutrophils (Ko &
Lim, 2002; Salam et al., 2001).

3 | FILIFACTOR ALOCIS AND
PEPTOANAEROBACTER STOMATIS: FINDING
THEIR PLACE IN DYSBIOTIC PERIODONTAL
COMMUNITY

Filifactor alocis is a slow-growing, non-spore forming, obligate anaer-
obic rod that has been classified as Gram positive and asaccharolytic,
due to its metabolic preference for specific amino acids like arginine
(Aruni et al., 2015; Jalava & Eerola, 1999; Uematsu et al., 2003). It
was identified from the gingival sulcus in gingivitis and periodontitis
patients, and named Fusobacterium alocis (Cato et al., 1985), but was
later reclassified under the genus Filifactor (Jalava & Eerola, 1999).
Multiple studies show a stark difference in colonization of healthy
versus diseased tissues by F. alocis. While there is a high incidence of
F. alocis in periodontitis patients, there is a complete absence or low
number detected in healthy patients, designating F. alocis as a crucial

marker for periodontitis along with P. gingivalis, T. denticola, and T.
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TABLE 2 Periodontal Pathogens' effects on neutrophil non-antimicrobial functions

T. denticola

T. forsythia

F. nucleatum

A. actinomycetem-

Comitans

P. gingivalis

Chemotaxis

Decreased by MSP

(Jones et al., 2017; Magalhaes
et al., 2008; Puthengady Thomas
et al., 2006; Visser et al., 2013)

No Effect
(Gosling, Gemmell, Carter, Bird, &
Seymour, 2005)

Increased by Mirolysin
(Jusko et al., 2015)

Decreased by F. nucleatum extract
(Van Dyke et al., 1982)

Decreased by
A. actinomycetemcomitans extract
(Van Dyke et al., 1982)

Increased by leukotoxin
(Ashkenazi et al., 1992; Hirschfeld
et al., 2016)

Extract from P. gingivalis was
chemotactic, but inhibited
chemotaxis to other stimuli

Apoptosis

No effect
(Ding et al., 1997; Puthengady Thomas
et al., 2006; Shin et al., 2008)

No effect
(Ding et al., 1997; Shin et al., 2008)

Accelerates

(Jewett et al., 2000; Kurgan et al., 2017)

Accelerated by Aa
(Permpanich et al., 2006)

Lysed by leukotoxin
(Johansson, 2011)

No effect
(Ding et al., 1997; Galicia et al., 2009; Hiroi
et al,, 1998; Preshaw et al., 1999)

Release of inflammatory
mediators

Minimal
IL-18
(Shin et al., 2008)

IL-1B, IL-8 & TNF«

(Kurgan et al., 2017; Ling
etal., 2015; Polak et al., 2013;
Shin et al., 2008)

IL-18, TNFa and IL-8 (by Aa
LPS)
(Yoshimura et al., 1997)

IL-1B, TNFa, IL-8, and CCL2
(Polak et al., 2013; Vashishta
etal.,, 2019; Yoshimura

(Van Dyke et al., 1982)

F. alocis F. alocis infected neutrophils had ?

enhanced chemotaxis toward I1L-8
(Armstrong et al., 2016)

P. stomatis Conditioned supernatants from ?

P. stomatis infected neutrophils
induced migration of neutrophils
and monocytes

(Vashishta et al., 2019)

forsythia (Ahmed et al., 2009; Deng et al., 2017; lkeda et al., 2019;
Kumar et al., 2003, 2006; Schlafer et al., 2010; Schulz et al., 2019).
In the oral cavity, F. alocis forms biofilms in close proximity to the
soft tissue where some traditional pathogens like T. denticola are also
found (Liu et al., 2020; Schlafer et al., 2010). Thus, F. alocis is strongly
associated with periodontitis as a key player in biofilm formation
(Aruni et al., 2011; Chen et al., 2015; Naginyte et al., 2019; Wang
et al,, 2013).

The other Gram-positive emerging periodontal pathogen,
Peptoanaerobacter stomatis, is an obligate anaerobic rod, with a di-
ameter of 0.5-0.7 pm and a length of 1.0-2.3 pm, often forming
chains (Sizova et al., 2015). It is highly motile due to peritrichous
flagella (Downes & Wade, 2006; Sizova et al., 2015), and it rep-
resents the first known cultivable member of the human oral taxon
081. In 2015, it was classified as a novel genus and species within
the Peptostreptococcaceae family (Sizova et al., 2015). The newly
appreciated oral bacterium is not readily detected in the biofilms
of healthy patients but was found in high numbers in the biofilms
of patients with periodontal diseases (Kumar et al., 2005; Murphy
& Frick, 2013; Sizova et al., 2015). In addition to periodontitis, P.

etal., 1997)

Minimal IL-1B,TNFa,IL-8,
High levels IL-1ra, CCL4
(Vashishta et al., 2019)

IL-1B, TNFa, IL-1ra, CXCL1,
CCL2, CCL3, CCL4
(Vashishta et al., 2019)

stomatis is associated with dentoalveolar abscesses and endodon-
tic infections (Downes & Wade, 2006).

4 | NEUTROPHILS IN THE PROGRESSION
OF PERIODONTITIS

Many studies comparing neutrophils from periodontitis patients to
those of healthy controls have found that, under periodontal dis-
ease conditions, neutrophils are supernumerary, hyperactivated,
and/or display dysregulated functions. Compared to healthy con-
trols, periodontitis neutrophils had augmented phagocytic capacity
and increased expression of degranulation markers; showed defects
in chemotaxis, apoptosis; and released significantly higher quanti-
ties of reactive oxygen species (ROS), anti-bacterial enzymes, neu-
trophil extracellular traps (NETs), and pro-inflammatory cytokines
(Allen et al., 2011; Dias et al., 2011; Fine et al., 2016; Guentsch
et al.,, 2009; Ling et al., 2015). Together, these aberrant functions
result in inefficient killing of microbial pathogens, unresolved in-

flammation, and the destruction of tooth supporting tissues by



MIRALDA anp URIARTE

releasing tissue-degrading enzymes or inflammatory and toxic mol-
ecules (Chapple & Matthews, 2007; Eskan et al., 2012; Ryder, 2010).
Neutrophil effector functions are likely altered in periodontitis
through products from the chronic inflammatory environment
that contribute to a primed and hyperactive phenotype (Miralda
et al., 2017; Sochalska & Potempa, 2017) or through the manipulat-
ing periodontal pathogens.

