organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

10-(Prop-2-ynyl)-10H-phenothiazine

Younas Aouine,^a Anouar Alami,^a* Abdelilah El Hallaoui,^a Abdelrhani Elachgar^a and Hafid Zouihri^b

^aLaboratoire de Chimie Organique, Faculté des Sciences, Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and ^bLaboratoires de Diffraction des Rayons X, Centre National pour la Recherche Scientifique et Technique, Angle Allal, AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco Correspondence e-mail: alamianouar@yahoo.fr

Received 8 October 2010; accepted 10 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.151; data-to-parameter ratio = 23.8.

In the molecule of the title compound, $C_{15}H_{11}NS$, the butterfly angle between the two planes defined by the two wings of the phenothiazine unit is $33.5 (8)^{\circ}$. The dihedral angles between the two benzene rings and the propynyl group are 85 (4) and 63 (4)°.

Related literature

For the 1,3-dipolar addition reaction in chemical synthesis, see: Kumar et al. (2006); Kalita et al. (2006); Sibi et al. (2006); Choi et al. (2006); Ji-Cai et al. (2007); Aouine et al. (2008).

Experimental

Crystal data C15H11NS

 $M_r = 237.31$

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.24 \text{ mm}^{-1}$
T = 296 K
$0.42 \times 0.38 \times 0.17 \text{ mm}$
3688 independent reflections
2683 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$
155 parameters
H-atom parameters constraine

S = 1.083688 reflections

ained $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the CNRST, Morocco, for making this work possible.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2063).

References

- Aouine, Y., Faraj, H., Alami, A., El Hallaoui, A., Elachqar, A., El Hajji, S., Kerbal, A., Labriti, B., Martinez, J. & Rolland, V. (2008). J. Mar. Chim. Heterocycl. 7, 44-49.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, W. J., Shi, Zh. D., Worthy, K. M., Bindu, L., Karki, R. G., Nicklaus, M. C., Fisher, R. J. Jr & Burke, T. R. (2006). Bioorg. Med. Chem. Lett. 16, 5262-5265
- Ji-Cai, F., Liang, J., Wang, Y. & Shang, Z.-C. (2007). Theochem, 821, 145-152. Kalita, P. K., Baruah, B. & Bhuyan, P. J. (2006). Tetrahedron Lett. 47, 7779-7782.
- Kumar, R. R., Perumal, S. & Guillot, H. B. (2006). Tetrahedron, 62, 12380-12391
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sibi, M. P., Stanley, L. M. & Soeta, T. (2006). Adv. Synth. Catal. 348, 2371-2375. Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o2830 [doi:10.1107/S1600536810040638]

10-(Prop-2-ynyl)-10H-phenothiazine

Y. Aouine, A. Alami, A. El Hallaoui, A. Elachqar and H. Zouihri

Comment

The 1,3-dipolar addition reaction as a versatile method for preparing five-membered heterocyclic compounds is a classical reaction in organic chemistry and has been studied extensively. These cycloadditions have been utilized for the preparation of compounds that are fundamental importance in diverse fields of chemistry, see: Kumar *et al.* (2006); Kalita *et al.* (2006); Sibi *et al.* (2006); Choi *et al.* (2006); Ji-Cai *et al.* (2007). This approach consists of preparing firstly, heterocyclic dipolarophiles by nucleophilic substitution of propargyl bromide with heterocyclic compounds, see: Y. Aouine *et al.* (2008). The dipolarophile 10-(prop-2-ynyl)-10*H*-phenothiazine was obtained with good yield.

In the molecule of the title compound, $C_{15}H_{11}NS$, the butterfly angle between the two planes defined by the two wings of the phenothiazine unit is 33.5 (8)°. The dihedral angles between the two phenyls and the propynyl are: 85 (4)° and 63 (4)°, respictively.

Experimental

To a stirred solution (10 mmoles) of phenothiazine, potassium carbonate (15 mmoles) and a catalytic amount of tetrabutylammonium bromide in 10 ml of dry acetone, 10 mmoles of propargyl bromide was added. The mixture was stirred at room temperature for 6 h. The solvent was evaporated under vacuum and the residue was extracted with ether. The organic layer was washed with water, dried with sodium sulfate (Na2SO4), and the solvent was removed. The product was purified by column chromatography on silica gel using ether/hexane as eluant to afford pure alkyne. The purity of the compound was checked by determining its melting point (82–84°C). Suitable single-crystal of the title compound was obtained by recrystallization from ethanol. The structure of the product was established on the basis of NMR spectroscopy (1*H*, 13 C) and MS data.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with $U_{iso}(H) = 1.2Ueq(C)$.

Figures

Fig. 1. *ORTEP* of the molecule of the title compound showing the atom-labelling scheme and 50% probability displacement ellipsoids.

Fig. 2. Partial packing view.

