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Abstract: Dynamic visualizations such as videos or animations have been developed to exchange
information that transforms over time across a broad range of professional/academic contexts. How-
ever, such visual tools may impose substantial demands on the learner’s cognitive resources that
are very limited in current knowledge. Cognitive load theory has been used to improve learning
from dynamic visualizations by providing different instructional designs to manage learner cognitive
load. This paper reviews a series of experimental studies assessing the effects of certain instructional
designs on learning of tactical scenes of play through dynamic visualizations. An electronic database
search was performed on the Web of Science and PubMed/Medline databases from inception to
July 2020 using a combination of relevant keywords. Manual searches were also made. The search
was limited to English language. A total of 515 records were screened by two researchers using the
Population/Intervention/Comparison/Outcome(s) (PICO) criteria. The quality and validity of the
included studies were assessed using “QualSyst”. Learning indicators in students and/or players
(male and female) at any age category and competitive level were considered. Eleven studies met the
inclusion criteria for this review, which focused on the effects of four instructional designs (i.e., using
static visualizations, employing sequential presentation, applying segmentation, and decreasing
presentation speed) on learning various game systems through dynamic visualizations. These studies
indicate that (i) the effectiveness of all instructional designs depend upon the level of learners’ exper-
tise when learning soccer/Australian football scenes through animations/videos, (ii) the effectiveness
of using static visualizations instead of animations/videos showing soccer/basketball scenes depend
upon the type of the depicted knowledge (i.e., motor knowledge or descriptive knowledge) for novice
learners, (iii) the effectiveness of employing static visualizations and decreasing presentation speed
when learning soccer/basketball scenes from animations/videos depend upon the level of content
complexity, for novice learners. The current review demonstrated important practical implications for
both coaches and physical education teachers using either animations and/or videos to communicate
game systems. Indeed, findings suggested that adapting instructional designs to the level of learners’
expertise, type of depicted knowledge, and level of content complexity is a crucial part of effective
tactical learning from dynamic visualizations.
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1. Introduction

Dynamic visualizations are external representations that change over time and repre-
sent a non-stop flow of perceptual information, yielding an illusion of movements [1,2].
These pictorial demonstrations could be as animations used for communicating descrip-
tive information/knowledge [3,4], or as realistic video clips used for portraying motor
knowledge/skills [5,6]. The use of dynamic visualizations in learning environments can
present numerous benefits. Firstly, they seem to be the most natural visual tool to convey
dynamic properties (e.g., translation, transformation) that are tricky to describe verbally [7].
Secondly, they can depict dynamic information in an explicit and continuous way, which
may help the observer to establish appropriate internal representation [8]. Thirdly, they
can show the micro-steps of the dynamic phenomenon, while offering a concrete and
global view [9] and avoiding the process of mental inference [10]. Fourthly, recent findings
indicated that using dynamic visualizations in instructional contexts could be relevant for
improving learners’ attitudes such as motivation and engagement [11–13]. In team-sport
domain, dynamic presentation formats are expected to improve learners’ tactical knowl-
edge by delivering directly visuo-spatial information (e.g., the players and the ball) and
temporal, change-related information (e.g., the players’ movement) that helps the observer
establish an appropriate internal representation of an ideal unfolding play [14,15]. Indeed,
studying structured stimuli (i.e., scenes of organized playing patterns) is the obvious choice
for learning team-ball game systems from dynamic visualizations, because unstructured
stimuli break a play down with no apparent organization (e.g., scenes of players warming
up, a break in play following an injury, etc.) [16].

Despite the presumed advantages of dynamic visualizations in learning, the Cognitive
Load Theory (CLT) [17,18] argued that such visual tools may impose substantial demands
for the learner’s cognitive resources that are very limited in both capacity and duration,
which might hinder learning [19]. The CLT is a theory that considers how visual informa-
tion impacts on Working Memory (WM) and learning. According to this theory, learning
from dynamic visualizations depends specifically on two categories of cognitive load.

The first category is “the intrinsic cognitive load” which is dependent upon the levels
of content complexity. From a cognitive load viewpoint, dealing with simple dynamic
visualization (i.e., content with a little number of interactive elements) consumes less
WM resources and leads to easier learning. In contrast, dealing with complex dynamic
visualization (i.e., content with an excessive number of interactive elements) consumes
large amounts of WM resources and makes learning process difficult [17]. In this frame-
work, research within CLT [17,18] suggested two instructional designs, which effectively
enable the control/management of the intrinsic cognitive load. The first technique is to
employ “the sequential presentation method” [20]. This instructional strategy recommends
presenting information depicted in dynamic visualization serially rather than concurrently.
This method may be relevant for learning as it provides learners with less information to be
concurrently treated in working memory and thus, facilitates the integration of information
in long-term memory [21,22]. In addition, the sequential presentation of the dynamic
visualizations’ components in a defined order could refer to a form of temporal cueing,
facilitating the building of ordered knowledge in long-term memory [20]. The second
technique is “the prediction method”. This strategy pushes learners to anticipate/predict
future macro/micro steps of dynamic visualizations. This mental process is supposed to
improve learning from dynamic representations as it encourages learners to activate their
acquired knowledge of the system and/or help them to realize what they do not know
about the system and stimulate a greater focus [10].