5 | NEUTROPHIL EFFECTOR FUNCTIONS:
BEFORE AND DURING THE DYSBIOTIC
STORM

5.1 | Chemotaxis

Circulating neutrophils exist in a basal state, characterized by non-
adherence, a round morphology, minimal transcriptional activity,
and a limited capacity to respond to activating stimuli. However,
microbial invasion or tissue injury will release pathogen-associated
molecular pattern (PAMPs) or damage-associated molecular pattern
(DAMPs) molecules that modify the adhesion molecules on endothe-
lial cells to facilitate the capture of circulating neutrophils, followed
by transmigration to enter the extravascular space (Filippi, 2019;
Reichel et al., 2008). Once there, neutrophils detect the intensity
of chemotactic gradients and move with efficient directionality to-
ward intermediate chemoattractants (interleukin (IL)-8, leukotriene
B4, and platelet activated factor) first, and then toward end target
chemoattractants (bacterial formylated peptides and complement
fragments C5a and C3a) (Majumdar et al., 2014; Parent, 2004).

As the bacterial burden increases during periodontitis pro-
gression, neutrophil recruitment and accumulation also magnify
(Figure 1.1). In fact, neutrophil counts correlate with the level of
inflammation, the increasing depth of the periodontal pocket, and
the severity of chronic periodontitis (Bender et al., 2006; Fine
etal, 2016; Landzberg et al., 2015; Rijkschroeff et al., 2016). Defects
in chemotaxis greatly contribute to the high presence of neutrophils
in tissues, and pathogenic oral bacteria are known to modulate this
neutrophil function (Roberts et al., 2015). One of the most effec-
tive ways pathogenic oral bacteria restrict neutrophil chemotaxis is
indirectly, by interfering with the chemotactic gradient. T. denticola
can degrade IL-8 through the action of dentilisin, a major outer mem-
brane protease (Jo et al., 2014). Additionally, T. denticola and P. gin-
givalis can both suppress IL-8 production by gingival epithelial cells
to cause local chemokine paralysis (Brissette et al., 2008; Darveau
et al., 1998).

Alternatively, oral bacteria can disarm neutrophil migration by
acting on the neutrophil itself. The supernatant from sonicated or-
ganisms like F. nucleatum, A. actinomycetemcomitans, and P. gingi-
valis can bind and antagonize neutrophil chemotactic receptors to
prevent the detection of the chemotactic gradient and thus, inhibit
neutrophil migration toward known chemoattractants (Ashkenazi
et al,, 1992; Van Dyke et al., 1982). Microbial products like the
Major Sheath Protein (MSP) of T. denticola can also interfere with

WILEY-—Y

cytoskeletal signaling pathways that mediate cell movement (Jones,
Vanyo, & Visser, 2017, 2019; Magalhaes et al., 2008; Puthengady
Thomas et al., 2006; Visser et al., 2013). Pathogenic oral bacteria
also employ misdirection mechanisms: P. gingivalis can downregulate
the expression of cell adhesion molecules like E-selectin and intra-
cellular adhesion molecule (ICAM)1 that are required for leukocyte
extravasation (Figure 1.2) (Darveau et al., 1995; Huang et al., 1998,
2001; Madianos et al., 1997), while leukotoxin from A. actinomyce-
temcomitans enhances random migration of neutrophils (Hirschfeld
et al.,, 2016).

When the neutrophil directed migration pattern is altered, they
continue to accumulate at the periodontal pocket and adjacent con-
nective tissue but are unable to effectively track target microbes.
Meandering neutrophil behavior is beneficial to the microbial com-
munity because it decreases the chances of neutrophil-bacteria
interaction while increasing the chances for bacterial colonization
(Figure 1). Paradoxically, the same periodontal bacteria can contrib-
ute to the recruitment of neutrophils to the gingival tissue through
the actions of their proteases. Mirolysin and karilysin from T. for-
sythia and arginine-specific gingipain (RgpA) from P. gingivalis can
cleave complement component 5 (C5) to generate the anaphylatoxin
C5a, which strongly recruits neutrophils (Jusko et al., 2012, 2015;
Wingrove et al., 1992). It has been shown that the concentration of
gingipains released by P. gingivalis is tailored to promote bacterial
survival. At early infection stages gingipains can be found at low
concentrations, promoting cleavage of C5 and generation of C5a,

which stimulates neutrophil recruitment that will enhance tissue

Peri P; Affect phil F to Sustain Dysregulated Inflammation

Downregulate expression
of adhesion molecules
E-selectin and ICAM-1
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FIGURE 1 The strategies of established periodontal pathogens
to disarm neutrophil functions. To effectively clear invading
organisms, neutrophils must be capable of mounting rapid, vigorous
responses to activating stimuli; however, uncontrolled or prolonged
neutrophil activation and antimicrobial responses result in injury to
normal host cells, leading to pathologic changes. Numbers indicate
the different functions that neutrophils perform from circulation

to the site of infection and how established pathogens, including T.
forsythia, T. denticola, F. nucleatum, A. actinomycetemcomitans, and P.
gingivalis can manipulate these functions (shown in white boxes) to
drive inflammation. Refer to the text for additional details [Colour
figure can be viewed at wileyonlinelibrary.com]
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destruction and provide nutrients for the dysbiotic community.
However, when their concentration increases and the biofilm has
been formed in deeper periodontal pockets, they inhibit the com-
plement pathway to protect P. gingivalis and bystander bacteria from

complement and neutrophil killing (Popadiak et al., 2007).

