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Abstract

Background: Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro
tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only
limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought
that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the
end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from
nutrition. We sought to determine at exactly what point in development this uncoupling occurs.

Methodology: Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were
measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and
hormone treatment.

Principal Findings: Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as
the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a
cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the
trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the
critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, but
not the brain, are required to drive continued growth.

Conclusions: During the last larval instar imaginal disk growth becomes decoupled from somatic growth at the time that
the endocrine events of metamorphosis are initiated. These regulatory changes ensure that disk growth continues
uninterrupted when the nutritive and endocrine signals undergo the drastic changes associated with metamorphosis.
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Introduction

In insects, as in other organisms, nutrition is necessary for

normal growth. In vitro studies have shown that nutrition does not

act directly on cells but typically exerts its effect via hormonal

signals such as insulin-like peptides and ecdysteroids [1,2,3]. When

insect larvae enter metamorphosis feeding stops and somatic

growth ceases, but the imaginal disks continue growing at their

normal rate. Evidently growth of the imaginal disks becomes

uncoupled from nutrition at some time during the last larval instar.

In this paper we investigate the biological mechanism of this

developmental switch in Manduca sexta.

Insulin-like peptides are the most common mediators between

nutrition and growth [4,5,6]. Nutrition, via circulating sugar levels,

promotes the release of insulin from neurosecretory cells in the

brain into the hemolymph, and then acts on peripheral tissues to

stimulate protein synthesis and cellular growth [5,7]. Insulin-like

peptides have been identified in a variety of insects [8,9,10] and

their function has been best studied in Drosophila melanogaster

[reviewed in 11]. In Drosophila, ablation of the insulin producing

cells in the brain leads to reduced larval growth and small adult

flies [12]. Mutations in the insulin receptor or the insulin receptor

substrate likewise result in a reduction of body size [6]. Over-

expression of the insulin-like peptides during larval development

results in large but normally proportioned adult flies [13].

The insulin-like peptides of the Lepidoptera are brain neurosecre-

tory hormones called bombyxins (Bbx). Bbx were first identified in the

silkworm Bombyx mori [10] and since then have been identified in

other Lepidoptera, including the tobacco hornworm Manduca sexta

[2,14]. Bbx has been shown to be an essential growth factor for wing

imaginal disks in Precis coenia and M. sexta [2,3]. However, in vitro tissue

culture studies have shown that Bbx by itself stimulates only weak

growth, and that normal growth also requires the action of the steroid

molting hormone, ecdysone [2,3].

Ecdysone is controlled by the brain via the neurosecretory

prothoracicotropic hormone and is present throughout larval
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growth at a low concentration. At the end of the growth phase

ecdysone rises and induces the cessation of feeding and entry

into the prepupal wandering stage, and two days later a large

peak of ecdysone induces the pupal molt [15,16,17,18].

Ecdysone by itself cannot stimulate normal growth of the

imaginal disks in vitro, and it appears that ecdysone acts

synergistically with Bbx to promote normal growth in the wing

imaginal disks [2,3].

In addition to ecdysone and Bbx, the fat body also plays a

significant role in growth regulation [19,20]. The fat body is the

insect’s equivalent of the liver, and is the major tissue for

metabolism and storage of nutrients, and the source of most of the

proteins that circulate in the hemolymph [21]. The fat body

appears to produce a factor that stimulates cell proliferation and

growth [19,20]. Although the brain and the fat body are both

capable of acting as sensors for nutritional conditions, their

individual contributions to growth regulation are poorly under-

stood, as are the mechanisms by which the signals they produce

might interact to coordinate growth.

In the present study we examine the roles of nutrition, Bbx,

ecdysone, and the fat body in the regulation of wing imaginal disk

growth in the final larval instar of the tobacco hornworm M. sexta.