F(000) = 496 $D_x = 1.315 \text{ Mg m}^{-3}$ Melting point: 355 K

 $\theta = 1.7-26.2^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.42 \times 0.38 \times 0.17 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2646 reflections

10-(Prop-2-ynyl)-10H-phenothiazine

Crystal data
C ₁₅ H ₁₁ NS
$M_r = 237.31$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 10.5306 (10) Å
<i>b</i> = 7.2981 (6) Å
c = 15.6782 (14) Å
$\beta = 96.023 \ (3)^{\circ}$
$V = 1198.27 (18) \text{ Å}^3$
Z = 4

Data collection

2683 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$
$\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
$h = -15 \rightarrow 15$
$k = -10 \rightarrow 10$
$l = -21 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_o^2) + (0.0829P)^2 + 0.0989P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.002$
3688 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Deine and stand site 1 and include the stand include the stand	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.015 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y **S**1 0.74384(5)0.06194 (18) 1.23619 (6) 1.08918 (3) C1 0.64205 (14) 1.18256 (18) 0.99624 (9) 0.0453 (3) C12 0.0476 (3) 0.81567 (13) 1.0206 (2) 1.10752 (9) C6 0.68419 (12) 1.06413 (17) 0.93508 (8) 0.0409(3)C7 0.84191 (12) 0.9120(2) 1.03762 (8) 0.0444(3)C5 0.60793 (14) 1.0439(2)0.85724 (9) 0.0482(3)H5 0.058* 0.6338 0.9661 0.8154 C4 0.49414 (14) 1.1390 (2) 0.0572 (4) 0.84205 (11) H4 0.069* 0.4464 1.1286 0.7889 C3 0.45030 (16) 1.2484 (2) 0.90383 (12) 0.0594 (4) H3 0.3724 1.3087 0.8935 0.071* C14 0.78307 (14) 0.6913 (2) 0.86512 (9) 0.0512 (3) C2 0.52371 (17) 1.26762 (19) 0.98158 (11) 0.0545 (4) H2 0.4937 1.3382 1.0246 0.065* C13 0.84863 (13) 0.8676(2) 0.88310 (9) 0.0504 (3) H13A 0.9391 0.8445 0.8970 0.060* H13B 0.9419 0.060* 0.8386 0.8315 C8 0.90857 (15) 0.7493 (2) 1.05489(11) 0.0582 (4) H8 0.9266 0.6740 1.0099 0.070* C10 0.91968 (17) 0.8038 (3) 1.20672 (11) 0.0690 (5) H10 0.9457 0.7676 1.2627 0.083* C11 0.85181 (15) 0.9640(3) 1.19087 (10) 0.0585 (4) H11 0.8301 1.0346 1.2365 0.070* 0.72916 (18) C15 0.85403 (11) 0.5503 (3) 0.0663(4)H15 0.6866 0.4391 0.8453 0.080* C9 0.94833 (17) 0.6984 (3) 1.13868 (12) 0.0707 (5) H9 0.9952 0.5912 1.1490 0.085* N1 0.80200 (10) 0.97117 (16) 0.95310(7) 0.0436 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

supplementary materials

S1	0.0868 (3)	0.0449 (2)	0.0533 (3)	-0.00690 (19)	0.0031 (2)	-0.01417 (16)
C1	0.0585 (8)	0.0314 (6)	0.0470 (7)	-0.0052 (5)	0.0096 (6)	0.0007 (5)
C12	0.0450 (6)	0.0521 (8)	0.0449 (7)	-0.0122 (6)	0.0006 (5)	-0.0051 (6)
C6	0.0473 (6)	0.0334 (6)	0.0426 (6)	-0.0073 (5)	0.0075 (5)	0.0020 (5)
C7	0.0374 (6)	0.0507 (8)	0.0447 (7)	-0.0080 (5)	0.0033 (5)	-0.0021 (6)
C5	0.0555 (8)	0.0423 (7)	0.0463 (7)	-0.0043 (6)	0.0027 (6)	0.0008 (6)
C4	0.0575 (8)	0.0522 (9)	0.0595 (9)	-0.0032 (7)	-0.0053 (7)	0.0091 (7)
C3	0.0560 (8)	0.0437 (8)	0.0788 (11)	0.0036 (6)	0.0088 (8)	0.0134 (7)
C14	0.0540 (8)	0.0558 (9)	0.0452 (7)	0.0055 (7)	0.0118 (6)	-0.0064 (6)
C2	0.0685 (9)	0.0341 (7)	0.0638 (9)	0.0034 (6)	0.0202 (8)	0.0038 (6)
C13	0.0456 (7)	0.0608 (9)	0.0469 (7)	-0.0033 (6)	0.0150 (6)	-0.0047 (6)
C8	0.0486 (7)	0.0684 (11)	0.0566 (9)	0.0095 (7)	0.0013 (6)	-0.0029 (7)
C10	0.0587 (9)	0.0943 (14)	0.0512 (9)	0.0004 (9)	-0.0072 (7)	0.0113 (9)
C11	0.0553 (8)	0.0759 (11)	0.0434 (7)	-0.0118 (8)	0.0008 (6)	-0.0050 (7)
C15	0.0830 (12)	0.0568 (10)	0.0602 (10)	-0.0058 (9)	0.0134 (8)	-0.0081 (8)
C9	0.0587 (9)	0.0832 (12)	0.0681 (11)	0.0157 (9)	-0.0038 (8)	0.0121 (10)
N1	0.0435 (6)	0.0475 (6)	0.0402 (6)	-0.0038 (5)	0.0066 (4)	-0.0041 (5)