5.2 | Phagocytosis

As professional phagocytes, neutrophils will rapidly and read-
ily undergo the receptor-mediated process of phagocytosis (Levin
et al., 2016). Phagocytosis occurs most efficiently by the recogni-
tion of complement or IgG-opsonized particles, and while non-op-
sonized phagocytosis can occur it is less efficient since neutrophils
possess fewer non-opsonic receptors than macrophages (Allen &
Criss, 2019). Phagocytosis initiates a series of events that typically
result in the killing and degradation of the ingested cargo. However,
the manipulation of neutrophils by periodontal pathogens continues
at the level of phagocytosis and intra-phagosomal killing (Figure 1.3).

Treponema denticola and P. gingivalis efficiently block neutrophil
phagocytic events by interfering with cytoskeleton pathways, which
provide protective advantages to other bacteria in the oral cavity
(Maekawa et al., 2014; Makkawi et al., 2017; Puthengady Thomas
et al., 2006). Neutrophils treated with MSP from T. denticola had
diminished incorporation of actin monomers during de novo fila-
ment assembly, which resulted in decreased uptake of IgG-coated
spheres (Puthengady Thomas et al., 2006). Alternately, by mod-
ulating signaling cascades, P. gingivalis inhibits the formation and
extension of lamellipodia necessary to form the phagocytic cup
(Maekawa et al., 2014; Makkawi et al., 2017). While T. denticola, A.
actinomycetemcomitans, and P. gingivalis naturally avoid phagocyto-
sis by neutrophils, the presence of complement and antibodies can
overcome this resistance (Guentsch et al., 2009; Lingaas et al., 1983;
Shin et al., 2008). However, T. denticola and P. gingivalis proteases
can degrade C3 or other upstream components of the complement
pathway to inhibit complement opsonization and killing (Jusko
et al., 2012; Popadiak et al., 2007). Additionally, despite the find-
ing that patients with periodontitis have high levels of P. gingiva-
lis-specific 1gG in serum, the lysine-specific gingipain K (Kgp) is able
to cleave IgG1 and IgG3 at the hinge region, which separates the
antigen binding region of the antibody from the effector fragment,
resulting in the inactivation of IgG-mediated opsonization (Guentsch
et al., 2013; Kobayashi et al., 2001; Vincents et al., 2011). When neu-
trophils are not able to engulf the bacteria, they resort to extracellu-

lar killing mechanisms that fuel the ongoing inflammation.

5.3 | Reactive oxygen species generation

Once a bacterial particle is engulfed, production of reactive oxygen
species (ROS) and fusion of antimicrobial granules will contribute
to the phagosome's maturation and lethality (Levin et al., 2016).

The complementary actions of the granule proteases and ROS

production will create a highly toxic environment that few microbes
can survive. ROS are generated through the conversion of molecu-
lar oxygen to superoxide by the multi-component NADPH oxidase
complex. Spatial separation of the NADPH membrane and cytosolic
components maintains enzymatic inactivity in resting neutrophils.
Upon stimulation, the cytosolic components translocate to the
membrane bound components to form the catalytically active en-
zyme complex (el Benna et al., 1994, 1996; Groemping et al., 2003).
Neutrophils have an unparalleled ability to rapidly form ROS, and
they can tailor their response depending on the type of stimuli they
encounter. Activation of neutrophils by a soluble stimulus, such as
fMLEF, triggers assembly of the NADPH oxidase at the plasma mem-
brane and release of superoxide anions toward the extracellular
space. In contrast, if neutrophils encounter a particulate stimuli,
for example a bacterium, assembly and activation of the NADPH
oxidase will take place at the membrane of the bacteria-containing
phagosome with release of superoxide anions inside the phago-
some (Babior et al., 2002; Nauseef, 2007, 2014, 2019). Generally,
ROS produced from neutrophils contributes to bacterial killing and
intracellular signaling; however, excessive ROS can have cytotoxic
effects on periodontal tissues through oxidative damage to DNA and
proteins, interference with cell growth and cell cycle progression,
and induction of apoptosis of gingival fibroblasts (Chang et al., 2013;
Esterbauer et al., 1991; Kanzaki et al., 2017; Wells et al., 2009; Yu
etal., 2012). Indirectly, ROS can also induce alveolar bone resorption
through their role as intracellular signaling molecules in osteoclasto-
genic pathways (Ha et al., 2004).

Like other effector functions, normal ROS generation by neu-
trophils is compromised in the context of periodontitis (Figure 1.4).
When tested against individual periodontal bacteria in vitro, neu-
trophils can mount a ROS response of varying degrees against T.
denticola, T. forsythia, F. nucleatum, A. actinomycetemcomitans, and P.
gingivalis, although the extent of ROS production heavily depends
on the strain used, multiplicity of infection, and type of opsonization
(Hirschfeld et al., 2017; Katsuragi et al., 2003; Kurgan et al., 2017,
Moriguchi et al., 2017; Shin et al., 2008; Yamazaki et al., 2006). Once
generated, ROS do not discriminate between host and pathogen
cells, and contribute heavily to disease progression. This is most
clearly demonstrated by patients with hyperactive ROS response
that are more susceptible to periodontitis (Aboodi et al., 2011;
Johnstone et al., 2007), and periodontitis patients that were treated
with the antioxidant, lycopene. Lycopene-treated patients had re-
duced oxidative stress and improved clinical parameters that could
be observed up to 4 months after discontinuing treatment. Notably,
patients with Chronic Granulomatous Disease (CGD), who cannot
mount a respiratory burst response, are not more susceptible to
periodontitis, but suffer from recurrent aphthous ulcers and severe
gingivitis (Nussbaum & Shapira, 2011). More studies are highlighting
the immunomodulatory role of ROS, by showing how both ends of
the spectrum, absence or excess, contribute to dysregulated inflam-
mation (Dinauer, 2019; Zeng et al., 2019).