We show that the relationship between nutrition and growth

changes dramatically as the larva passes the critical weight. After

larvae pass the critical weight blood trehalose, disk growth, and

the transcript levels of the Bbx and insulin receptor (InR) genes

become independent of nutrition. As a result, imaginal disk

growth becomes decoupled from somatic growth, and wing disks

continue to grow when starvation, or entry into the wandering

stage, stops somatic growth. In addition, after the larva has

passed the critical weight, factors from the abdominal region are

required to drive continued growth. Finally, we discuss the

comparative physiology of the developmental transition that

happen when larvae pass the critical weight, by comparing the

distinctively different developmental strategies employed by

Manduca and Drosophila.

Results

Normal growth of body and wing disks
Under normal feeding conditions fifth instar larvae feed for 5

days and then enter the wandering phase, a non-feeding prepupal

stage. Larval mass increased at an approximately exponential rate

during the feeding phase, but after the larva entered the

wandering phase, body mass decreased due to the purging of

the gut contents (Figure 1A). The cessation of larval growth and

entry into the prepupal stage is controlled by secretion of the

steroid hormone, ecdysone [17,22]. The wing imaginal disks, by

contrast, continued to grow uninterrupted throughout both the

feeding stage and non-feeding wandering stage. The wing disks

increased in mass (dry weight) at an exponential rate (Figure 1B),

and this rate increases slightly when larvae enter the wandering

stage [3]. The cell number in the forewing disks increased

exponentially through most of the feeding and wandering stage,

with a doubling time of 3063 h, but on day 8 of the 5th instar cell

division in the wing disk stops and growth ceases (Figure 1C). Cell

division and growth resume again after pupation. The continued

increase in dry weight after cell division has stopped (Figure 1B) is

due to the fact that the cells of the disk begin to secrete a cuticle

that will become the pupal wing integument. At the beginning of

the 5th larval instar, the forewing imaginal disks had approxi-

mately 80,000 cells, at the end of the feeding stage there were

about 600,000 cells, and at the end of the wandering stage about

1.6 million cells.

Influence of nutrition on wing growth
Food deprivation had a different effect on wing disk growth

depending on when it occurs. When larvae were starved before

they had attained their critical weight both body and wing disks

stopped growing. By contrast, when larvae were starved after they

had reached the critical weight the body stopped growing but the

imaginal disks did not (Figure 2). Wing disks from larvae starved

after the critical weight showed a significant increase in size in 48h

(p,0.0001), although their growth rate was somewhat lower than

that of disks from feeding larvae of the same age (p,0.0001)

(Figure 2).

The critical weight marks a developmental transition. At the

critical weight the secretion of juvenile hormone (JH) stops, and

Figure 1. Somatic and wing imaginal disk growth during the
last larval instar of Manduca sexta. Vertical dashed line between
days 5–6 indicates the transition from the feeding to the wandering
phase. (A) Body growth; feeding stops and mass declines during the
wandering phase. Each point is the mean of .50 individuals; bars are
standard deviations. (B) Semilogarithmic plot of growth in dry mass of
the fore wing imaginal disks. The growth rate of the wing disk increases
after larvae enter the wandering stage. Lines are exponential
regressions. During the feeding phase the growth is given by the
exponential equation mass = 0.011e0.45, r2 = 0.93; during the wandering
phase growth is given by the exponential equation mass = 0.007e0.55,
r2 = 0.97. Each point is the mean of 20–22 individuals; bars are standard
deviations. (C) Semilogarithmic plot of the increase in cell number of
the fore wing imaginal disk. Cell division stops after day 8. Each point
represents the mean of 12 individuals; bars are standard deviations.
doi:10.1371/journal.pone.0010723.g001

Control of Wing Disk Growth
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there is an increase in expression of JH-esterase, the primary

catabolic enzyme for JH [15,23,24]. This change in JH

metabolism sets in motion a time-invariant process that leads to

the secretion of the small surge of ecdysone that terminates the

feeding phase [22]. This time-invariant period is independent of

nutrition, so the critical weight is operationally defined as the size

at which further feeding is not necessary for a normal time course

to pupation [25,26,27]. For our laboratory strain of M. sexta the

critical weight is between 6.0–6.5g. The peak weight of this strain

is 11–12g, so the critical weight occurs about halfway during the

growth phase. Larvae that were starved after the critical weight

reached the wandering and pupal stages at the same time as

normally feeding control larvae, but developed into small adults

with small but normally-proportioned wings. Larvae that were

starved before critical weight had a significant delay of entry into

the wandering stage and never emerged as adults.

