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Abstract: A statistical method for exploratory data analysis based on 2D and 3D area under curve
(AUC) diagrams was developed. The method was designed to analyze electroencephalogram (EEG),
electromyogram (EMG), and tremorogram data collected from patients with Parkinson’s disease. The
idea of the method of wave train electrical activity analysis is that we consider the biomedical signal
as a combination of the wave trains. The wave train is the increase in the power spectral density of
the signal localized in time, frequency, and space. We detect the wave trains as the local maxima
in the wavelet spectrograms. We do not consider wave trains as a special kind of signal. The wave
train analysis method is different from standard signal analysis methods such as Fourier analysis
and wavelet analysis in the following way. Existing methods for analyzing EEG, EMG, and tremor
signals, such as wavelet analysis, focus on local time–frequency changes in the signal and therefore
do not reveal the generalized properties of the signal. Other methods such as standard Fourier
analysis ignore the local time–frequency changes in the characteristics of the signal and, consequently,
lose a large amount of information that existed in the signal. The method of wave train electrical
activity analysis resolves the contradiction between these two approaches because it addresses the
generalized characteristics of the biomedical signal based on local time–frequency changes in the
signal. We investigate the following wave train parameters: wave train central frequency, wave train
maximal power spectral density, wave train duration in periods, and wave train bandwidth. We
have developed special graphical diagrams, named AUC diagrams, to determine what wave trains
are characteristic of neurodegenerative diseases. In this paper, we consider the following types of
AUC diagrams: 2D and 3D diagrams. The technique of working with AUC diagrams is illustrated
by examples of analysis of EMG in patients with Parkinson’s disease and healthy volunteers. It is
demonstrated that new regularities useful for the high-accuracy diagnosis of Parkinson’s disease can
be revealed using the method of analyzing the wave train electrical activity and AUC diagrams.

Keywords: electromyogram; EMG; exploratory data analysis; wave train electrical activity analysis
method; wave trains; wavelets; signal processing; AUC diagrams; ROC analysis; Parkinson’s disease

1. Introduction

The paper provides a detailed description of the method used for analyzing the
wave train electrical activity in biomedical signals. The method was developed to investi-
gate electroencephalograms (EEG), electromyograms (EMG), and accelerometer signals
(tremorograms) in patients with Parkinson’s disease (PD) and identify regularities that are
promising for the early diagnosis of this disease. Recently, many mathematical methods
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for analyzing EEG, EMG, and tremor signals have been developed. Historically, EMG
analysis methods evolved from spectral analysis [1–7] and time-domain signal analysis
methods such as morphological analysis [8], amplitude analysis [9], and autoregressive
analysis [10,11] towards time–frequency domain analysis [12–16]. The state-of-the-art
of EMG analysis methods is characterized by the active use of nonlinear data analysis
methods [17], such as fractal analysis [18], phase analysis [19], recurrent quantification
analysis [4,20,21], and the deep learning of neural networks [12,22–25]. According to the
authors, the existing methods for analyzing EEG, EMG, and tremor signals, such as wavelet
analysis [26–28], focus on local time–frequency changes in the signal and, therefore, do
not reveal the generalized properties of the signal. By contrast, other methods, such as
standard Fourier analysis, ignore local time–frequency changes in the signal and, therefore,
lose a large amount of information that existed in the signal.

Let us consider the spectra of envelopes of EMG signals collected from PD patients
and healthy volunteers (see Figure 1). On the left, an average spectrum of the tremor
right hands of twelve PD patients and an average spectrum of the right hands of ten
healthy volunteers are demonstrated. On the right, an average spectrum of the non-tremor
left hands of the PD patients and an average spectrum of the left hands of the healthy
volunteers are demonstrated. Three peaks are observed in the 4–10 Hz frequency range
in the left figure. Two peaks are observed in this frequency range in the right figure. The
Mann–Whitney statistical test discovers statistically significant differences in the spectra
of the PD patients only in the tremor hands (see the left figure). These differences are
well-known physiological regularity and are used for the diagnosis of PD [3]. However, the
statistically significant differences between the spectra are not observed in the right figure.
Therefore, the conventional spectral analysis does not reveal diagnostic features of PD in the
non-tremor hands of the PD patients. In this paper, we will demonstrate that our method
extracts much more information from the signals. In particular, statistically significant
differences will be demonstrated between EMG signals collected from the non-tremor
hands of the PD patients and healthy volunteers.
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Figure 1. An example of the spectra of envelopes of EMG signals collected from PD patients and
healthy volunteers. The spectra are computed using the standard Welch method. The Hann window
was used, the window width was 10 s, and the window overlap was 7/8. The red curve indicates the
PD patients. The green curve indicates the healthy volunteers. On the left, an average spectrum of the
tremor right hands of twelve PD patients and an average spectrum of the right hands of ten healthy
volunteers are demonstrated. On the right, an average spectrum of the non-tremor left hands of the
PD patients and an average spectrum of the left hands of the healthy volunteers are demonstrated.
The abscissa is the frequency. The ordinate is the power spectral density in the logarithmic scale. Two
bars below the figure indicate the results of the Mann–Whitney statistical test. Statistically significant
differences are indicated by the magenta color. The lower bar corresponds to the alpha level 0.05.
The upper bar corresponds to the Bonferroni-corrected alpha level 0.0002. The significant differences
are observed only in the tremor hands of the PD patients.

The wave train analysis method differs from standard signal analysis methods such as
Fourier analysis and wavelet analysis in that it addresses the generalized characteristics of
the biomedical signal based on local time–frequency changes in the signal. The idea of the
method of wave train electrical activity analysis is to extract and analyze so-called wave
trains in wavelet spectrograms. The wave train is the increase in the power spectral density
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(PSD) of the signal localized in time, frequency, and space. The wave trains correspond
to local maxima in the wavelet spectrograms. We investigate the following wave train
parameters: wave train central frequency, wave train maximal PSD, wave train duration
in periods, and wave train bandwidth. Note that in [9,29–33], for EMG analysis, the term
“burst” is used. However, the meaning of this term is different. Usually, the term “burst”
refers to the EMG signal areas characterized by a sharp increase in amplitude. In contrast
to these papers, we investigate the wave trains in the time–frequency domain but not in
the time domain. We consider the biomedical signal as a combination of wave trains, and
we do not consider the wave train as a special type of signal.

We extract the wave trains in a wide frequency range using complex Morlet wavelets.
We consider local maxima in the wavelet spectrograms as wave trains. A technique based
on so-called area under curve (AUC) diagrams is used to identify regularities in signals in
a wide frequency range. The AUC diagrams are specially designed graphical diagrams
that help to determine the wave train parameters that are characteristic of a given neurode-
generative disease. We distinguish the Frequency AUC diagram, Power spectral density
AUC diagram, Duration AUC diagram, and Bandwidth AUC diagram. These types of
AUC diagrams will be discussed in Section 2.4. Moreover, we distinguish 2D and 3D AUC
diagrams. The 2D AUC diagrams are useful for manually searching regularities in the
wave train electrical activity. The 3D AUC diagrams are used for searching statistically
significant differences between groups of subjects using AUC diagrams. The AUC dia-
gram technique is illustrated by examples of analyzing the EMG data from patients with
Parkinson’s disease and healthy volunteers.