The inefficacy of ROS against specific oral pathogens may be

due, in part, to bacterial virulence factors that confer protection
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for the entire bacterial community. Several oral pathogens like A.
actinomycetemcomitans, F. nucleatum, and P. gingivalis express su-
peroxide dismutase (SOD), which catalyzes the dismutation of su-
peroxides into hydrogen peroxide and produces molecular oxygen
(Balashova et al., 2007; Choi et al., 1991; Diaz, Zilm, & Rogers, 2000,
2002). P. gingivalis, also expresses rubrerythrin (Rbr) and alkyl hy-
droperoxidase reductase (Ahp), which detoxify hydrogen peroxide
(Diaz et al., 2004; Johnson et al., 2004; Sztukowska et al., 2002).
Additionally, through the proteolytic action of gingipains, P. gingivalis
can acquire heme deposits on its cell surface, which act as an oxida-
tive sink to further protect bacteria against the deleterious effects
of ROS (Rangarajan et al., 2017; Smalley & Olczak, 2017). However,
other periodontal bacteria may also be acting directly on neutrophils
to control the ROS response, for example F. nucleatum inhibits fM-
LF-induced superoxide generation, although the mechanism is still

unknown (Kurgan et al., 2017).

5.4 | Granule exocytosis

Neutrophil granules are divided into four subtypes based on gran-
ule density and contents (Borregaard & Cowland, 1997; Lominadze
et al., 2005; Sengelov et al., 1993, 1995). Like ROS production, the
different neutrophil granule subtypes can either be recruited to the
bacteria-containing phagosome or stimulated to undergo exocyto-
sis and release their matrix content extracellularly (Niels Borregaard
et al.,, 2007). Neutrophil granule subsets undergo an ordered release
based on stimulus intensity, termed graded exocytosis (Sengelov
et al.,, 1993, 1995). A weak stimuli induces mobilization of secretory
vesicles, and increasing stronger stimulation is required to mobilize
gelatinase, specific, and azurophil granules, respectively (Nauseef &
Borregaard, 2014). The diverse repertoire of proteins and receptors
present at the membrane of each granule subtype, as well as within
the granule lumen, highlights the important role each granule plays in
the different neutrophil responses during inflammation (Lominadze
et al., 2005; Rarvig et al., 2013; Uriarte et al., 2008). However, the
killing efficacy of neutrophils against intracellular and extracellular
microorganisms is enhanced by combining the activity of antimicro-
bial granule contents and ROS production (Figure 1.4).

The resistance of certain periodontal pathogens to bacteri-
cidal activity of neutrophil microbicidal peptides can be partially
explained through the action of bacteria-derived proteolytic pep-
tides. From T. forsythia, miropin, and karilysin efficiently inhibit
the activity of a broad range of proteases (LL-37, neutrophil and
pancreatic elastases, cathepsin G, subtilisin, and trypsin) (Koziel
et al., 2010; Ksiazek et al., 2015), and gingipains from P. gingivalis
directly cleave multiple host antimicrobial proteins, which confer
resistance against extracellular, ROS-independent killing mecha-
nisms (Carlisle et al., 2009; Gutner et al., 2009; Kuula et al., 2008;
Odell & Wu, 1992). Interestingly, the expression of these gingipains
is increased when P. gingivalis undergoes oxidative stress, suggest-
ing there is a feed forward mechanism of suppression of neutrophil

mechanisms (Shelburne et al., 2005).
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While neutrophil granule contents can be released into the extra-
cellular matrix or into a microbe-containing phagosome, most stud-
ies related to periodontal pathogens have focused on the release of
neutrophil granule contents in the context of tissue degradation. A.
actinomycetemcomitans, F. nucleatum, T. denticola, and P. gingivalis
have all been reported to induce the release of matrix metallopro-
teinase 8 (MMP8), matrix metalloproteinase 9 (MMP9), neutrophil
elastase, and lysozyme (Claesson et al., 2002; Ding et al., 1997;
Gursoy et al., 2018; Sela, 2001; Sela et al., 1997; Sheikhi et al., 2000;
Yamazaki et al., 2006). The exocytosis of neutrophil granules has
also been confirmed in neutrophils isolated from the oral cavity,
since neutrophils from periodontitis patients express increased
levels of degranulation markers on their surface (Fine et al., 2016;
Nicu et al., 2018). Elevated levels of neutrophil elastase, plasmino-
gen, and MMP9 were detected in periodontal ligament from chronic
periodontitis patients (Ujiie et al., 2007), but zymographic analysis of
these three proteinases showed that elastase was the only protein-
ase involved in the degradation of collagen fibrils of periodontal liga-
ments in vitro. Notably, the morphological features from the in vitro
system were similar to that of the periodontal ligament in chronic
periodontitis, which directly implicates this neutrophil enzyme in the
early destructive stages of periodontal disease (Ujiie et al., 2007).
Similarly, bacterial proteases can also directly induce tissue degrada-
tion. Karilysin from T. forsythia shares structural homology to human
matrix metalloproteinases and can cleave elastin, fibrinogen, and fi-
bronectin (Karim et al., 2010).