Effect of juvenile hormone on wing disk growth
One of the effects of starvation of larvae before they have reached

the critical weight is that the level of JH in the hemolymph goes up

[28]. JH is known to inhibit the growth of imaginal disks in Precis coenia

[29], so it is possible that the inhibition of imaginal disk growth during

starvation in M. sexta was mediated by JH. We tested this possibility

by measuring imaginal disk growth of JH-treated larvae. A 0.1mg dose

in 10ml acetone of the JH-analog methoprene was topically applied

on three successive days to feeding larvae, starting at weights between

9–10g, and disks were dissected 24h after the last treatment. JH-

treated larvae grew normally, to large size, but their entry into

wandering stage was inhibited by JH. Control larvae had entered the

wandering stage at the end of the experiment. The forewing disks of

JH-treated larvae grew moderately, compared to acetone-treated

controls. They tripled in size during the experimental period

(Figure 3), reaching a size approximately equal to that of disks of

larvae on the day they enter the wandering prepupal stage. By

contrast, the wing disk of acetone-treated controls increased in size

almost 20-fold during the experimental period. Evidently elevated

levels of JH are able to significantly restrict the growth of wing

imaginal disks.

Influence of brain and abdomen on wing disk growth
Growth factors in insects are produced by both the brain and

the fat body [2,5,13,19,30]. The fat body is mostly located in the

abdominal region surrounding the gut. We used brain extirpation

and body ligation to test the interaction of factors coming from the

brain and the abdominal region on disk growth. Both treatments

were performed when the larvae had entered the wandering stage

and, therefore, feeding had ceased. Brain extirpation did not cause

wing disks to stop growing (Figure 4). However, the disks from

brainless larvae had a significantly lower rate of cell proliferation

than disks from sham-operated control larvae (p,0.001) (Figure 5).

Brainless larvae continued to develop and eventually pupated, but

never eclosed as adults.

A ligation applied between the third thoracic segment and the

abdomen isolates wing disks from most of the signals coming from

Figure 2. Effect of starvation before and after critical weight on wing imaginal disk growth. The grey bar represents the mass interval at
which 95% of larvae attain the critical weight. Before the critical weight starvation (open triangles) stopped growth. After the critical weight
starvation did not stop growth but reduced the growth rate to approximately 66% of control (black circles).
doi:10.1371/journal.pone.0010723.g002

Figure 3. Effect of juvenile hormone on wing disk growth.
Graph shows the size of the disks after 4 days for JH-treated larvae and
acetone-treated controls. Each bar represents the mean of 6–8 larvae.
Error bars SEM.
doi:10.1371/journal.pone.0010723.g003
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the abdomen and, therefore, the fat body. Wing disks from such

abdomen-ligated larvae stopped growing soon after the ligation

was placed. Wing disks dissected before ligation and at 24h after

ligation were not significantly different in size (p = 0.39) (Figure 5).

Wing disks from abdomen-ligated larvae showed significantly

lower cell proliferation that those of unligated larvae (p,0.0001)

(Figure 5).

Because fore- and hindwings are located on the second and

third thoracic segments, respectively, a ligation placed between the

second and third thoracic segments isolates the forewings from

most factors coming from the abdomen, and simultaneously

isolates the hindwings from factors produced by the brain. After a

thorax-ligation the ratio between hind- and forewing mass

increased significantly compared to that of non-ligated larvae

(p,0.001) (Figure 6). Hindwings that had access to factors coming

from the abdomen showed a significant increase in size after 24h,

while forewings that had access to brain factors, but were deprived

from abdominal factors, showed a reduced increase in size. This

result suggests that factors from the abdomen are more effective at

promoting growth than factors from the brain.