Note that the wavelets are not a critical issue of the method of wave train analysis.
Generally speaking, similar data analysis can be carried out based on windowed Fourier
transform. However, the wavelets have the following advantage: the time resolution of
the wavelet changes automatically when different frequencies are investigated. Thus, the
wavelets allow one to investigate wave trains simultaneously in high- and low-frequency
bands. We use the Morlet wavelet because it is simple and people can easily understand
the wavelet diagrams. Our method differs from other methods based on wavelets [15,16]
in that the wave trains are considered and AUC diagrams are applied.

The problem of the early and differential diagnosis of PD is all too real [17,34–37]. It
is difficult to identify the early features of PD because the disease develops over a long
time without clear clinical manifestations. The first clinical stage of PD is characterized by
the patient having a pathological tremor on only one side of the body. At the same time,
another side of the body does not demonstrate the clinical manifestations of PD (has no
trembling hyperkinesis [38,39]). O. E. Khutorskaya [1,2] suggested that the non-tremor
side of the body of PD patients can be considered as a model of the preclinical (early)
stage of PD. Therefore, it is important to investigate the non-tremor side of the body of
first-stage PD patients. This paper demonstrates that wave train analysis can reveal new
regularities in the non-tremor side of the PD patient body which are useful for the diagnosis
of Parkinson’s disease at the preclinical stage.

The method used for analyzing the wave train electrical activity of signals is discussed
in Section 2. Section 3 describes the results of the group data analysis. A discussion of the
data analysis results is given in Section 4.

2. Materials and Methods

The wave train is the increase in the signal PSD localized in space, time, and fre-
quency. We applied wavelet spectrograms calculated using the complex Morlet wavelet
to determine wave trains in signals. An adaptive two-dimensional Gaussian filter was
used to smooth the wavelet spectrogram to eliminate artifacts arising in the process of
calculating wavelets. Then, we detected the local maxima on the wavelet spectrogram. The
attributes of the wave trains were calculated, such as the central frequency of the wave
train, the maximal PSD of the wave train, the duration of the wave train in periods, and
the bandwidth of the wave train.
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2.1. Experimental Data

The object of our investigation is the electromyographic signals in PD patients at the
first stage of the disease according to the classical Hoehn–Yahr scale. Approximately half of
the patients had never taken antiparkinsonian drugs before, and the other patients had not
taken antiparkinsonian drugs for one to two days before the investigation. Additionally,
a group of healthy volunteers participated in the investigation. The average age of the
patients was 56 years (the minimum age was 38 years; the maximum age was 69 years).
The average age of the healthy volunteers was 51 years (the minimum age was 24 years;
the maximum age was 71 years). There were no statistically significant differences between
the ages of the patients and the healthy volunteers (the Mann–Whitney test was used).
Note that the group of PD patients included patients with left-hand tremor (10 persons)
and patients with right-hand tremor (12 persons), with 22 persons in total (see Figure 2).
All the patients were examined at the FSBI Research Center of Neurology, and PD was
diagnosed. The number of healthy volunteers was 10 persons. All patients and healthy
volunteers were right-handed.

10

12

10

Figure 2. A diagram of the investigated groups of subjects. The left-hand tremor PD patients are
indicated by the magenta color; the right-hand tremor PD patients are indicated by the cyan color;
the healthy volunteers are indicated by the green color.

The subjects were sitting in a chair during the data acquisition. Arms were out-
stretched forward. The duration of the single recording was 1 min and 30 s. EMG elec-
trodes were placed on both arms of the patient on the antagonist muscles of the wrist joint
(extensor and flexor muscles: Musculus extensor carpi radialis longus and Musculus flexor
carpi radialis). The eyes were closed during the measurement. The Neuron-Spectrum-5
multifunctional system for neurophysiological studies (Neurosoft Ltd.) was used for EMG
recording. The sampling rate was 500 Hz. The Butterworth high-pass filter with a cut-off
frequency 0.5 Hz and a 50 Hz notch filter were used during the data acquisition.

2.2. Signal Preprocessing

The preprocessing of EMG signals included the following stages:

1. The 50, 100, 150, and 200 Hz notch filters removed the power line interference.
2. The 60–240 Hz fourth-order Butterworth bandpass filter was applied to EMG in the

forward and reverse directions.
3. The envelope of the EMG signal was calculated using the Hilbert transform. The

signal envelope was used for tremor analysis according to the classical method [1,2].
4. The envelope of the signal was decimated; the decimation factor was 4.

2.3. Calculation of Local Maxima in the Wavelet Spectrogram

We used the wavelet spectrograms calculated using the complex Morlet wavelet (1) to
determine wave trains in the signals:

ψ(x) =
1√
πFb

exp(2πıFcx)exp(
−x2

Fb
) (1)
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where Fb = 1 and Fc = 1. We calculated the wavelet spectrogram in the frequency range
from 0.1 to 50 Hz in the examples considered in the paper; the frequency step was 0.1 Hz.

The wavelet spectrogram was smoothed by an adaptive two-dimensional Gaussian
filter to eliminate artifacts arising in the process of calculating the wavelets. The width
of the Gaussian window in time and frequency depends on the width of the time and
frequency windows of the wavelet at the considered frequency. We used a smoothing
window width that was twice less than the time and frequency width of the wavelet
window. The width of the smoothing window should be less than the width of the wavelet
window to prevent the distortion of the wavelet spectrogram shape.

Let us consider an example of a wave train on a wavelet spectrogram of EMG signal
in an extensor muscle of the non-tremor (right) arm of a patient with the left-side tremor of
the body (Figure 3). The central frequency of the wave train is 15.2 Hz; the signal is clearly
distinguished in the time–frequency space.
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Figure 3. A wave train on the wavelet spectrogram of the EMG signal envelope. The abscissa axis
indicates the time; the ordinate axis indicates the frequency.

The envelope of the EMG signal (Figure 3) is demonstrated in Figure 4 (on the left).
One can see three periods of the wave train envelope in the figure. On the right, the source
EMG signal is demonstrated. It is almost impossible to reveal the wave train considered
in the source signal without special processing. Therefore, the standard methods for the
morphological analysis [8] of signals are inapplicable for this signal.
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Figure 4. On the left is the envelope of the EMG signal considered in Figure 3. The abscissa axis
indicates the time; the ordinate axis indicates the envelope of the signal in µV. On the right is the
source EMG signal. The abscissa axis indicates the time; the ordinate axis indicates the amplitude of
the signal in µV. The wave train is indicated by the red circle in both figures.

In Figure 5, other examples of the wave trains are demonstrated. On the left, the
envelope of the EMG signal in the tremor left hand of a PD patient is demonstrated.
On the right, the envelope of the EMG signal in the left hand of a healthy volunteer is
demonstrated. The wave trains are very similar. The central frequency of both wave trains
is ~6.5 Hz. In the framework of our method, we do not try to distinguish “normal” and
“abnormal” wave trains. Instead, we use a statistical analysis based on the number of
detected wave trains.
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Figure 5. On the left: the envelope of the EMG signal in the tremor left hand of a PD patient. On
the right: the envelope of the EMG signal in the left hand of a healthy volunteer. The wave trains
are indicated by the red circles. The abscissa axis indicates the time; the ordinate axis indicates the
envelope of the signal in µV. The wave trains are very similar. We do not try to distinguish “normal”
and “abnormal” wave trains. Instead, we use a statistical analysis based on the number of detected
wave trains.