Geometric parameters (Å, °)

1.7563 (17)	С3—Н3	0.9300
1.7599 (15)	C14—C15	1.179 (2)
1.390 (2)	C14—C13	1.473 (2)
1.3974 (19)	С2—Н2	0.9300
1.385 (2)	C13—N1	1.4594 (16)
1.4034 (19)	C13—H13A	0.9700
1.3965 (19)	C13—H13B	0.9700
1.4162 (17)	C8—C9	1.387 (2)
1.391 (2)	С8—Н8	0.9300
1.4151 (17)	С10—С9	1.374 (3)
1.384 (2)	C10-C11	1.379 (3)
0.9300	C10—H10	0.9300
1.372 (2)	C11—H11	0.9300
0.9300	C15—H15	0.9300
1.380 (3)	С9—Н9	0.9300
98.67 (7)	C3—C2—H2	119.7
120.44 (14)	C1—C2—H2	119.7
119.69 (12)	N1-C13-C14	114.10 (11)
119.73 (11)	N1—C13—H13A	108.7
120.73 (15)	C14—C13—H13A	108.7
119.52 (12)	N1—C13—H13B	108.7
119.66 (11)	C14—C13—H13B	108.7
118.04 (13)	H13A—C13—H13B	107.6
122.35 (12)	C9—C8—C7	120.59 (16)
119.61 (12)	С9—С8—Н8	119.7
117.82 (14)	С7—С8—Н8	119.7
122.48 (13)	C9—C10—C11	119.11 (16)
119.70 (13)	С9—С10—Н10	120.4
120.38 (14)	C11—C10—H10	120.4
	1.7563 (17) $1.7599 (15)$ $1.390 (2)$ $1.3974 (19)$ $1.385 (2)$ $1.4034 (19)$ $1.3965 (19)$ $1.4162 (17)$ $1.391 (2)$ $1.4151 (17)$ $1.384 (2)$ 0.9300 $1.372 (2)$ 0.9300 $1.372 (2)$ 0.9300 $1.380 (3)$ $98.67 (7)$ $120.44 (14)$ $119.69 (12)$ $119.73 (11)$ $120.73 (15)$ $119.52 (12)$ $119.66 (11)$ $118.04 (13)$ $122.35 (12)$ $119.61 (12)$ $117.82 (14)$ $122.48 (13)$ $119.70 (13)$ $120.38 (14)$	1.7563(17) $C3-H3$ $1.7599(15)$ $C14-C15$ $1.390(2)$ $C14-C13$ $1.3974(19)$ $C2-H2$ $1.385(2)$ $C13-H13$ $1.4034(19)$ $C13-H13A$ $1.3965(19)$ $C13-H13B$ $1.4162(17)$ $C8-C9$ $1.391(2)$ $C8-H8$ $1.4151(17)$ $C10-C9$ $1.384(2)$ $C10-H10$ 0.9300 $C10-H10$ $1.372(2)$ $C11-H11$ 0.9300 $C15-H15$ $1.380(3)$ $C9-H9$ $98.67(7)$ $C3-C2-H2$ $120.44(14)$ $C1-C2-H2$ $119.69(12)$ $N1-C13-H13A$ $119.73(11)$ $N1-C13-H13A$ $120.73(15)$ $C14-C13-H13B$ $119.66(11)$ $C14-C13-H13B$ $118.04(13)$ $H13A-C13-H13B$ $122.35(12)$ $C9-C8-C7$ $119.61(12)$ $C9-C8-H8$ $17.82(14)$ $C7-C8-H8$ $122.48(13)$ $C9-C10-C11$ $119.70(13)$ $C9-C10-H10$ $120.38(14)$ $C11-C10-H10$

С4—С5—Н5	119.8	C10-C11-C12	120.58 (16)
С6—С5—Н5	119.8	С10—С11—Н11	119.7
C3—C4—C5	121.32 (15)	C12—C11—H11	119.7
C3—C4—H4	119.3	C14—C15—H15	180.0
C5—C4—H4	119.3	С10—С9—С8	121.09 (18)
C4—C3—C2	118.93 (15)	С10—С9—Н9	119.5
С4—С3—Н3	120.5	С8—С9—Н9	119.5
С2—С3—Н3	120.5	C7—N1—C6	120.06 (10)
C15-C14-C13	177.31 (16)	C7—N1—C13	117.11 (12)
C3—C2—C1	120.68 (15)	C6—N1—C13	117.06 (11)

Fig. 1

Fig. 2