The second category is “the extraneous cognitive load” which is related to the de-
signed instructional materials that interfere with schema acquisition. It is well known that
the transient nature of information is responsible for the increase of extraneous cognitive
load when learning from dynamic visualizations (the transient information effect) [18,23].
Indeed, videos or animations provide a transient, non-permanent stream of information
that vanishes from the computer screen [17]. Consequently, learners are obliged to pro-
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cess current information while simultaneously trying to maintain the previously given
information and integrate it with novel information in long-term memory [3,23,24]. To
ovoid/reduce the transient information effect and improving learning from dynamic visual-
izations, research in the scope of CLT [17,18] suggested five instructional designs (without
adding any oral/written explanations). The first technique is “the use of static visual-
izations” [2,25,26]. This method consists of replacing videos or animations with a series
of static pictures or with a static diagram, describing the essential states of the dynamic
system. This instructional strategy may decrease the extraneous cognitive load investment
by allowing learners to benefit from sufficient time to identify and process relevant infor-
mation and effectively integrate it in long-term memory [27,28]. Moreover, using static
visualizations, compared to dynamic representations, offer the possibility to revise and
compare different parts of the display as frequently as desired [29]. The second technique
is “to employ segmentation” [30,31]. The segmentation of videos/animations corresponds
to an insertion of pauses or time breaks between the key segments/steps of the dynamic
phenomenon. This strategy provides learners with supplementary time to process and
assimilate information received in the previous segments without having to simultaneously
attend the next incoming information [31]. Moreover, this method could be referred to as
temporal cueing because it allows learners to distinguish between macro/micro dynamic
events in the display [32]. The third technique is “the incorporation of cues/signals” [33,34].
This instructional strategy can be applied by either “adding elements” such as arrows, lines,
and thick frames, or “without adding elements” via coloring, flashing, and zooming [1]. Ac-
cording to the CLT, using cues or signals, especially without adding elements, in dynamic
visualizations may improve learning because they are able to highlight the crucial informa-
tion elements and thereby, to direct the learner’s attention towards it [35,36]. The fourth
technique is “the decrease of presentation speed” [14,15]. This method consists of reducing
the number of frames per second. Decreasing presentation speed of dynamic visualizations
may provide learners with additional time to achieve the required cognitive processing in
WM, while reducing the probability that key information is missing [37]. Moreover, such
design technique is beneficial as it reduces the perceptual/cognitive demands by allowing
learners to build a mental representation of local parts (i.e., micro/macro dynamic events),
which then can be integrated into a coherent mental model [15,38]. The fifth technique
is the use of learner-control [39–41]. This instructional design allows learners to control
the dynamic display through interactive features such as stopping, replaying, reversing
or changing speed. Using this method in computer-based learning environments allows
learners to repeat and process the missed part of the display. Furthermore, this user-control
give an additional time for learners to process, consolidate and transfer information into
long-term memory before proceeding to the next segment/step [41].

With the growth in graphic technologies, dynamic visualizations such as realistic
videos [42,43] or decorational animations [44,45] have been extensively employed by
Physical Education (PE) teachers or coaches when teaching tactical knowledge in team-ball
sports. However, as mentioned above, learning from dynamic visualizations could be
a challenging task, because such visual tools may impose substantial demands on the
learner’s cognitive resources that are very limited in current knowledge [18,23]. In this
context, based on CLT, some past scientific works [2,13,15] have explored the effects of a
variety of design techniques (without adding any oral/written explanations) on learning
of tactical scenes from dynamic visualizations. Yet, research into the instructional and/or
cognitive effects of these techniques has obtained mixed results. A synthesis of the literature
related to the role of these instructional designs may be helpful and of great applicable
relevance towards understanding how dynamic visualizations portraying game systems
should be designed. This approach can help coaches and/or PE teachers to (i) determine
the best dynamic format of visualization for an efficient learning of tactical scenes of play
(ii) determine whether the effectiveness of specific instructional designs depend upon some
moderator factors. Interestingly, a systematic review about this topic has not been published
until today. Therefore, we attempted to fill this knowledge gap with the current paper
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by reviewing a series of experimental studies examining the potential effects of different
instructional designs when learning game systems through dynamic visualizations.

2. Materials and Methods
2.1. Protocol

This paper reviews a series of statistical quantitative studies assessing the effects
of different instructional designs on learning of tactical scenes of play through dynamic
visualizations. This systematic review was conducted and reported in accordance with
the preferred reporting items for systematic reviews and/or meta-analysis (PRISMA)
guidelines [46].

2.2. Eligibility Criteria

To be suitable for inclusion, studies had to fulfill the following PICO criteria:

• Population: studies recruiting male and female students and/or players at any age
category and competitive level as participants.