Note that the computation of wavelet spectrograms and detection of wave trains are
the most time-consuming data processing steps. The processing of the EMG data for the
total group of subjects (32 persons) takes about 2 hours on a 2.30 GHz PC machine. We
do not consider the wave trains in the wavelet spectrogram if the duration of the wave
train is less than 1/10 of the signal period at the central frequency of the local maximum to
increase the speed of computation.

The time duration and the frequency width of the local maximum are measured at the
1/
√

2 maximum height of the local maximum. Figure 6 demonstrates time and frequency
slices of the wave train wavelet spectrogram.

Time
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Figure 6. An example of a wave train spectrogram in the time–frequency domain. On the left is a
time slice of the wavelet spectrogram. The abscissa is time and the ordinate is PSD. On the right is a
frequency slice of the wavelet spectrogram. The abscissa is the frequency and the ordinate is PSD.

The wave train can be characterized by several parameters: the leading (central)
frequency, the maximal PSD, the duration in periods (at 1/

√
2 maximum height), and

the bandwidth (at 1/
√

2 maximum height). These parameters form a multidimensional
space. The analysis aims to select a certain subspace in the given space where a difference
between the groups of subjects is observed. The following notation is used below to denote
the subspace bounds: MinFreq (the minimal wave train frequency), MaxFreq (the maximal
wave train frequency), MinPSD (the minimal wave train PSD), MaxPSD (the maximal wave
train PSD), MinDurat (the minimal wave train duration in periods), MaxDurat (the maximal
wave train duration in periods), MinBandwidth (the minimal wave train bandwidth), and
MaxBandwidth (the maximal wave train bandwidth).

The number of wave trains in the PD patients was compared with the number of
wave trains in the healthy volunteers using ROC curves. The quality of the ROC curve
is characterized by the area under the ROC curve (AUC). AUC values from 0 to 1 can be
obtained when comparing groups of subjects. We were interested in values that significantly
differed from 0.5—that is, values close to 0 and 1. These AUC values have the following
interpretation. AUC > 0.5 means that the number of wave trains is higher in the patients
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than in the healthy volunteers. AUC < 0.5 means that the number of the wave trains is
higher in the healthy volunteers. Both cases are of interest for the investigation and the
diagnosis of PD.

We developed so-called AUC diagrams to search for regularities in the multidimen-
sional space of the wave train parameters. We considered the following types of AUC
diagrams: 2D and 3D diagrams.

2.4. 2D AUC Diagrams

The 2D AUC diagram demonstrates the AUC values corresponding to different ranges
of the given wave train parameter. The range of the wave train parameter is characterized
by the lower and upper bounds—namely, the minimal and maximal values of the parameter.
The abscissa indicates the lower bound of the considered parameter, while the ordinate
indicates the upper bound of the considered parameter. The AUC value is displayed using
a colormap. The standard jet colormap is applied in the examples given in this paper.
Low AUC values are displayed in blue and high AUC values are displayed in red in this
colormap. AUC values close to 0.5 are displayed in green.

We considered AUC diagrams of different types—namely, Frequency AUC diagrams
(see example in Figure 7), Power spectral density AUC diagrams (see example in Figure 8),
Duration AUC diagrams (see example in Figure 9), and Bandwidth AUC diagrams (see
example in Figure 10).

Let us consider the frequency range from 1 to 50 Hz and calculate the number of
wave trains in the EMG signals of each PD patient and each healthy volunteer. The
patients with the left-hand tremor and the patients with the right-hand tremor were
investigated separately.

An example of a Frequency AUC diagram demonstrates the AUC values calculated
for various ranges in the frequency interval from 1 to 50 Hz with 1 Hz steps (see Figure 7).
Corresponding ROC curves compare the number of wave trains in the extensor muscle in
the right non-tremor arm of the left-hand-tremor PD patients with the number of wave
trains in the extensor muscle in the right arm of the healthy volunteers. The red color in the
diagram indicates that the number of wave trains in the patients is greater than that in the
healthy subjects. The blue color in the AUC diagram indicates that the number of the wave
trains in the patients is lower than the number in the healthy subjects. The diagram has a
triangular shape because the upper bound of the range is always bigger than the lower
bound of the range.

Reading the diagram should be carried out in the following way. One should
start by looking at the AUC values located on the diagonal line of the diagram. In the
Frequency AUC diagram, the diagonal line corresponds to narrow frequency ranges
MinFreq ≈ MaxFreq, which allows one to accurately estimate the frequencies where dif-
ferences appear between the patient group and the control group. These frequencies
correspond to red and blue dots on the diagonal line. Next, one should consider the
monochromatic areas adjacent to the diagonal line. The area must be of the same color as
the red/blue dot on the diagonal line. The bigger the area is, the stronger the revealed
difference between the groups of subjects is.

In Figure 7, two bright red areas are observed in the frequency range. The first red area
is situated along the abscissa axis from 0 to 18 Hz; the y-coordinate is equal to approximately
20 Hz. The second area is situated along the ordinate axis from 17 Hz and above; the x-
coordinate is equal to approximately 14 Hz. The brightest point has coordinates of 8 Hz on
the abscissa axis and 20 Hz on the ordinate axis. This point corresponds to the frequency
range from 8 to 20 Hz. The red color indicates that the PD patients have more wave trains
than the healthy subjects in the human physiological tremor frequency area. The AUC
value is approximately 0.88 in this frequency range; thus, the observed regularity can be
used as a diagnostic criterion for Parkinson’s disease.
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Figure 7. An example of the Frequency AUC diagram. The abscissa axis is the lower bound of the
frequency range; the ordinate axis is the upper bound of the frequency range. Two bright red areas
are observed. The first red area is situated along the abscissa axis from 0 to 18 Hz; the y-coordinate
is equal to approximately 20 Hz. The second area is situated along the ordinate axis from 17 Hz
and above; the x-coordinate is equal to approximately 14 Hz. The brightest point corresponds to the
human physiological tremor frequency area from 8 to 20 Hz.

Let us consider a Power spectral density AUC diagram (Figure 8). The diagram is
calculated on the same dataset. In contrast to the Frequency AUC diagram, the ranges
of PSD are considered in the Power spectral density AUC diagram. The range of PSD is
characterized by the lower and upper bounds. The abscissa indicates the lower bound
of the PSD range, while the ordinate indicates the upper bound of the PSD range. The
values of the wave train PSD are considered in the interval from 0 to 1000 µV2/ Hz with
10 µV2/ Hz steps. In the figure, a bright red area is observed along the ordinate axis above
70 µV2/ Hz.
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Figure 8. An example of the Power spectral density AUC diagram. The abscissa axis is the lower
bound of the PSD range; the ordinate axis is the upper bound of the PSD range. A bright red region
is observed along the ordinate axis above 70 µV2/ Hz.