Hemolymph sugar concentrations
The primary source of growth promoting signals in the

abdomen is the fat body. The insect fat body not only store

reserves but also regulates the hemolymph composition of organic

molecules, including carbohydrates. Growth of wing disks requires

insulin signaling [2,3], whose secretion is stimulated by carbohy-

drates [7]. In most insects, the primary hemolymph carbohydrate

is trehalose, with glucose typically present as a minor component

[31]. M. sexta hemolymph has both trehalose and glucose in

significant concentrations. In feeding larvae, both glucose and

trehalose concentration changed greatly with age in the final instar

(Figure 7). Glucose levels started at about 5.5mM, and gradually

declined to undetectable levels on the day when the larva entered

the wandering phase. Trehalose levels were about 8mM at the

beginning of the instar, and gradually increased to about 14mM

when larvae entered the wandering phase, and were maintained at

that level during the rest of the wandering phase (Figure 7).

Effect of starvation on hemolymph sugar concentration
Larvae were starved either before or after passing their critical

weight and their hemolymph glucose and trehalose concentrations

were measured. Nutrient deprivation affected glucose and

trehalose concentrations differently, and the effect also depended

on the timing of the starvation. Glucose levels declined

precipitously soon after the animal had been deprived of food.

Eight hours after food deprivation glucose concentration had

fallen from about 5.5mM to 0.5mM, and 24h later, glucose in the

hemolymph had become almost undetectable. This response was

the same regardless of whether starvation occurred before or after

Figure 4. Effect of the brain removal and abdominal ligation on
wing imaginal disk growth. Dry weight gain after 24h of brain
removal (p,0.001) or abdominal ligation (p,0.001) for the forewing
disk of first day wandering phase (day 6). Each bar represents the mean
in forewing disk size of 18–20 disks. Error bars SEM.
doi:10.1371/journal.pone.0010723.g004

Figure 5. Quantification of cell proliferation in the forewing
imaginal disk. Cell proliferation was measured as the average number
of PH3 positive cells in an area of 0.0875mm2 of the wing imaginal disk.
Effect of starvation: larvae were starved on day 4 of the feeding phase
and PH3 cells in the wing disk were counted 48h later (p = 0.021). Effect
of brain removal: the brain was removed the first day of the wandering
phase (day 6) and PH3 cells were counted 24h later (p,0.001). Effect of
abdominal ligation: a ligation was placed between the thorax and the
abdomen on day 6 larvae, and PH3 cells were counted 24h later
(p,0.001). Each bar represents the mean of 10 disks. Error bars SEM.
doi:10.1371/journal.pone.0010723.g005

Figure 6. Effect of mid-thoracic ligation on fore- and hindwing
imaginal disk growth. A ligation was placed between the second
and third thoracic segment on the first day of the wandering phase (day
6). The ligation prevented the forewing from receiving most factors
coming from the abdominal region, and also prevented the hindwing
from receiving brain factors. The relationship between fore- and
hindwing sizes for controls fall on a common regression. In ligated
larvae (open triangles) the forewing disks grew little in 24 hours, and
the hindwings grew about half as much as controls (black circles) The
regression lines for control and ligated larvae for fore- vs hindwing disk
sizes are statistically different (p,0.001).
doi:10.1371/journal.pone.0010723.g006
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the larva had reached the critical weight (Figure 8A). By contrast,

the response of trehalose to starvation differed dramatically

depending on whether the larva had attained critical weight or

not. In larvae starved before the attainment of critical weight, the

trehalose level declined gradually during the first 24h and reached

a minimum of 4.5mM at 36h after starvation. However, when

larvae were starved after reaching critical weight, the trehalose

concentration rose slightly until 12h after the beginning of

starvation, after which it remained nearly constant at around

12mM (Figure 8B).