5.5 | NET formation

NETs represent an immune defense mechanism deployed by neu-
trophils to immobilize and kill invading microbes or contain bio-
films from disseminating into other sites of the body (Sollberger
et al., 2018). However, as with all other neutrophil mechanisms,
this function is a double-edged sword that has been implicated in
inflammation and induction of auto-immunity by providing a source
of autoantigens (White et al., 2016). Confocal and electron micros-
copy studies confirmed there was NET formation in the oral cavity of
chronic periodontitis patients (Vitkov et al., 2009), and a later study
found that neutrophils are attracted to the supragingival biofilms,
where they release NETs (Hirschfeld et al., 2015). When individual
periodontal bacteria were tested against neutrophils, A. actinomy-
cetemcomitans and F. nucleatum both induced NET formation. F.
nucleatum activated neutrophils through nucleotide oligomeriza-
tion domain (NOD) 1 and 2 and induced a time-dependent, robust
release of NETs (Alyami et al., 2019), which was independent of TLR
stimulation and ROS production (Hirschfeld et al., 2017). Challenge
of neutrophils with A. actinomycetemcomitans or its leukotoxin in-
duced NETosis (Hirschfeld et al., 2016); a process that was enhanced
by the presence of serum and signaling through complement recep-
tor (CR)1 (Palmer et al., 2016). Contrasting reports have shown that
P. gingivalis does (Bryzek et al., 2019; Jayaprakash et al., 2015) and
does not (Hirschfeld et al., 2017) induce NET formation, though this
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conflicting data may be due to bacterial strain differences. No stud-
ies have directly tested whether T. forsythia or T. denticola can induce
NET release from neutrophils.

Regardless of whether NETosis was induced by a particu-
lar oral pathogen, both A. actinomycetemcomitans and P. gingivalis
can be trapped by HOCI-produced NETs (Hirschfeld et al., 2017).
However, several periodontal microbes like P. gingivalis, Prevotella
intermedia, and F. nucleatum, but not A. actinomycetemcomitans, ex-
press nucleases with differing DNA degradation capacities (Doke
et al., 2017; Palmer et al., 2012). Additionally, P. gingivalis expresses
Porphyromonas peptidylarginine deiminase (PPAD), an enzyme
that citrullinates histone H3, thereby facilitating the bacterial es-
cape from NETs (Aliko et al., 2019; Cooper et al., 2013; Stobernack
et al., 2018; Vitkov et al., 2018). When neutrophils were cultured
with P. gingivalis or purified Rgp gingipains, both stimulants in-
duced NETSs that lacked bactericidal activity and actually stimulated
the growth of bacteria species that normally are susceptible to kill-
ing by NETs (Bryzek et al., 2019). This protection was mediated by
the proteolysis of bactericidal components on NETs. Taken together,
some periodontal pathogens may be playing a dual role in NET for-
mation. They are the potent direct inducers of NETs formation but
simultaneously prevent bacterial entrapment and subsequent killing
by degrading NETs or the antimicrobial proteins embedded in the
extruded DNA (Figure 1.5).

5.6 | Intra-phagosomal bacterial killing

Blocking of any of the killing mechanisms previously described
(NETSs, phagocytosis, ROS, granules) can result in defective bacterial
killing. Neutrophils isolated from the crevicular fluid of periodontitis
patients showed decreased intracellular killing against A. actinomy-
cetemcomitans and P. gingivalis compared to neutrophils from healthy
controls, indicating that there is pervasive inhibition of bacterial kill-
ing during periodontitis (Eick et al., 2000). P. gingivalis is also resistant
to killing by neutrophil granule contents (Odell & Wu, 1992; Yoneda
etal.,, 1990), which was later shown to be dependent on the gingipain
activity (Kadowaki et al., 2004). On the other hand, neutrophils are
able to carry out significant killing of F. nucleatum and A. actinomy-
cetemcomitans strain Y4 within an hour (Guentsch et al., 2009; Lai
et al., 2015; Mangan et al., 1989). Other strains of A. actinomycetem-
comitans were able to resist intracellular microbicidal mechanisms
after an hour of challenge, which correlated with the levels of leu-
kotoxin expression (Permpanich et al., 2006). Notably, exposure of
neutrophils to nicotine severely dampens their ability to kill F. nu-
cleatum and A. actinomycetemcomitans, (Pabst et al., 1995), which
presents one possible mechanism for increased periodontal disease
in smokers. To the best of our knowledge, no studies have examined
whether neutrophils can directly kill T. denticola or T. forsythia.

P. gingivalis’ survival around neutrophils is the best characterized
and depends on the cross-talk between two receptors on the surface
of neutrophils in vivo (Hajishengallis, 2020; Maekawa et al., 2014).
While P. gingivalis directly activates TLR2/1 receptor, the C5a formed

by the gingipain-dependent cleavage of C5 will activate the C5a re-
ceptor (C5aR1). The co-stimulation of these receptors results in the
degradation of the TLR adaptor protein MyD88 (Burns et al., 2010;
Maekawa et al., 2014). This reroutes signaling through another adap-
tor protein, MyD88 adaptor-like (Mal, also known as TIRAP). This
is significant because activation of the MyD88-dependent signal-
ing pathway is associated with initiation of antimicrobial responses
while Mal-dependent pathways activate PI3K and block phagocyto-
sis, while still resulting in the release of pro-inflammatory cytokines.
Thus, by redirecting signaling through Mal instead of MyD88, P. gin-
givalis dismantles the killing mechanisms of neutrophils, but not their
proinflammatory activity (Hajishengallis et al., 2016). Nonetheless,
little to no literature is available to explain how other established
oral pathogens can survive within the hostile environment of the
neutrophil phagosome.

In the case of the periodontal dysbiotic community, the pro-
tective effects from one species could benefit others that do not
have any virulence factors of this type. For example, succinic acid, a
metabolic, fatty acid byproduct of P. gingivalis and other Bacteroides
species, abolished neutrophil killing of Escherichia coli by decreas-
ing neutrophils’ ability to produce ROS (Rotstein et al., 1985, 1987).
Similarly, when neutrophils were incubated with short chain fatty
acids derived from anaerobic bacteria, their ability to undergo gran-
ule exocytosis and produce ROS was also diminished (Eftimiadi
et al., 1987). Characterizing the periodontal pathogens’ individual
and community protective mechanisms provide valuable knowledge
to better understand the complex interactions that take place be-

tween neutrophils and the dysbiotic microbial ecosystem.