• Intervention or exposure: original investigations assessing the effects of instructional
designs when learning tactical scenes of play through any type of dynamic visualiza-
tion (i.e., video or animation)

• Outcome(s): studies involving cognitive load and/or learning measurements.
• Design: original investigations published in peer-reviewed journals.
• Time filter: Until 17 July 2020.
• Language filter: articles written in English language exclusively.

Studies not meeting with the above-mentioned PICO criteria were excluded, namely:

• Studies based on multimedia learning environment (i.e., combination of visual and
oral/written explanations). This requirement was applied in order to avoid the
occurrence of modality effect (for this point see [47,48]).

• Proceedings, case studies, encyclopedias, conference papers, thesis, reviews, book
chapters, books, expert interviews, meta-analysis, or commentary articles. Overall,
non-peer reviewed, or grey literature was discarded, in order to keep only high-quality
studies.

2.3. Information Sources and Search

A preliminary literature search was conducted for available systematic review that
had reported the role of instructional designs when learning tactical scenes of play through
dynamic visualizations. No systematic reviews were found. Then, literature searches of
the PubMed/Medline and Web of Science databases were performed without applying
any time limits or filters; the final search being completed on 17 July 2020. The following
combination of keywords was used: (dynamic visualization OR animation OR video) AND
(segmentation OR static visualization OR pictures OR photographs OR sequential presenta-
tion OR learner control OR presentation speed OR signaling OR cuing OR prediction) AND
(team sports OR soccer OR football OR basketball OR handball OR volleyball OR rugby OR
futsal OR American football). Manual searches were also made using reference lists from
the recovered articles in order to identify additional studies not included in these search
terms. In addition, specific target journals (e.g., Journal of Computer Assisted Learning,
Psychology of Sport and Exercise, Computers & Education, Computers in Human Behavior,
Journal of Sports Sciences, Learning and Instruction, Applied Cognitive Psychology, British
Journal of Educational Technology, Journal of Applied Sport Psychology, Educational
Psychology Review, Journal of Sport and Exercise Psychology) were hand-searched for
possible accepted studies in the field.

2.4. Study Selection

The initial database created from the two scholarly electronic databases was organized.
Duplicate citations were removed by Endnote X8 and manually checked by the two first
authors. Following the removal of duplicate studies from the two search databases, the
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researchers individually screened the articles by title and abstract to record the relevant
studies. Selected papers were then read in full to finalize eligibility in accordance with
the above-mentioned PICO criteria. Discordance was resolved by consensus. In case of
uncertainty, discussion with the third co-author determined the final inclusion or exclusion
of the article. The university’s library, electronic databases, and a search of personal files
were used to obtain full copies of the published manuscripts.

2.5. Data Collection Process

The two first authors independently collected data using a pilot-tested extraction form,
and they resolved any disagreements by consensus. In case of hesitation, conversation
with the third co-author determined the final decision.

2.6. Data Items

Information was extracted from each study on: (1) type of instructional design, (2) au-
thors and year of publication, (3) domain, (4) type of dynamic visualization, (5) type of
depicted knowledge, (6) study sample, (7) dependent variables, and (8) key outcomes.

2.7. Risk of Bias in Individual Studies

The methodological quality and validity of each paper included in this systematic
review were evaluated through the formal quantitative assessment tool “QualSyst” [49].
The QualSyst is a validated generic checklist and comprises 14 items scored in relation
to the degree of meeting a specific criterion (yes = 2, partial = 1, no = 0), and it gives the
possibility to score “not applicable” when an item is not applicable to a particular study.
The testing procedure of subscale tests has been reported in Kmet et al. study’s [49] for the
quantitative studies, with inter-rater agreement in scoring (by item) ranged from 73% to
100%. A percentage of quality was calculated for each article: [(total score across relevant
items ÷ total possible score) × 100]. According to Trabelsi et al. [50], a percentage of ≥75%
was considered as indicative of strong quality, a percentage of 55–75% as moderate quality,
and a percentage of ≤55% as weak quality, when using the QualSyst assessment tool. Note
that items judged “not applicable” were excluded from the calculation of the total score,
and thus the maximum total possible score is 24 instead of 28. This process of coding was
made, independently, by the two first authors. In case of disagreement, consensus was
reached through discussion or consultation of the third co-author.

3. Results
3.1. Study Selection

Electronic database searching yielded a preliminary pool of 489 possible records.
57 duplicate records were removed. Manual searches made using reference lists from the
recovered records and specific targeted journals resulted in 26 additional records. Next,
458 records were examined. Subsequently, 415 records screened by title were excluded
(not relevant), and 43 records were carefully screened by title and abstract. Afterward,
32 articles were excluded (2 books, 1 review article, 2 thesis, 1 study based on multimedia
learning environment, 1 conference, 1 no full text available, 2 chapter books, 22 studies
not assessing the effects of instructional designs). The remaining 11 articles were assessed
for eligibility. They were eligible for inclusion in the current systematic review after a
careful review of their full texts. The process used for selecting articles is outlined in
Figure 1. These 11 papers were published between 2013 and 2020 in peer-reviewed journals
(Figure 2).
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3.2. Quality Assessment

The methodological quality and validity of each study included in our systematic
review was deemed to be good to excellent, and no study was excluded because of low-
quality scores: five studies receiving a score of 20 (83.33%), and six studies receiving a score
of 21(87.5%) (Table 1).