Effect of glucose and trehalose injection
To investigate whether the variation in carbohydrate concen-

trations was functional, we injected 5th instar larvae that were

starved before they reached the critical weight with either glucose

(1mg) or trehalose (0.5mg) before they had passed the critical

weight. The carbohydrate was injected 4 times at 12h intervals,

starting 6h after starvation, and the forewing imaginal disks were

dissected out at 4h after the last injection. Glucose injections did

not stimulate wing disk growth; by contrast, trehalose injections

stimulated significant wing disk growth (Figure 9). We suspect that

glucose had little or no effect on disk growth because it is very

rapidly cleared from the hemolymph after injection (half-life of

injected glucose in hemolymph was ,1h), whereas trehalose levels

persisted for a longer time and could provide for the slow release of

glucose. The wing disks of trehalose-injected larvae did not grow

as much as the disks of feeding larvae, possibly because the pattern

of injections was not able to establish the normal level of trehalose.

We also injected glucose and trehalose in ligated larvae.

Wandering stage larvae were ligated between the meso- and

metahorax and 24h later glucose (1mg) or trehalose (0.5mg) was

injected into the anterior and posterior compartments. After 24h

of ligation the concentration of glucose in the anterior and

posterior compartment of the ligation remained at undetectable

levels. In contrast the concentration of trehalose after the ligation

decreased in the anterior compartment (9.2mM) and remained

high in the posterior compartment (13.3mM). Injection of glucose

had no effect on wing disk growth in either compartment.

Trehalose stimulated a small amount of disk growth in the anterior

compartment but no growth in the posterior compartment. These

results stand in contrast to the findings of Masumura et al. [7] who

showed that in Bombyx mori glucose, but not trehalose, stimulated

the release of Bbx. This suggests that there may be species-specific

differences in how carbohydrates are used to signal nutritional

status in regard to imaginal disk growth. Indeed, it is common-

place to find significant species-specific differences in metabolic

and developmental physiology among the insects [32], because

many of these higher-level processes in post-embryonic develop-

ment are involved with adaptations to particular life histories and

environments.

Figure 7. Hemolymph glucose and trehalose concentration
during the last larval instar. Values are means of 10–16 individuals
6SD.
doi:10.1371/journal.pone.0010723.g007

Figure 8. Effect of starvation on hemolymph glucose and
trehalose concentration. (A) Glucose concentration in larvae starved
before (BCW) and after critical weight (ACW). (B) Trehalose concentra-
tion in larvae starved before and after critical weight. Values are means
of 8–16 independent samples 6SD.
doi:10.1371/journal.pone.0010723.g008

Figure 9. Effect of glucose and trehalose injection on wing disk
growth. Glucose and trehalose were injected 3 times at 12h interval
during 48 h. Each bar represents the mean of 6–10 disks. Error bars
SEM.
doi:10.1371/journal.pone.0010723.g009
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Effect of nutrition on bombyxin and insulin-receptor
transcript levels

To investigate whether the effect of nutrition was mediated via

the insulin-signaling pathway we analyzed the expression of the

neurosecretory insulin-like peptide Bbx in the brain, and of the

insulin-receptor (InR) in the wing imaginal disks of normally-

feeding 5th instar larvae. The transcript level of both Bbx and InR

increased gradually in the course of the instar (Figure 10). The

effect of food deprivation on Bbx and InR transcript levels

depended on the time of larval development (Figure 10). In larvae

starved before the critical weight Bbx and InR mRNA levels

declined dramatically compared to those of feeding larvae (Bbx:

p = 0.0022, InR: p = 0.0083). However, when larvae were starved

after having attained the critical weight, neither Bbx nor InR

mRNA transcript levels changed relative to those of feeding

controls (p.0.05) (Figure 10).