The third type of AUC diagrams is the Duration AUC diagram. Let us consider
an example of the Duration AUC diagram (see Figure 9). The diagram is based on the
same dataset as the previous diagrams; however, the ranges of wave train durations are
considered. As in previous figures, the duration range is characterized by the lower and
upper bounds of the range. The abscissa indicates the lower bound of the range, while
the ordinate indicates the upper bound of the range. The duration of the wave trains is
considered in the interval from 0 to 10 periods with 0.1 period steps.

Figure 9 demonstrates a bright yellow area with the x-coordinate of less than 3.8 peri-
ods. A narrow bright orange area is situated along the ordinate axis; the x-coordinate is
equal to approximately 3.8 periods. This diagram can be explained in the following way:
most wave trains have a duration of approximately 3.8 periods, but shorter wave trains are
observed too.
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Figure 9. An example of the Duration AUC diagram. The abscissa axis is the lower bound of the dura-
tion range in periods; the ordinate axis is the upper bound of the duration range in periods. A narrow
bright orange area is situated along the ordinate axis; the x-coordinate is equal to approximately
3.8 periods.

Let us consider an example of a Bandwidth AUC diagram (Figure 10). The diagram is
based on the same dataset. In the Bandwidth AUC diagram, the ranges of bandwidth of
the wave trains are considered. The bandwidth range is characterized by the lower and
upper range bounds. The abscissa axis indicates the lower bound of the range, while the
ordinate axis indicates the upper bound of the range. In this example, the frequency bands
in the interval from 0 to 50 Hz are considered; the step size is 0.1 Hz.
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Figure 10. An example of the Bandwidth AUC diagram. The abscissa axis indicates the lower bound
of the bandwidth; the ordinate axis indicates the upper bound of the bandwidth. The diagram
demonstrates the multidirectional effects.

The frequency bandwidth of the signal characterizes the shape of the signal. The
narrowband signal is close to the harmonic one; the wideband signal contains fragments of
a complex shape. Figure 10 demonstrates several areas corresponding to multidirectional
differences in the wave train bandwidth between the groups of subjects. In particular, a
bright orange area is observed along the abscissa axis from 0 to 7 Hz; the y-coordinate is
equal to approximately 7 Hz. In addition, a light blue area is observed along the abscissa
axis from 0 to 4.5 Hz; the y-coordinate is equal to approximately 4.3 Hz. There are also
vertical orange columns with x-coordinates equal to approximately 17 Hz and 26 Hz. Note
that multidirectional effect diagrams are more difficult to interpret. In this example, we
can only conclude that it is possible to obtain and investigate multidirectional differences
between the groups of subjects by detailing the wave train bandwidth ranges. This will be
carried out in the further steps of analysis.

The analysis of the wave train electrical activity begins with the calculation of AUC
diagrams of all four types (see Figures 7–10). At the first stage of the analysis, one has
to choose one out of four diagrams that demonstrates the most pronounced differences
between the patients and healthy volunteers—that is, the diagram that contains the most
prominent red or blue area with AUC values close to 0 or 1. The selected red/blue area
corresponds to a certain range of the corresponding parameter. The calculation of all four
diagrams is repeated in the next steps of the analysis. However, only the wave trains that
correspond to the ranges of the wave train parameters selected in the previous steps are
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taken into account. It is possible to identify interesting ranges of all four parameters of the
wave trains (the central frequency, PSD, duration in periods, and bandwidth) by iteratively
repeating the described operations (see the flowchart in Figure 11).

Plot four types of 2D AUC diagrams.

Choose one out of the four AUC diagrams that demonstrates the most 

pronounced differences between the patients and healthy volunteers.

Choose a red/blue area with AUC values close to 0 or 1. Determine the

range of wave train parameters.

Repeat the calculation of all four diagrams. 

The diagrams take into account only the wave trains that correspond 

to the ranges of the wave train parameters selected in the previous steps.

Any further restrictionsons on the wave

 train parameters worsen the AUC values 

or do not change the AUC diagrams.

The recent refinement of the wave train 

parameters sufficiently worsens the AUC values.

The current constraints on the wave train 

parameters are the final 

estimation of the wave train parameters.

No

No

Yes

Yes

The constraints used in the previous iteration 

are the final estimation 

of the wave train parameters.

Figure 11. The flowchart of the method of analysis of the wave train electrical activity in EMG signals.

In the Frequency AUC diagram (Figure 7), we chose a red area with the following coor-
dinates: frequency range from 8 to 20 Hz. Therefore, we will consider only the wave trains
that belong to the frequency interval from 8 to 20 Hz in the further steps of the analysis.
Let us recalculate the other three diagrams taking into account the chosen constraint.

Figure 12 demonstrates the Power spectral density AUC diagram for the wave trains
that belong to the frequency interval from 8 to 20 Hz. The diagram differs from Figure 8
because the frequency band of the considered wave trains is narrowed. The colored areas
in Figure 12 are brighter, but the size and position of the areas are approximately the
same. This means that the applied frequency constraint allows the better recognition of the
differences between the groups of subjects. The diagram demonstrates the most substantial
differences between the patients and control subjects in the following point: the PSD range
from 30 to 700 µV2/ Hz (AUC = 0.96). The maximal PSD of the wave trains may be a
hardware-dependent characteristic; thus, one can consider only the wave trains with a PSD
above 30 µV2/ Hz in the further steps of the analysis.

Let us consider the Duration AUC diagram for the wave trains that belong to the
frequency interval from 8 to 20 Hz (see Figure 13). The diagram differs from Figure 9
because the frequency band is narrowed. The colored areas on the diagram became brighter.
A red column appears along the ordinate; the x-coordinate is equal to approximately
1 period. This means that one can better distinguish the groups of subjects when the
frequency band of the wave trains is narrowed. The most substantial differences between
the patients and control subjects are observed in the wave train duration range from 0.7 to



Sensors 2021, 21, 4700 11 of 25

2.6 periods (AUC = 0.88). Thus, we can narrow the interval of the wave train durations in
the further step of the analysis. Only durations from 0.7 to 2.6 periods will be considered.
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Figure 12. An example of the Power spectral density AUC diagram. The frequency band of the
wave trains is constrained, and the frequency interval from 8 to 20 Hz is considered. The abscissa
axis indicates the lower bound of the PSD range; the ordinate axis indicates the upper bound of
the PSD range. A bright red area is observed along the ordinate axis; the x-coordinate is equal to
approximately 30 µV2/ Hz. The brightest point has the following coordinates: 30 µV2/ Hz and
700 µV2/ Hz. This point corresponds to the PSD range from 30 to 700 µV2/ Hz.
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Figure 13. An example of the Duration AUC diagram. The frequency interval of considered wave
trains is from 8 to 20 Hz. The abscissa axis indicates the lower bound of the range of durations in
periods; the ordinate axis indicates the upper bound of the range of durations in periods. A bright red
area is observed along the ordinate; the x-coordinate is equal to approximately 1 period. The brightest
point has coordinates of 0.7 and 2.6 periods. This point corresponds to the range of durations from
0.7 to 2.6 periods.

Figure 14 demonstrates the Bandwidth AUC diagram. In the diagram, the wave trains
belong to the frequency interval from 8 to 20 Hz. The diagram differs from Figure 10
because the frequency band is narrowed. The size and position of the red column have
changed. A bright red area appears along the ordinate axis; the x-coordinate is equal to
approximately 2 Hz. This means that the bandwidth of the wave trains characterizing
PD differs sufficiently from the bandwidth of the other wave trains observed during the
medical examination.