3.3. Study Characteristics

The main characteristics of selected studies are given in Table 2. The included studies
are focused, particularly, on the effects of four instructional designs when learning tactical
scenes of play in basketball [2,13,51], soccer [14,15,20,26,30,52,53], and Australian foot-
ball [54] through dynamic visualizations. One study [20] examined the effect of employing
sequential presentation. Six studies [2,13,14,26,52,53] tested the effect of using static visual-
izations. Four studies explored the effect of decreasing presentation speed [14,15,51,54],
and one study [30] examined the effect of using segmentation technique.

These investigations were conducted within physical education [2,13,51] or sports
coaching [14,15,20,26,30,52–54] domains. Most of these studies were designed to evaluate
the effects of these instructional designs on cognitive load, comprehension/recall accuracy
(through a paper/pencil task), and/or game performance (during realistic situation) in
order to obtain an indication of learning efficiency.

The participants of three studies [2,13,51] were novice students (males and females)
recruited from Tunisian secondary school classes. They were aged between 15 and 16 years
old. The participants of six studies [14,20,26,30,52,53] were either novice students (males)
recruited from undergraduate French university classes (aged between 22 and 29 years
old), or expert players (aged between 24 and 29 years old) engaged with French pro-
fessional and/or semi-professional soccer clubs. The participants of one study [15] were
sub-expert players (aged between 13 and 14 years old) engaged with teams from the second
division of the Tunisian football league. The participants of one study [54] were novices
(Mage = 22.68 years, SD = 4.05), sub-experts (Mage = 20.34 years, SD = 3.44) and experts
(Mage = 22.19 years, SD = 3.10) Australian footballers (males).
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Table 1. Quality appraisal of included studies.

Study Question
Described

Appropriate
Study Design

Appropriate
Subject

Selection

Subjects’
Characteristics

Described

Random
Allocation

Researchers
Blinded

Subjects
Blinded

Outcome Measures
Well Defined and

Robust to Bias

Sample Size
Appropriate

Analytic
Methods Well

Described

Estimate of
Variance
Reported

Controlled for
Confounding

Results
Reported in

Detail

Conclusion
Supported by

Results
Total Score Quality (%)

Khacharem
et al. [30] 2 2 1 1 2 NA NA 1 1 2 2 2 2 2 20 83.33%

Khacharem
et al. [20] 2 2 2 2 1 NA NA 1 1 2 2 2 2 2 21 87.5%

Rekik et al. [2] 2 2 1 1 2 NA NA 2 2 1 2 2 2 2 21 87.5%

Lorains et al.
[54] 2 2 2 2 2 NA NA 1 2 1 2 2 1 1 20 83.33%

Khacharem
et al. [26] 2 2 1 2 2 NA NA 1 1 2 2 2 2 2 21 87.5%

Rekik et al.
[13] 2 2 1 2 2 NA NA 2 1 1 2 2 2 2 21 87.5%

Khacharem
et al. [52] 2 2 2 2 1 NA NA 1 1 2 2 2 1 2 20 83.33%

Jarraya et al.
[51] 2 2 1 2 2 NA NA 2 1 1 2 2 2 2 21 87.5%

Khacharem
et al. [14] 2 2 2 2 1 NA NA 1 1 2 2 2 1 2 20 83.33%

Khacharem
et al. [35] 2 2 2 2 1 NA NA 1 2 2 2 2 2 1 21 87.5%

Rekik et al.
[15] 2 2 1 2 2 NA NA 1 1 2 2 2 1 2 20 83.33%

NA = not applicated.
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Table 2. Effects of instructional designs on learning tactical scenes of play through dynamic visualizations: overview of the analyzed papers.

Instructional
Designs Source Domain Dynamic

Visualization
Depicted

Knowledge Sample Dependent Variables Key Outcomes

Sequential
presentation

Khacharem
et al. [20] Soccer Animation Descriptive Novices

Experts

Recall accuracy For Novices: Sequential > concurrent
For experts: Sequential = concurrent

Mental Effort For Novices: Sequential < concurrent
For experts: Sequential > concurrent

Number of repetition For Novices: Sequential = concurrent
For experts: Sequential = concurrent

Learning Efficiency For Novices: Sequential > concurrent
For experts: Sequential < concurrent

Static
visualizations

Rekik et al. [2] Basketball Video Motor skills Novices
Cognitive load
Comprehension
Game performance

Video < Series of pictures
Video > Series of pictures
Video > Series of pictures

Khacharem
et al. [52] Soccer Animation Descriptive Novices

Experts

Mental Effort For Novices: Series of pictures > Animation > Combined
For Experts: Animation < Series of pictures < Combined