5.7 | Cytokine production

The role of neutrophils as regulators of the immune response has
gained increasing recognition because of their capacity to tran-
scribe, perform de novo synthesis, and release different cytokines
and chemokines (Cassatella, 1999; Nicola Tamassia et al., 2018;
Cristina Tecchio & Cassatella, 2016). Depending on the type of stim-
ulation they encounter, neutrophils can produce and release an array
of different cytokines and chemokines, which is significant in the
amplification loop of the local immune response (Cassatella, 1999;
Cassatella et al., 2019; Scapini & Cassatella, 2014; Tamassia
et al., 2018; Tecchio & Cassatella, 2016). Although each individual
neutrophil may not produce quantities comparable to other immune
cells, in periodontitis, where neutrophils accumulate in great num-
bers, the collective release of cytokines and chemokines by neutro-
phils can play a significant role in amplifying the immune response.
It is unknown whether T. forsythia or A. actinomycetemcomitans in-
duce direct cytokine production by neutrophils, but reports show
that T. denticola, F. nucleatum, and heat-killed P. gingivalis can induce
neutrophils to release the pro-inflammatory cytokine IL-1p (Polak
etal., 2013; Shin et al., 2008). F. nucleatum and its LPS also induce ro-
bust release of IL-8 and TNFa from neutrophils (Kurgan et al., 2017,

Ling et al., 2015). LPS from A. actinomycetemcomitans stimulated the
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release of significantly greater amounts of IL-1p, TNFa, and IL-8 than
the response elicited by P. gingivalis-LPS (Yoshimura et al., 1997). P.
gingivalis does, however, stimulate neutrophil production of TNFa,
IL-8, and CCL2, possibly through an LPS-independent mechanism
(Vashishta et al., 2019; Yoshimura et al., 1997). A noteworthy dis-
tinction is that the best practice for measuring neutrophil-derived
cytokines is to test a neutrophil population that is as pure as possible
since contamination of even 0.01% of monocytes can skew the cy-
tokine and chemokine populations significantly (Calzetti et al., 2017;
Tecchio et al., 2014).

5.8 | Apoptosis

Under homeostatic conditions, neutrophils are programmed to un-
dergo apoptosis after ~12-24 hr, and are cleared by macrophages
in the liver, spleen, and bone marrow (Saverymuttu et al., 1985). In
tissues, neutrophil lifespan is prolonged by cytokines (IL-1p, TNFa,
GM-CSF, G-CSF, and interferon (IFN) y), microbial components, and
the local environment (Kennedy & Deleo, 2009). Moreover intracel-
lular pathogens can promote neutrophil viability as a way to protect
their replicative niche, whereas other microbes accelerate apopto-
sis, trigger neutrophil lysis, or redirect cell death toward necrosis to
evade intracellular killing (Allen & Criss, 2019). Apoptosis is a critical
step to minimize tissue damage by downregulating the phagocytic
and proinflammatory capacity of neutrophils and preventing release
of neutrophil cytotoxic components into the extracellular space (Fox
et al., 2010; Kobayashi, Voyich, Braughton et al., 2003; Kobayashi,
Voyich, Somerville, et al., 2003). Additionally, timely apoptosis and
clearance of neutrophil corpses by macrophages (Figure 1.6 & 1.7)
minimizes tissue damage because this process dampens pro-inflam-
matory cytokine production and reprograms macrophages to a pro-
resolution phenotype that favors restoration of tissue homeostasis
(Fadok et al., 1998; Korns et al., 2011; Voll et al., 1997).

Although cell death pathways in epithelial cells and macrophages
have been well studied after interaction with periodontal pathogens,
there are few publications that have addressed neutrophil viability.
Transcriptionally, neutrophils from chronic periodontitis patients
have significantly upregulated pro-survival pathways (Lakschevitz
et al.,, 2013); however, most studies on periodontal bacteria and
neutrophil lifespan have only measured cell death at very short
timepoints (3 hr or less) post-bacterial challenge. For example, F.
nucleatum, P. gingivalis, and T. denticola did not induce lactate dehy-
drogenase (LDH) release from neutrophils after 1-hr challenge with
neutrophils (Ding et al., 1997). Incubation of neutrophils with T. den-
ticola for an hour resulted in a mild increase in cell death only de-
tected in neutrophils that phagocytosed antibody coated T. denticola
at a multiplicity of infection (MOI) of 100 bacteria per neutrophil
(Shin et al., 2008). Under the same experimental set-up, F. nucleatum
induced cell death in a MOI and antibody opsonization-dependent
manner (Jewett et al., 2000; Shin et al., 2008). The induction of apop-
tosis persisted when neutrophils were treated with multiple strains

of F. nucleatum (Kurgan et al., 2017). Uptake of antibody-opsonized
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A. actinomycetemcomitans after 1 hr of challenge also resulted in
the rapid cell death of neutrophils (Permpanich et al., 2006). The
induction of apoptosis after such short time points suggests that
neutrophils challenged with A. actinomycetemcomitans, P. gingiva-
lis, F. nucleatum, and T. denticola underwent phagocytosis-induced
cell death (PICD), which is linked to the production of ROS (Coxon
et al., 1996; Kobayashi et al., 2002); however, since periodontal bac-
teria can resist neutrophil phagocytosis, the probability of PICD may
not occur very often in vivo.