Now we are ready to implement the next iteration of the analysis. Once again, we
have to choose which one of the four diagrams demonstrates the most striking regularities.
A new constraint is applied to the wave train parameters based on this diagram. Let us
choose the Power spectral density AUC diagram at this stage. We apply the following
constraint based on this diagram: PSD no less than 30 µV2/ Hz. Let us recalculate the
other three AUC diagrams (frequency, duration, and bandwidth), taking into account two
constraints: a frequency from 8 to 20 Hz and a PSD no less than 30 µV2/ Hz.
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Figure 14. An example of the Bandwidth AUC diagram. The frequency interval of the considered
wave trains is from 8 to 20 Hz. The abscissa axis indicates the lower bound of the frequency
bandwidth; the ordinate axis indicates the upper bound of the frequency bandwidth. The bright
red column corresponds to the frequency bandwidth values of the wave trains that are typical for
PD patients.

Figure 15 demonstrates the Frequency AUC diagram with a PSD that is no less than
30 µV2/ Hz. Note that the frequency constraint needs to be refined using this diagram.
The Frequency AUC diagram (see Figure 15) has changed substantially in comparison with
that of Figure 7. The red areas in Figure 15 are brighter and larger. The blue areas have
disappeared. Thus, the applied constraints made the differences between the groups of
subjects more contrasting. The diagram demonstrates the strongest differences between
the patients and control subjects in the frequency range from 8 to 20 Hz; the AUC value is
equal to 0.93. Note that the disappearing blue area may correspond to another statistical
regularity that differentiates the groups of subjects; however, this regularity is out of the
scope of this paper.
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Figure 15. An example of the Frequency AUC diagram. The PSD of the considered wave trains is
no less than 30 µV2/ Hz. The abscissa axis indicates the lower bound of the frequency range; the
ordinate axis indicates the upper bound of the frequency range. A bright red area is observed in the
frequency range along the abscissa; the y-coordinate is equal to approximately 20 Hz. The brightest
red point has coordinates: 8 Hz and 20 Hz.

In Figure 16, the Duration AUC diagram is demonstrated. In this diagram, the
following constraints are applied to the wave train parameters: a frequency from 8 to 20 Hz
and a PSD no less than 30 µV2/ Hz. Figure 16 differs slightly from Figure 13. The red areas
on the diagram became more intense. An intense red area appears inside the red region.
The intense red area has the following coordinates: x-coordinates from 0 to 0.6 periods and
y-coordinates from 3.6 periods and more. This diagram can be interpreted in the following
way. The duration of most wave trains typical for the PD patients is equal to approximately
1 period. However, there are shorter and longer wave trains as well. Thus, the better
recognition of PD patients is obtained when considering the wave trains in a wider range
from 0.5 to 4 periods. The AUC value in the detected intense red area reaches 0.93, which
is sufficient for the high-quality recognition of PD patients.
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Figure 16. An example of the Duration AUC diagram. The following constraints are applied to the
wave train parameters: a frequency from 8 to 20 Hz and a PSD no less than 30 µV2/ Hz. The abscissa
axis indicates the lower bound of the range of the duration in periods; the ordinate axis indicates
the upper bound of the range of the duration in periods. An intense red area appears inside the red
region. The intense red area has the following coordinates: x-coordinates from 0 to 0.6 periods and
y-coordinates from 3.6 periods and more.

Figure 17 demonstrates the Bandwidth AUC diagram for wave trains that have a
frequency from 8 to 20 Hz and a PSD no less than 30 µV2/ Hz. The diagram differs from
Figure 14 because of the constraints applied to the wave train parameters. The red areas
on the diagram became more intense, while the multidirectional effects are still observed
as the red and blue areas present on the diagram. This means that we cannot confidently
determine the characteristic bandwidth of the wave trains typical for PD based on the
available dataset. We can only conclude that the frequency bandwidth of the wave trains
belongs to a wide interval; the value of the bandwidth can rise to ~28 Hz.
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Figure 17. An example of the Bandwidth AUC diagram. The following constraints are applied to the
wave train parameters: a frequency from 8 to 20 Hz and a PSD no less than 30 µV2/ Hz. The abscissa
axis indicates the lower bound of the bandwidth; the ordinate axis indicates the upper bound of the
bandwidth. The diagram demonstrates multidirectional effects.

At the current step of the analysis, further iterations of the analysis do not change the
Frequency AUC diagram (Figure 15), Power spectral density AUC diagram (Figure 12),
Durations AUC diagram (Figure 16), and Bandwidth AUC diagram (Figure 17). Further
detailing of the duration and bandwidth of the wave trains does not improve the AUC
values. Thus, the iterative process of fitting the wave train characteristics typical for PD
patients can be completed at this point. It was determined that the wave trains that help to
distinguish the PD patients and healthy subjects have the following attributes: a frequency
band from 8 to 20 Hz, a maximum PSD no less than 30 µV2/ Hz, a duration from 0.5
to 4 periods, and a bandwidth from 1 to 28 Hz. The Mann–Whitney test confirms that
a statistically significant difference between the numbers of wave trains with the given
attributes is observed in PD patients and healthy volunteers (p ≤ 0.0011).

In the general case, the iterative process of refinement of the wave train parameters is
to be completed in the following situations:
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1. Any further restrictions on the parameters of the wave trains do not change the AUC
diagrams. This means that the further refinement of the wave train parameters makes
no sense.

2. The refinement of the wave train parameters worsens the AUC values sufficiently
in the AUC diagrams. This means that the investigated ranges of the wave train
parameters became too narrowed; the number of wave trains considered in the AUC
diagrams is too small. Theoretically speaking, in this case the refinement of the wave
train parameters could be continued. However, the available dataset is not sufficient
for this. The investigation of the wave train parameters could be continued if the
number of subjects and/or the duration of EMG records are sufficiently increased.

Note that the initial AUC diagrams (Figures 7–10) had several red and blue areas that
serve as a starting point for the iterative refinement of the wave train parameters. In the
considered example, only one wave train type observed in the right non-tremor arm of
the PD patients with a tremor in the left arm was investigated. The results of the analysis
of other regularities observed in the dataset are given in Tables 1 and 2. In particular, we
analyzed the EMG signals in the left arm of the left-hand-tremor PD patients, the EMG
signals in the left non-tremor arm of the right-hand-tremor PD patients, and the EMG
signals in the right arm of the right-hand-tremor PD patients. Thus, we analyzed both
the non-tremor arms and arms with trembling hyperkinesis of the PD patients. Table 1
contains the results of the iterative analysis of the wave train parameters in the extensor
muscles. Table 2 contains the results of the iterative analysis of the wave train parameters
in the flexor muscles.

Table 1. The characteristics of the wave trains in the extensor muscles.

Investigated Regularity Frequency,
Hz

PSD,
µV2/ Hz

Duration,
Periods

Bandwidth,
Hz AUC p

A red area. The right non-
tremor arm in the left-hand-
tremor PD patients.

8–20 ≥30 0.5–4 1–28 0.93 0.0011

A red area. The left non-
tremor arm in the right-hand-
tremor PD patients.