Recall-Performance For Novices: Animation = Series of pictures < Combined
For Experts: Animation > Series of pictures > Combined

Number of repetitions For Novices: Series of pictures > Animation > Combined
For Experts: Animation < Series of pictures < Combined

Learning Efficiency For Novices: Series of pictures > Animation > Combined
For Experts: Animation > Series of pictures > Combined

Khacharem
et al. [53] Soccer Animation Descriptive Novices

Experts

Recall accuracy

For Novices: Animation < Series of pictures without tracing < Series of
pictures with tracing
For experts: Animation = Series of pictures without tracing = Series of
pictures with tracing

Mental Effort

For Novices: Series of pictures with tracing < Animation = Series of pictures
without tracing
For experts: Animation < Series of pictures without tracing = Series of
pictures with tracing

Number of Repetitions

For Novices: Series of pictures with tracing < Animation = Series of pictures
without tracing
For experts: Animation = Series of pictures without tracing = Series of
pictures with tracing

Learning Efficiency

For Novices: Animation < Series of pictures without tracing < Series of
pictures with tracing
For experts: Animation > Series of pictures without tracing = Series of
pictures with tracing
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Table 2. Cont.

Instructional
Designs Source Domain Dynamic

Visualization
Depicted

Knowledge Sample Dependent Variables Key Outcomes

Static
visualizations

Rekik et al.
[13] Basketball Video Motor skills Novices

Cognitive load For low content complexity: Video = Series of pictures
For medium/high contents complexity: Video < Series of pictures

Comprehension For low content complexity: Video = Series of pictures
For medium/high contents complexity: Video > Series of pictures

Game performance For low content complexity: Video = Series of pictures
For medium/high contents complexity: Video > Series of pictures

Khacharem
et al. [14] Soccer Animation Descriptive Novices

Experts

Recall accuracy For Novices: Animation = Picture
For Experts: Animation > Picture

Time on immediate recall test For Novices: Animation > Picture
For Experts: Animation = Picture

Mental Effort For Novices: Animation > Picture
For Experts: Animation < Picture

Number of repetitions For Novices: Animation > Picture
For Experts: Animation < Picture

Learning Efficiency For Novices: Animation < Picture
For Experts: Animation > Picture

Delayed recall accuracy For Novices: Animation < Picture
For Experts: Animation > Picture

Time on delayed recall test For Novices: Animation > Picture
For Experts: Animation = Picture

Khacharem
et al. [26] Soccer Animation Descriptive Novices

Performance For low content complexity: Animation = diagram
For high content complexity: Animation < diagram

Mental Effort For low content complexity: Animation < diagram
For high content complexity: Animation = diagram

Learning Efficiency For low content complexity: Animation > diagram
For high content complexity: Animation < diagram

Decreasing
presentation

speed

Lorains et al.
[54]

Australian
football Video Motor skills Novices Sub-

Experts Experts Decision accuracy For Novices and Sub-Experts: low speed = Normal speed < high speeds
For Experts: high speeds > Normal speed = low speed

Jarraya et al.
[51] Basketball Video Motor skills Novices

Mental Effort For low content complexity: Normal speed = low speed
For medium/high contents complexity: Normal speed < low speed

Game performance For low content complexity: Normal speed = low speed
For medium/high contents complexity: Normal speed < low speed

Learning Efficiency For low content complexity: Normal speed = low speed
For high content complexity: Normal speed < low speed
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Table 2. Cont.

Instructional
Designs Source Domain Dynamic

Visualization
Depicted

Knowledge Sample Dependent Variables Key Outcomes

Decreasing
presentation speed

Khacharem
et al. [14] Soccer Animation Descriptive Novices

Experts

Recall accuracy For Novices: High speed = Normal speed < low speed
For Experts: High speed = Normal speed = low speed

Time on immediate recall test For Novices: High speed > Normal speed > low speed
For Experts: High speed < low speed = Normal speed

Mental Effort For Novices: High speed > Normal speed > low speed
For Experts: High speed = Normal speed < low speed

Number of repetitions For Novices: High speed > Normal speed > low speed
For Experts: High speed = Normal speed = low speed

Learning Efficiency For Novices: High speed < Normal speed < low speed
For Experts: High speed = Normal speed > low speed

Delayed recall accuracy For Novices: High speed = Normal speed < low speed
For Experts: High speed = Normal speed = low speed

Time on delayed recall test For Novices: High speed = Normal speed < low speed
For Experts: High speed < Normal speed = low speed

Rekik et al. [15] Soccer Animation Descriptive Sub-Experts

Mental Effort For low content complexity: Normal speed = low speed
For high content complexity: Normal speed > low speed

Comprehension For low content complexity: Normal speed = low speed
For high content complexity: Normal speed < low speed

Learning Efficiency For low content complexity: Normal speed = low speed
For high content complexity: Normal speed < low speed