Compounding the length of neutrophil lifespan is the presence
of several pro-inflammatory mediators that promote neutrophil lon-
gevity at sites of inflammation, such as LPS, lipoteichoic acids (LTA),
TNFa, C5a, IL-1a, granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and
IFNy, and render these granulocytes resistant to extrinsic ligand-in-
duced apoptosis (FS-7-associated surface antigen (FAS) and TNF)
(Gamonal et al., 2003; Hotta et al., 2001). Additionally, the products
of periodontal bacteria can also lead to changes in neutrophil sur-
vival. Neutrophil challenge for 1-3 hr with MSP from T. denticola does
not induce cell death (Puthengady Thomas et al., 2006) and culture
of neutrophils with the LPS from three different P. gingivalis strains
delayed apoptosis in a dose-dependent fashion (Galicia et al., 2009;
Hiroi et al., 1998; Preshaw et al., 1999), but leukotoxin from A. ac-
tinomycetemcomitans directly lyses neutrophils (Johansson, 2011;
Permpanich et al., 2006). Notably, it is unknown whether direct in-
teraction with T. forsythia or products from the bacteria will affect
neutrophil lifespan.

Induction of neutrophil apoptosis is beneficial to bacteria be-
cause it will prevent neutrophil phagocytosis and microbicidal
mechanisms from eliminating the bacterial burden. However, when
neutrophil apoptosis is delayed, the inflammophillic bacteria still
profit because inflammation worsens by two mechanisms: (a) col-
lateral tissue damage increases because neutrophils will accumulate
and continue to release degradative neutrophil enzymes and ROS,
and (b) resolution of inflammation is delayed because clearance of
apoptotic cells through efferocytosis cannot take place, which is an
essential step in initiating tissue restoration.

6 | NEUTROPHIL RESPONSE TOWARD
EMERGING ORAL PATHOGENS F. ALOCIS
AND P. STOMATIS

Characterization of F. alocis and P. stomatis interaction with neutro-
phils has demonstrated that these putative oral pathogen impact
neutrophil effector functions, albeit with opposing consequences
(Figure 2). Starting with chemotaxis, neutrophils challenged with
either live or heat-killed F. alocis, showed enhanced random and di-
rected migration toward IL-8 (Armstrong et al., 2016). It is unknown
whether P. stomatis has a direct effect on neutrophil chemotaxis.
However, in vitro transwell assays show that the bacteria-free con-
ditioned supernatant collected from neutrophils challenged with

P. stomatis, but not from P. gingivalis or F. alocis, contained active
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Emerging Oral Pathogens Undermine Neutrophil Effector Functions to Promote Bacterial Survival
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FIGURE 2 Filifactor alocis and Peptoanaerobacter stomatis:
Two newly identified species that target neutrophils. When
human neutrophils respond to F. alocis and P. stomatis, two
distinct neutrophil functional signatures can be observed. In the
case of F. alocis, neutrophils readily phagocytize the bacterium;
however, the oral pathogen is able to persist within neutrophils
by inducing minimal production of intracellular ROS and delaying
the fusion of antimicrobial granules to its phagosome. In contrast,
P. stomatis prevents phagocytosis by human neutrophils as an
evasion strategy. At the same time, P. stomatis induces a strong
pro-inflammatory neutrophil response. Ultimately, both of these
putative oral pathogens are able to disrupt neutrophil functional
mechanisms to promote bacterial survival and/or dysregulate
inflammation. Refer to text for additional details [Colour figure can
be viewed at wileyonlinelibrary.com]

chemotactic factors that significantly recruited both neutrophils and
monocytes. These results indicate that P. stomatis could be playing
an important role in the recruitment of inflammatory cells to the oral
cavity (Vashishta et al., 2019).

Unlike many periodontal pathogens, F. alocis does not block
phagocytosis by human neutrophils (Edmisson et al., 2018). In fact,
most neutrophils challenged with F. alocis rapidly internalized the
bacteria independent of viability or opsonization with complement.
This is likely because viable F. alocis can disrupt the neutrophil an-
timicrobial response. After 4 hr of challenge, >50% of F. alocis re-
main viable inside neutrophils, and electron microscopy analysis of
F. alocis-infected neutrophils showed that electron dense bacteria
could still be found inside neutrophil phagosomes after 20 hr of
co-culture, suggesting a defect in the degradation and clearance
of engulfed bacteria. Despite the toxic capacity of neutrophils, F.
alocis remains viable intracellularly by disrupting the maturation of
neutrophil phagosomes. First, challenge with viable F. alocis induces
minimal ROS response (Edmisson et al., 2018). Viable F. alocis did
not suppress the respiratory burst induced by a secondary stimulus
like heat-killed Staphylococcus aureus; suggesting that inhibition of
ROS production is not a global effect, but rather a local phagosomal
mechanism geared toward promoting survival. Intracellular killing is
also mediated through the fusion of pre-formed granules with the
bacteria-containing phagosome; however, F. alocis phagosomes had
decreased co-localization with key antimicrobial proteins lactofer-
rin and elastase (Edmisson et al., 2018). The phenotype of minimal
ROS and decreased co-localization was not observed when neu-

trophils were challenged with heat-killed F. alocis, indicating that F.

alocis actively enhances its survival by interfering with phagosome
maturation.

When neutrophils are cultured with P. stomatis in suspension, the
bacteria avoids phagocytosis, likely as a result of its flagellar motility
(Jimenez Flores et al., 2017). However, the low percentage of en-
gulfed P. stomatis resulted in robust intracellular ROS at the P. stom-
atis phagosome, and more than 50% of the phagosomes co-localized
with lactoferrin and elastase, indicating that granule fusion with the
phagosome was not impaired. Thus, due to the normal development
of the phagosome, the ingested P. stomatis was rapidly eliminated
by neutrophils. Notably, despite the considerable ROS production
at the phagosome, only the antimicrobial granule proteins were
responsible for the antimicrobial effect against P. stomatis since
treating neutrophils with the NADPH oxidase inhibitor, diphenyl-
eneiodonium (DPI), did not dampen their killing capacity against P.
stomatis (Jimenez Flores et al., 2017). Thus, unlike F. alocis, P. stomatis
does not directly interfere with neutrophils’ antibacterial functions.