2–9 any 0.8–2.3 any 0.87 0.0033

A blue area. The left tremor
arm in the left-hand-tremor
PD patients.

1–50 any ≥1 ≥3 0 ≤0.001

A blue area. The right tremor
arm in the right-hand-tremor
PD patients.

6–33 any ≥0.5 ≥3.5 0.02 ≤0.001

A red area. The left tremor
arm in the left-hand-tremor
PD patients.

3–7 ≥11 ≥1.5 any 1 ≤0.001

A red area. The right tremor
arm in the right-hand-tremor
PD patients.

4–8 ≥103 ≥1.3 any 1 ≤0.0001

2.5. 3D AUC Diagrams

Wave train electrical activity analysis based on 2D AUC diagrams requires considering
a large number of combinations of the upper and lower bounds of parameter ranges. It is
useful to check what positions of the 2D AUC diagram correspond to statistically significant
differences between the numbers of wave trains in the groups of subjects compared. We
implement this check using the Mann–Whitney nonparametric test; however, the multiple
comparisons problem arises. The essence of the multiple comparisons problem is that
the statistical test may give a sufficient first-type error when a large number of ranges of
parameters are checked in the 2D AUC diagram. The simplest way to solve the multiple
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comparisons problem is to apply Bonferroni correction [40]. The value of the Bonferroni
correction depends on the number of cells in the 2D AUC diagram. We call the number of
rows/columns in the 2D AUC diagram the resolution R of the diagram. If the resolution
of the AUC diagram is high, the value of the Bonferroni correction also becomes high.
The Bonferroni correction changes (2) the alpha level of the Mann–Whitney test using the
correction coefficient C:

αB = 1− (1− α0)
1/C (2)

where α0 = 0.05. Let the C correction coefficient (3) be equal to the number of cells in the
upper triangle of the 2D AUC diagram, including the number of cells on the diagonal of
the AUC diagram:

C = R(R + 1)/2 (3)

Table 2. The characteristics of the wave trains in the flexor muscles.

Investigated Regularity Frequency,
Hz

PSD,
µV2/ Hz

Duration,
Periods

Bandwidth,
Hz AUC p

A red area. The right non-
tremor arm in the left-hand-
tremor PD patients.

5–13 0–50 any 3.1–3.8 0.92 0.0017

A red area. The left non-
tremor arm in the right-hand-
tremor PD patients.

2–16 any 1.4–2.1 any 0.8 0.0161

A blue area. The left tremor
arm in the left-hand-tremor
PD patients.

1–39 any ≥0.5 ≥2.5 0 ≤0.001

A blue area. The right tremor
arm in the right-hand-tremor
PD patients.

24–34 any any any 0.07 ≤0.001

A red area. The left tremor
arm in the left-hand-tremor
PD patients.

4–7 ≥4 ≥1.2 any 1 ≤0.001

A red area. The right tremor
arm in the right-hand-tremor
PD patients.

2–8 ≥2 ≥2.3 any 0.85 0.0037

The value of the correction coefficient depends on the R resolution according to the
quadratic law. Therefore, the probability of detecting statistically significant differences
in the 2D AUC diagram sufficiently decreases when the resolution is high. On the other
hand, if the resolution R is low, the detailing of the 2D AUC diagram is reduced, and
one can miss certain regularities present in the dataset. Thus, it is necessary to find a
compromise between the level of detail in the 2D AUC diagram and the value of the
Bonferroni correction to reveal interesting statistically significant differences between the
groups of subjects. We developed a special type of AUC diagram, named a 3D AUC
diagram, to solve this problem. The 3D AUC diagram is a generalization of the 2D AUC
diagram. The abscissa and ordinate axes on the 3D AUC diagram indicate the values of the
upper and lower bounds of the range of the considered wave train parameter, as in the 2D
AUC diagram. However, the applicate axis indicates the R resolution of the AUC diagram.
Thus, the horizontal slice of the 3D AUC diagram is a case of the 2D AUC diagram. In the
3D AUC diagrams, only the points that correspond to statistically significant differences
between the numbers of wave trains in the groups of subjects are displayed; Bonferroni
correction (2), which depends on the R resolution, is taken into account when the statistical
significance is checked.

Let us consider an example of the 3D AUC diagram (see Figure 18). This diagram is a
form of Frequency 3D AUC diagram; it demonstrates statistically significant differences



Sensors 2021, 21, 4700 16 of 25

between the numbers of wave trains in the groups of subjects when considering various
ranges of frequencies. The number of wave trains in the left arm of the left-hand-tremor PD
patients and the number of wave trains in the left arm of the healthy subjects are compared.
The values of the wave train parameter ranges are given in Table 1, line 5. The 3D AUC
diagram demonstrates a 3D isosurface that corresponds to various p ≤ αB. The upper
plateau of the isosurface corresponds to the resolution of 23. The coordinates of the plateau
are from 3.1 to 3.4 Hz along the abscissa axis and from 6.4 to 7.5 Hz along the ordinate axis.
The horizontal slice area of the isosurface grows and then decreases when the resolution
decreases. This is because the Bonferroni correction is softened; however, the degree of
detail in the diagram also decreases. The top point of the isosurface is of interest because it
reveals statistically significant differences in the dataset with the greatest degree of detail.
In the example being considered, the 3D AUC diagram confirms that there are statistically
significant differences between the numbers of wave trains in the groups of subjects in the
frequency range from about 3 to 7 Hz.

Figure 18. The isosurface p ≤ αB. Left-hand-tremor PD patients; extensor muscle; frequencies from
1 to 10 Hz. The abscissa axis indicates the lower bound of the frequency range, the ordinate axis
indicates the upper bound of the frequency range, and the applicate axis indicates the R resolution.

Figure 19 demonstrates the Frequency 2D AUC diagram that corresponds to the
horizontal slice of the 3D AUC diagram (Figure 18) at the resolution R = 15. Figure 19
includes only the points that correspond to statistically significant differences between the
groups of subjects. The diagram demonstrates that the slice has an irregular shape with
coordinates from 2.28 to 4.2 Hz along the abscissa axis and from 6.12 to 8 Hz along the
ordinate axis. The AUC values in the 2D AUC diagram are higher than 0.98; there is an
area with high AUC values up to 1 in the central part of the diagram. The coordinates
of this area are from 2.3 to 4 Hz along the abscissa axis and from 6.12 to 8 Hz along the
ordinate axis. This example demonstrates that one can obtain the best AUC values when
choosing the optimal level of detail in the AUC diagram; this allows high accuracy when
diagnosing PD.
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Figure 19. The Frequency 2D AUC diagram that corresponds to the horizontal slice of the 3D AUC
diagram (see Figure 18) at the resolution R = 15. This Frequency 2D AUC diagram includes only
the points that correspond to statistically significant differences between the groups of subjects. The
abscissa axis indicates the lower bound of the frequency range; the ordinate axis indicates the upper
bound of the frequency range.
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3. Group Data Analysis

The analysis of 2D and 3D AUC diagrams that compare PD patients and healthy
volunteers revealed several types of wave train electrical activity that are a distinctive
feature of PD patients. Let us consider some regularities discovered in the dataset to clarify
what neurophysiological mechanisms may control these types of electrical activity.