Segmentation Khacharem
et al. [30] Soccer Animation Descriptive Novices

Experts

Recall accuracy For Novices: Continuous = Macro-step = Micro-step
For experts: Continuous < Macro-step < Micro-step

Mental Effort For Novices: Continuous > Macro-step > Micro-step
For experts: Continuous > Macro-step = Micro-step

Number of repetition For Novices: Continuous > Macro-step > Micro-step
For experts: Continuous > Macro-step = Micro-step

Learning Efficiency For Novices: Continuous < Macro-step < Micro-step
For experts: Continuous < Macro-step = Micro-step
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3.4. Main Findings

Firstly, most of the reviewed studies [14,20,30,52–54] revealed that the effectiveness of
the four identified instructional designs depend upon the level of learners’ expertise when
learning soccer scenes from animations and Australian football scenes through realistic
videos. Indeed, it was observed that using static visualizations, employing sequential pre-
sentation, using segmentation, and decreasing presentation speed are effective only for less
knowledgeable learners (i.e., novices), but they become ineffective for more knowledgeable
learners (i.e., experts).

Secondly, the present literature review showed that the effectiveness of using static
visualizations, as instructional design, instead of dynamic visualizations showing tactical
scenes depend upon the type of the depicted knowledge (i.e., motor knowledge or de-
scriptive knowledge), particularly for novice learners. In fact, it has been observed that
replacing animations portraying descriptive knowledge with a series of static pictures or
diagrams induce positive effects when learning soccer scenes among less knowledgeable
learners [14,26,52,53]. Conversely, using a series of static pictures instead of realistic videos
portraying motor skills induce negative effects when learning basketball scenes among
novice learners [2,13].

Thirdly, the review articles demonstrate that the effectiveness of two instructional
designs (i.e., using static visualizations, and decreasing presentation speed) depend upon
the level of content complexity, especially for novice learners. In this context, it has been es-
tablished that replacing a soccer animation with an arrows-based diagram induce positive
effects on learning complex soccer scene of play (i.e., with high content complexity), but
negative effects on learning simple soccer scene of play (i.e., with low content complex-
ity) [26]. Moreover, using a series of static pictures instead of realistic videos portraying
motor skills in basketball induce similar effects on learning when the content complex-
ity was low, and negative effects on learning when the content complexity was medium
and/or high [13]. Furthermore, it was found that the instructional benefits of decreasing
presentation speed of animations (showing descriptive knowledge in soccer) or realistic
videos (showing motor skills in basketball) were present only when studying medium
and/or high levels of content complexity [15,51].

Table 3 provides a summary of the suggested instructional designs in order to improve
learning of tactical scenes of play through dynamic visualizations, as a function of these
moderator factors.

Table 3. Suggested instructional designs to improve learning of tactical scenes of play through dynamic visualizations.

Dynamic
Visualization

Depicted
Knowledge

Level of Content
Complexity

Suggested Design
Technique Addressed to Reference

Animation Descriptive High

Sequential presentation Novices [20]
Static visualizations Novices [14,26,52,53]

Decreasing presentation speed Novices/sub-Experts [14,15]
Segmentation (Micro-step) Novices [30]
Segmentation (Macro-step) Novices/Experts [30]

Video Motor skills Medium/High Decreasing presentation speed Novices [51]

4. Discussion

This paper reviews a series of experimental studies examining the effects of different
instructional designs on learning of tactical scenes of play through dynamic visualizations.
The literature search strategies yielded a final pool of eleven papers. These articles are
focused to the effects of four instructional designs (using static visualizations, employing
sequential presentation, applying segmentation, and decreasing presentation speed) when
learning basketball, soccer, or Australian football game systems. Overall, research into the
instructional and/or cognitive effects of these instructional designs has obtained mixed
results. In fact, it has been observed that the effectiveness of these instructional designs
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when learning various tactical scenes of play from dynamic visualizations depends/varies
as a function of three moderator factors: the level of learners’ expertise, type of depicted
knowledge, and level of content complexity.

4.1. Level of Learners’ Expertise

The current state of the literature indicated that learner prior knowledge is a significant
factor that could moderate the effectiveness of all identified instructional designs, when
learning from animated soccer scenes (showing descriptive knowledge). Moreover, the
effectiveness of decreasing presentation speed of realistic video showing Australian football
was moderate by the level of learners’ expertise.