As inflammophilic bacteria, both F. alocis and P. stomatis still drive
pro-inflammatory processes to secure a source of nutrients for rep-
lication. Recognition of F. alocis by neutrophils through ligation of
TLR2 triggers the exocytosis of three of the four neutrophil gran-
ule subtypes through activation of both p38 MAPK and ERK1/2
(Armstrong et al., 2016). P. stomatis, on the other hand, induces
robust exocytosis of all four granule types and strongly activates
both p38 and ERK1/2 MAP kinases (unpublished data, Uriarte's lab).
The release of toxic granules has implications for tissue degrada-
tion, which could be directly observed through gelatin zymography
of supernatants of F. alocis- and P. stomatis-stimulated neutrophils
(Edmisson et al., 2018; Jimenez Flores et al., 2017). Adding to the
pro-inflammatory phenotype is the fact that when F. alocis and P.
stomatis are recognized by TLR2/6 heterodimers, they promote the
release of neutrophil-derived cytokines and chemokines, although
P. stomatis induces a substantially larger amount of cytokines and
chemokines compared to both F. alocis and P. gingivalis (Vashishta
et al., 2019). Another notable difference between these two Gram-
positive periodontal pathogens is that P. stomatis elicits significant
NET release, while F. alocis does not induce NET formation at any
bacterial dose or time tested, and pre-treatment of neutrophils
with F. alocis significantly inhibits PMA-induced NETs (Armstrong
et al., 2018). Although it is unknown what effect P. stomatis has on
neutrophil apoptosis, there is some data that indicate that F. alocis
prolongs neutrophil lifespan (Miralda et al., 2020). Not only were
apoptosis pathways a top hit in the RNAseq screen of F. alocis chal-
lenged neutrophils, but Annexin V/7-AAD staining showed that
more F. alocis-challenged neutrophils remain viable at 24 hr com-
pared to media-cultured neutrophils.

Recently, we published a human neutrophil transcriptome study
which reveals that several signal transduction pathways are signifi-
cantly downregulated by F. alocis (Miralda et al., 2020). One of the
major findings of the RNA-seq screen is that F. alocis affects the
neutrophils’ expression of components in both the TNFa and MAP
kinase signaling pathways (Miralda et al., 2020). Functionally, cells
pre-treated with F. alocis had decreased p38 MAPK activation by
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secondary stimuli TNFa, but not by fMLF. The decreased p38 ac-
tivation in F. alocis-pretreated cells resulted in a transient decline
in TNFa-stimulated production of IL-8. However, other TNF-a-
mediated effector functions, such as priming of the respiratory burst
or pro-survival responses were not affected by F. alocis challenge.
This phenotype was only observed when neutrophils were pre-
treated with viable F. alocis, which further demonstrates this is one
of the mechanisms actively induced by the oral pathogen to control

neutrophil functional responses.

7 | CONCLUSION AND PERSPECTIVES

Neutrophils mount a robust fight against the dysbiotic microbial
targets they encounter on the periodontitis battlefield. Despite
using unique virulence factors, both established and emerging oral
pathogens share the same end goal: to manipulate neutrophils’ an-
timicrobial mechanisms to evade killing while promoting inflamma-
tion (Tables 1 and 2). With the exception of P. gingivalis, neutrophils’
encounter with established periodontal pathogens results in strong
production of reactive oxygen species, which could contribute to
bacterial killing as well as exacerbate tissue damage. As a common
virulence strategy, established periodontal pathogens also stimulate
neutrophil granule exocytosis. The release of antimicrobial compo-
nents, such as matrix metalloproteinases and serine proteases by
neutrophils results in collateral tissue damage, a scenario that bene-
fits nutrient acquisition by periodontal pathogens. Despite the many
years of work on established periodontal pathogens and neutrophils,
the effects of these microbes on several neutrophil functions remain
unknown and hold great therapeutic promise.

The complex interplay that takes place in the subgingival pocket
between neutrophils and the dysbiotic microbial community pro-
vokes a dysregulated inflammatory environment that contributes
to disease progression. Characterization of the interaction between
neutrophils and emerging oral pathogens is needed to shed some
light into the contribution of these organisms to disease severity.
Both F. alocis and P. stomatis, are found in high numbers in periodon-
titis diseased sites, which suggests that these organisms developed
survival strategies to withstand inflammation. Like the response
elicited by established periodontal pathogens, interaction of F.
alocis and P. stomatis with neutrophils induces release of neutrophil
granule proteins as well as cytokines and chemokines, which fuel
into the dysregulated inflammation. However, while F. alocis is eas-
ily internalized by neutrophils, the organism takes control over the
host cell and survives intracellularly by preventing phagosome mat-
uration. In contrast, P. stomatis resists phagocytosis but hyper-acti-
vates neutrophils. The findings from these studies strengthen the
classification of F. alocis and P. stomatis as periodontal pathogens,
but the remaining challenge is to define the precise molecular mech-
anism that F. alocis uses to evade the neutrophil machinery, and how
P. stomatis hyper-activates the immune cell. Although periodontitis
is an infectious disease caused by a community of bacterial spe-

cies, defining how each pathogenic organism modulates neutrophil
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functional responses to survive in the inflamed environment has sig-
nificant value. The information provided by this type of studies helps
to understand the potential contribution that each bacterial mem-
ber of the community “brings to the table” to sustain the dysbiotic
microenvironment. Furthermore, there is great need to define the
pathogenic potential of both F. alocis and P. stomatis by testing the
organisms’ ability to colonize and induce bone loss using the estab-
lished murine models of periodontitis. Understanding these interac-
tions will lay the foundation for development of novel therapeutic

approaches to combat periodontitis.
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