Let us consider the scatter plot (see Figure 20) that demonstrates the number of
wave trains detected in two frequency intervals in the extensor muscle of the arms with
trembling hyperkinesis in the PD patients: the physiological tremor frequency interval and
the Parkinsonian tremor frequency interval. The abscissa axis corresponds to lines 3 and 4
in Table 1. The ordinate axis corresponds to lines 5 and 6 in Table 1. We have included the
characteristics of the healthy subjects in the scatter plot for comparison. Each point in the
scatter plot corresponds to one subject. The PD patients are indicated by the red color; the
control subjects are indicated by the green color.
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Figure 20. The scatter plot of the numbers of wave trains per second detected in the extensor
muscle in the tremor arms of the PD patients. The abscissa axis indicates the wave train numbers
corresponding to the physiological tremor; the ordinate axis indicates the Parkinsonian tremor. The
PD patients are indicated by the red color. The control subjects are indicated by the green color. On
the left, the left hand of the subjects are shown. On the right, the right hand of the subjects are shown.

The point cloud corresponding to the PD patients has an elongated shape (see Figure 20).
The point cloud corresponding to the healthy subjects is situated in the lower right corner
of the scatter plot. Note that the point clouds can be easily separated. The PD patient
point cloud is perpendicular to the diagonal of the scatter plot, which is evidence of the
negative correlation between the wave train numbers corresponding to physiological and
Parkinsonian tremors.

The check of the correlation confirmed that the correlation between the number of
wave trains corresponding to the physiological and Parkinsonian tremors is statistically
significant in the right-hand-tremor PD patients (see Figure 20, on the right); the correla-
tion coefficient is −0.6885, the first-type error probability is 0.0133, the Spearman’s rank
correlation coefficient is −0.7483, and the first-type error probability in the Spearman’s
nonparametric test is 0.0074.

The investigation of these types of wave trains in the left-hand-tremor PD patients
reveals a statistical trend (see Figure 20, on the left) that confirms the regularity discovered
in the right-hand-tremor PD patients (see Figure 20, on the right). Note that the point cloud
corresponding to the left-hand-tremor PD patients has approximately the same shape as
that of the right-hand-tremor PD patient point cloud; however, the correlation coefficient is
−0.6349, the first-type error probability is 0.0486, the Spearman’s rank correlation coefficient
is −0.4909, and the first-type error probability in the Spearman’s nonparametric test is
0.1544. A significant correlation is not detected in the healthy subject point clouds (see
Figure 20).

Let us compare the number of wave trains detected in the physiological tremor fre-
quency band in the extensor muscle of the non-tremor hand of the PD patients with the
number of wave trains detected in the Parkinsonian tremor frequency band in the extensor
muscle of the tremor hand of the PD patients (see Figure 21). The abscissa axis of the scatter
plot corresponds to lines 1 and 2 in Table 1. The ordinate axis corresponds to lines 5 and
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6 in Table 1. We included the characteristics of the healthy subjects in the scatter plot for
comparison. Each point corresponds to one subject. The PD patients are indicated by the
red color; the control subjects are indicated by the green color.
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Figure 21. The scatter plot of the numbers of wave trains per second detected in the extensor muscle
of the tremor and non-tremor arms of PD patients. The abscissa axis indicates the wave train numbers
corresponding to the physiological tremor in the non-tremor hand; the ordinate axis indicates the
wave train numbers corresponding to the Parkinsonian tremor in the tremor hand. The PD patients
are indicated by the red color; the control subjects are indicated by the green color. On the left, the
left-hand-tremor PD patients are shown. On the right, the right-hand-tremor PD patients are shown.

The scatter plot demonstrates that the point cloud corresponding to the healthy
subjects is situated along the abscissa axis. The point cloud corresponding to the PD
patients has an elongated shape and is located under the healthy subject point cloud
(Figure 21). Note that the point clouds can be easily separated.

Let us investigate the correlation between the number of the wave trains detected
in the physiological tremor frequency band in the extensor muscle of the left non-tremor
hand of the PD patients with the number of the wave trains detected in the Parkinsonian
tremor frequency band in the extensor muscle of the right tremor hand of the PD patients
(Figure 21, on the right). The correlation coefficient is 0.5775, the first-type error probability
is 0.0493, the Spearman’s correlation coefficient is 0.5315, and the first-type error probability
in the Spearman’s nonparametric test is 0.0793. Thus, a statistical trend is observed.

Let us investigate the correlation between the numbers of wave trains detected in the
left-hand-tremor PD patients (Figure 21, on the left). The correlation coefficient is 0.3105
and the probability of the first-type error is 0.3826—that is, the correlation is not significant.
The Spearman’s correlation coefficient is 0.4424 and the probability of the first-type error in
the Spearman’s nonparametric test is 0.2042. A significant correlation is also not detected
in the healthy subject point clouds (see Figure 21).

Let us compare the number of wave trains detected in the extensor muscle in the
physiological tremor frequency band of the tremor hand of the PD patients with the number
of wave trains detected in the extensor muscle in the physiological tremor frequency band
of the non-tremor hand of the PD patients (see Figure 22). The abscissa axis corresponds
to lines 3 and 4 in Table 1. The ordinate axis corresponds to lines 1 and 2 in Table 1. We
included the characteristics of the healthy subjects in the scatter plot for comparison. Each
point in the scatter plot corresponds to one subject. The PD patients are indicated by the
red color; the control subjects are indicated by the green color.

Figure 22 demonstrates that the point clouds corresponding to the PD patients and
healthy subjects can be easily separated. The healthy subject point cloud is located to the
right of the PD patient point cloud.

The correlation between the number of the wave trains in the tremor and non-tremor
arms of the PD patients is not significant (Figure 22). However, a statistical trend is observed
in the right-hand-tremor PD patients (Figure 22, on the right). In the right-hand-tremor
PD patients, the correlation coefficient is −0.4488, the first-type error probability is 0.1434,
the Spearman’s correlation coefficient is −0.5455, and the first-type error probability in the
Spearman’s nonparametric test is 0.0707.
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In the left-hand-tremor PD patients (Figure 22, on the left), the correlation coefficient is
−0.0872, the first-type error probability is 0.8107, the Spearman’s correlation coefficient is
−0.1515, and the first-type error probability in the Spearman’s nonparametric test is 0.6818.
No significant correlation was detected in the control subject point clouds (see Figure 22).
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Figure 22. The scatter plot of the numbers of wave trains per second detected in the physiological
tremor frequency band in the extensor muscle of the tremor and non-tremor arms of the PD patients.
The abscissa axis indicates the wave train numbers corresponding to the physiological tremor in the
tremor hand; the ordinate axis indicates the wave train numbers corresponding to the physiological
tremor in the non-tremor hand. The PD patients are indicated by the red color; the control subjects
are indicated by the green color. On the left, the left-hand-tremor PD patients are shown. On the
right, the right-hand-tremor PD patients are shown.

The analysis of the correlation between the numbers of wave trains in the physio-
logical tremor frequency band in the tremor arms and the age of the PD patients (see
Figure 23) revealed a statistically significant correlation only in the left-hand-tremor PD
patients (Figure 23, on the left). The correlation coefficient is −0.7246, the first-type error
probability is 0.0178, the Spearman’s correlation coefficient is −0.7356, and the first-type
error probability in the Spearman’s nonparametric test is 0.0153.