In this framework, Khacharem et al. [20] found that the effect of using sequential pre-
sentation was moderated by the level of players’ expertise when learning soccer drill from
an animation. In this study, participants were invited to complete a recall-reconstruction
test and to rate their invested mental effort after studying a concurrent or sequential pre-
sentation of a soccer animation. For novice players, the sequential presentation produced
better learning outcomes. Conversely, expert players performed better after studying
the concurrent presentation. Moreover, the effective use of the segmentation technique
was also moderated by the level of learners’ expertise when studying complex soccer
scenes from animations. Khacharem et al. [30] tested the effect of two types of segmenta-
tion (macro-step and micro-step) on learning soccer attacking drills. Even though results
demonstrated positive effect of the macro-step segmentation among all players, novices
benefited more from the micro-step segmentation than from the macro-step segmentation,
while experts performed at the same level with both forms of segmentation. Furthermore,
Khacharem et al. [52,53] investigated the effects of expertise on perceived cognitive load
and performance resulting from studying soccer scene either through an animation or
via a series of static pictures. The results showed that novice players achieved higher
performance outcomes after studying static pictures. However, expert players performed
better after studying instructional animations. Similarly, Khacharem et al. [14] found an
interaction between levels of learner expertise and the usefulness of replacing an animation
with a static picture when studying a soccer playing system. According to this study,
displaying a static picture to novice players is more helpful for learning than displaying an
animation. Conversely, learning from a continuous animation is more beneficial for expert
players: they attained the higher level of performance with the same time on the immediate
recall-test, needed lower number of repetitions, and invested less mental effort. Addition-
ally, it was established that learners’ prior knowledge should be taken into consideration
when decreasing speed of video and/or animation. For example, Khacharem et al. [14]
showed that novice players achieved higher recall scores, needed a lower number of repe-
titions and invested less mental effort when the animations were played at a low speed
than when they were played at a normal or high speed. However, expert players had to
invest less mental effort to attain the same level of performance with the same number of
repetitions, when the animations were displayed at a high or normal speed than when
they were displayed at a low speed (see [54] for more similar results with video portraying
motor skills in Australian football).

The interaction between the effectiveness of these instructional designs and levels of
learners’ expertise when learning tactical scenes of play from dynamic visualizations is
mainly due to “the expertise reversal effect” (for a review, see [55–59]. Accordingly, learning
from dynamic visualizations depends not only on how the information is presented, but
also on the quantity of the learner prior knowledge in the domain. It is well known that
prior knowledge is stored in long-term memory as cognitive schemas, through experi-
ence and deliberate practice [53,60]. The development of domain-specific knowledge can
effectively reduce WM overload by assembling a large amount of information elements
into a single unit. As a result, experienced learners were able to deal with dynamic vi-
sualizations, by identifying the crucial aspects and ignore the unimportant ones [61,62].
Consequently, instructional designs that are optimal and effective for less knowledgeable
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learners may become ineffective and hinder learning for more knowledgeable learners,
and vice versa [14,55,56].

4.2. Type of Depicted Knowledge

It has been observed that the type of knowledge (i.e., motor knowledge or descriptive
knowledge) depicted in dynamic visualizations could moderate the effectiveness of one of
the above-mentioned instructional designs (i.e., using static visualizations) when learning
tactical scenes, only for novice learners.

On one hand, Khacharem and colleagues [52,53] found that replacing animations
with a series of static pictures is an effective strategy for learning soccer attacking drills,
especially for novice soccer players. Similarly, it was established that using a static picture
representing three key stages of a soccer animation is more beneficial for learning: novice
players attained the same level of performance with less time on the immediate recall-test,
with lower number of repetitions, and with lower investment of mental effort [14]. As
mentioned in the introduction, using static instead of dynamic visualizations, especially
for novices, may decrease the extraneous cognitive load investment by allowing learners to
benefit from sufficient time to identify and process relevant information and effectively
integrate it in long-term memory [27,28]. Moreover, using static visualizations, compared
to dynamic representations, offer the possibility to revise and compare different parts of
the display as frequently as desired [29].

One the other hand, evidence of positive effects of using static visualizations were not
proved in comparison with using dynamic visualizations among novice learners, when it
was about learning motor knowledge/skills. In this context, Rekik et al. [2] explored the
effectiveness of realistic video versus a series of static photographs on learning basketball
tactical actions within physical education domain. Immediately after the learning phase,
students were asked to indicate their cognitive load investment. Next, they were invited
to perform a game understanding task and a game performance task. For all indicators,
the results showed that learning from the video was more effective than learning from a
series of photographs. These results are consistent with previous research carried out in
non-sporting domains, demonstrating the cognitive and instructional value of dynamic
visualizations (as opposed to statics) involving various motor skills that require hand
manipulations such as performing an emergency procedure [9], making origami shapes [63],
and tying diverse knots [64,65]. Following the neuroscience literature, the superiority of
dynamic visualizations over statics when learning motor knowledge/skills is mainly due to
the activation of the Mirror-Neuron System [66–69]. This system was originally identified
in primates. It is a neuro-physiological circuit distributed across the pre-motor cortex
that is automatically activated when someone is observing another person performing an
action [67,69]. Moreover, as humans’ actions are part of primary knowledge such as face
recognition, learning from others, and language, their acquisition is very easy and requires
little cognitive effort [70]. Hence, watching dynamic visualizations involving motor skills
does not require excessive cognitive resources, because humans are biologically evolved to
effectively acquire such kind of knowledge. The phenomenon of learning motor skills from
dynamic visualizations compared to statics was called “the human movement effect” [70].