Note that the correlation is not observed in the right-hand-tremor PD patients (Figure 23,
on the right). The correlation coefficient is −0.0512, the first-type error probability is 0.8745,
the Spearman’s correlation coefficient is −0.1399, and the first-type error probability in the
Spearman’s nonparametric test is 0.6672.

No significant correlation was found between the other wave train parameters in
Table 1 and age. The correlation analysis of the wave train parameters of the flexor muscle
(see Table 2) revealed no significant correlation.
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Figure 23. The scatter plot of the numbers of wave trains per second detected in the physiological
tremor frequency band in the extensor muscle of the tremor arms of the PD patients. The scatter plot
demonstrates the relation between the wave train number and the age of the patients. On the left, the
left hands of the patients are shown. On the right, the right hands of the patients are shown.

4. Discussion

The obtained results can be explained by the neurophysiological mechanisms of the
tremor maintenance known nowadays.

The negative correlation between the numbers of wave trains in the frequency ranges
corresponding to the Parkinsonian and physiological tremors may indicate the mutual
negative influence of some neurophysiological mechanisms underlying both tremor types
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(Figure 20). It is known that the mechanism of physiological tremor (in the frequency
range from 8 to 12 Hz) is maintained in the cerebello-thalamo-premotor-motor cortical
network [41]. The Parkinsonian tremor mechanism is maintained in the cerebello-thalamic
pathways [42]. Thus, the thalamus is involved in the mechanisms of both types of tremor.
We can assume that the capabilities of the thalamus are limited and that both tremor mecha-
nisms compete for the participation of the thalamus. We propose that Parkinsonian tremor
is more successful than physiological one in this competition. Therefore, as Parkinsonian
tremor intensifies, physiological tremor is suppressed.

We did not observe a correlation between the Parkinsonian tremor in the tremor arms
and the physiological tremor in the non-tremor arms (Figure 21). However, there is a
statistical trend in the right-hand-tremor PD patients. Thus, we cannot prove or deny the
existence of a relation between the tremor in the tremor arms and the non-tremor arms.
The relationship between the Parkinsonian tremor in the tremor arms and the physiological
tremor in the non-tremor arms requires more investigations to be carried out on a larger
group of corresponding patients.

No correlation was observed between the numbers of wave trains in the frequency
range of the physiological tremor in the tremor arms and the numbers of the wave trains in
the frequency range of physiological tremor in the non-tremor arms in the PD patients (see
Figure 22). Note that there is a separation of the wave train clouds in the arms of the healthy
subjects and the PD patients (Figure 22). This separation of the clouds can be explained by the
fact that the physiological tremor in the healthy subjects and the physiological tremor in the
PD patients have different mechanisms. It is known that the physiological tremor in healthy
subjects occurs mainly due to homeostatic peripheral movements of muscles and joints to
maintain posture or the movement of the limbs [43]. The resting tremor in the PD patients
is associated with increased activity in the cerebello-thalamic pathways [44]. In PD patients,
the increased activity of the cerebello-thalamic pathways contributes to the physiological
tremor of the non-tremor arm. Thus, the Parkinsonian tremor contributes to the movement
of the non-tremor arm. The cumulative tremor in the non-tremor arms of the PD patients
can be named the preclinical tremor. Different characteristics of the preclinical tremor in the
non-tremor limbs of the PD patients and physiological tremor in the healthy subject limbs
observed during the medical examination can be used for the early diagnosis of PD.

The analysis of the correlation between the numbers of wave trains in the frequency
range of the physiological tremor and the age of the PD patients revealed substantial
differences between the patients with the right- and left-sided-debut of PD (Figure 23). PD
usually progresses with age. Increasing the age can be considered to be a factor contributing
to the progression of PD [45]. It has been suggested that the dominant and non-dominant
arms may have different specializations [46,47]. Motor lateralization hypothesis [48]
suggests that when the right hand is dominant, it is specialized in the predictive control of
the dynamics of smooth and efficient movements. In contrast, the non-dominant left hand
is specialized in the resilience to unforeseen disturbances [49,50]. Thus, there is a piece of
evidence that different mechanisms control the dominant and non-dominant hands. As the
non-dominant hand specializes in resistance to unforeseen disturbances, we assume that
this mechanism increases with PD progression. It is possible that, in the preclinical stage,
the enhancement of the stability function is more substantial than the process associated
with the development of PD and the increase in the tremor.

The idea of the 3D AUC diagrams described in this paper is based on multiscale data
analysis. We changed the resolution of the diagrams to look for Bonferroni correction that
enables to observe statistically significant differences between the subject groups. The
investigation of the multiple comparisons problem [40,51–54] is currently an important
topic in biomedicine. A large number of methods have been developed to solve the
multiple comparisons problem. These methods are based on the analysis of the family-wise
error rate (FWE), the false discovery rate (FDR), the application of random field theory
(RFT) [54–56], the permutation method [52], etc. Unfortunately, most of these methods do
not consider the connection between the multiple comparisons problem and the problem
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of the multiscale analysis of biomedical data. Meanwhile, these two problems are closely
related both from the point of view of the mathematical apparatus and from the point of
view of the practical application of the methods. The problem with multiscale analysis is
that biomedical data may contain patterns that appear on various, previously unknown
scales of images/signals. It is necessary to investigate data in a certain space of scales to
detect such patterns. However, different scales correspond to different numbers of multiple
comparisons and, therefore, suggest a different level of statistical correction for the number
of multiple comparisons. Moreover, the investigation of the data on the multiple scales
implies multiple comparisons and, therefore, may require the application of additional
correction for the multiple comparisons. This problem, in particular, was considered in the
random field theory, and an approach to analyzing the data based on the space of scales (the
scale space approach) was proposed [57]. Thus, a possible direction in the development
of the method for the analysis of wave train electrical activity is the use of more accurate
corrections for the multiple comparisons instead of the standard Bonferroni correction.

5. Conclusions

The method developed for analyzing the wave train electrical activity is a universal
method for exploratory data analysis and can be applied to other types of biomedical
signals [58–70]. In particular, we demonstrated that the statistical analysis of some charac-
teristics of wave trains in EEG can identify features of the preclinical stage of PD [58–61]. It
was found that the number of wave trains in wavelet spectrograms in the beta frequency
range in first-stage PD patients was significantly reduced in comparison with the control
subjects [71–73]. Statistically significant differences in the signals of the accelerometer [68]
and EMG [63] in patients with PD, essential tremor (ET), and healthy volunteers in the
0.5–4 Hz low-frequency range were found using 2D AUC diagrams. Note that this fre-
quency range has remained unexplored for a long time. The revealed regularities can be
used for the differential diagnostics of PD and ET. The problem of the early and differential
diagnostics of PD and ET by means of wave train analysis was considered in paper [69].
The source code of the Matlab program used for the analysis of EMG data has been pub-
lished in GitHub [74]. The method used for the differential diagnostics of the essential
tremor disease and early and first stages of Parkinson’s disease based on the wave train
electrical activity analysis was patented [75].
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