4.3. Level of Content Complexity

Analysis of the selected articles showed that the level of content complexity (i.e., the
number of interactive information elements) is a significant factor that could modulate
the effectiveness of two instructional designs (i.e., using static visualizations, decreasing
presentation speed) when learning tactical game systems through dynamic visualizations
(animations and videos), solely for novice learners. The term “complexity” used in these
experimental studies referred to the internal complexity of the playing systems that was
associated with the intrinsic cognitive load [71]. In fact, the more complex scene of play is
the situation that involves more players and more interactions between them [72,73].
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In this framework, Khacharem et al. [26] showed that replacing an animation with
an arrows-based diagram was efficacious only when studying complex soccer scene of
play (i.e., with high content complexity). Indeed, novice players achieved the same level of
comprehension with lower investment of mental effort. By contrast, participants learned
more efficiently from the animation than from the static diagram when it is about a
simple soccer scene. In the same vein, Rekik et al. [13] found that using a series of static
pictures or a video had similar effects among novice participants when learning basketball
scenes with low content complexity. However, for medium and high content complexity,
the dynamic format had a clear advantage over the static format in terms of cognitive
load investment and learning outcomes. In addition, it was found that the instructional
benefits of decreasing presentation speed of animations showing descriptive knowledge
or videos showing motor skills were also affected by the level of content complexity.
In this context, Rekik et al. [15] examined the effect of content complexity on learning
from soccer animations presented either at normal or low speeds (i.e., 0.5- and 1.0-times
normal speed). The results revealed that while the decrease of presentation speed had no
advantages when learning low-complexity content, sub-expert players profited more from
the low than the normal presentation speed when learning high complexity content (based
on the combination of comprehension and cognitive load scores). The same pattern of
results was obtained when learning basketball tactical actions through videos modeling
examples [51]. Authors found that both speeds of presentation have similar effects when
learning low content complexity. Conversely, for medium and high complexity contents,
novice participants exposed to the slow-presentation speed learned more efficiently than
those exposed to the normal-presentation speed.

These researchers referred usually to the CLT [17,18] in order to explain the interaction
between the effectiveness of instructional designs and the levels of content complexity
when learning game systems from dynamic visualizations. Indeed, dynamic formats dis-
playing contents with low levels of complexity led to easier learning, because learners had
to consume less perceptual-cognitive resources to deal with both the transient nature of in-
formation and few numbers of interactive information elements. As a result, learners were
not forced to integrate and maintain excessive information elements in WM. Consequently,
novice learners could benefit from videos or animations showing tactical scenes of play
without running the risk of a potential cognitive overload. By contrast, dealing with more
complex dynamic visualizations made learning difficult and consumed a large amount of
perceptual-cognitive resources, as learners were asked to deal with the transient nature of
information and to spatially split their attention among the excessive number of interactive
elements [17,18]. Therefore, the use of the above-mentioned instructional designs (except
the use of static visualizations when learning motor skills; due to the human movement ef-
fect) might reduce these cognitive processing demands and improve novices’ performance
when learning tactical scenes of play through dynamic visualizations.

4.4. Strengths and Weaknesses

The strengths of the present study include a comprehensive coverage of the available
literature and the careful appraisal of its quality, via the utilization of a wide range of key
words (related to the relationships between dynamic visualizations, instructional designs,
and team sports) searched through two globe databases, and the high methodological
quality of the included studies. However, despite its novelty, certain limitations should
be kept in mind when interpreting results. First, the electronic database search was
performed solely on the Web of Science and PubMed/MEDLINE. Further studies are
required to enlarge the sample by including other electronic databases such as SCOPUS,
ERIC, and PsycINFO. Second, the number of good quality studies evaluating the effects
of instructional designs on learning tactical scenes from dynamic visualizations is limited,
hampering the ability to draw definitive conclusions. Third, most of the included studies
were focused on short-term learning, because the indicators of learning were collected
immediately after students/players had viewed the instructional materials. Fourth, all
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reviewed papers do not take into consideration the gender of learners. Fifth, most of the
included studies (except Rekik et al. [2,13]) are low in ecological validity as the learning
measurements were performed under laboratory conditions. Lastly, the present literature
review was interested solely on learning of playing systems. In fact, dynamic visualizations
have been extensively employed by PE teachers and/or coaches to improve learning of
technical skills [74–77]. Thus, more systematic reviews are required to uncover the role of
instructional designs when learning from dynamic visualizations portraying actions/events
in individual sports.

5. Conclusions

The current review demonstrated important practical implications for both coaches
and PE teachers using either animations or realistic video clips to communicate/explain
different playing systems. It offers insight into the effectiveness of a variety of instructional
designs (using static visualizations, employing sequential presentation, applying segmen-
tation, and decreasing presentation speed) when learning about tactical scenes of play
through dynamic visualizations. Overall, research into the instructional and/or cognitive
effects of these instructional designs has obtained mixed results. Indeed, the findings
suggested that adapting various instructional designs to the level of learners’ expertise,
type of depicted knowledge, and level of content complexity is a crucial part of effective
tactical learning from dynamic visualizations.
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