Discussion

The shifting endocrine environment at the end of larval
life

At the end of larval life the internal environment of insects

undergoes dramatic changes as the endocrine and physiological

processes that culminate in metamorphosis begin to unfold.

During this period there is also a major shift in the regulation of

growth, associated with major shifts in the intake of nutrients and

in the hormones that act as extrinsic regulators of tissue growth. In

the Lepidoptera three hormones control the growth of imaginal

disks during this period: the insulin-like hormone bombyxin (Bbx),

ecdysone, and juvenile hormone (JH).

In vitro culture studies have shown that normal growth of the

wing imaginal disks of Lepidoptera requires Bbx, as well as low

levels of ecdysone [2,3]. Ecdysone needs to be above a threshold

concentration of 0.05 to 0.1mg/ml [3], which is at or below the

levels at which ecdysone normally fluctuates during the feeding

and wandering phases, and substantially below the levels required

to induce molting [15,18].

During the last larval instar there is a complex and shifting

interaction between these hormones and food intake. If larvae are

starved at any time during the feeding phase, body growth stops.

In contrast, the response of wing imaginal disks to starvation

depends on the developmental stage of the larvae. In larvae that

have not yet reached the critical weight, starvation causes an arrest

in wing disk growth (see also [33]). But in larvae that have passed

the critical weight, wing disk growth continues albeit at a slightly

decreased rate (Figure 2). Thus after a larva passes the critical

weight, growth of the wing imaginal disks becomes uncoupled

from food intake. Several molecular events are associated with this

transition. Prior to the critical weight the transcript levels of Bbx in

the brain and the InR in the wing disks declines when larvae are

starved, but after the critical weight these transcript levels are

unchanged after starvation. Although the level of transcription

does not necessarily correspond to the level of activity of the

protein product, these finding indicate that the nutritive control of

the signaling mechanisms for the regulation of imaginal disk

growth changes after the larva passes the critical weight. What

could be the cause of this switch in the mechanism that regulates

imaginal disk growth?

A role for juvenile hormone
One possible player in this switch is JH. Food deprivation of M.

sexta early in the last instar causes the JH titers to rise [28,34].

Exogenous JH can inhibit wing disk growth (Figure 3 and [29]), as

can the rise in JH titer caused by starvation [28,33]. Elevated JH

titers could, therefore, explain the arrest in wing disk growth

observed during starvation before the critical weight. We believe

this is a mechanism to limit the otherwise explosive exponential

growth of the imaginal disk under conditions of inadequate

nutrition and slow somatic growth. After larvae pass the critical

weight the secretion of JH stops and the rate of its catabolism goes

up [15,23,27]. The absence of JH after the critical weight could

therefore explain why disks continue to grow in larvae starved

after the critical weight. But it does not explain why the rate of

imaginal disk growth declines somewhat (Figure 2) in those starved

larvae. Although Bbx is required for normal wing disk growth after

the critical weight [3], our findings suggest that Bbx is not involved

in modulating the growth rate during this time period to match

disk growth to somatic growth. The slight decrease in the wing disk

growth rate under starvation may be a direct effect of food

deprivation.

Abdominal factors
Although neither starvation nor removal of the brain after the

critical weight inhibited the growth of wing disks, an abdominal

ligation that isolated the wing disks from factors coming from the

abdomen was effective at inhibiting growth. Apparently factors

from the abdomen are necessary for wing disk growth. To verify

this we placed thoracic ligatures so that the forewings were in

contact with factors from the brain and the hindwings with factors

from the abdomen. In such ligated larvae the forewings grew less

than hindwings, which supports the idea that the abdomen

produces factors that are necessary for wing disks growth.

In vitro cultures of wing imaginal disks have shown that fat body

extracts can provide factors that are necessary for growth and

Figure 10. Bbx and InR mRNA transcript levels. (A) Last larval
instar. Effect of food deprivation at day 2 (B), and at day 4 (C) of the
feeding phase. Transcript levels were measured 24h after starvation.
Each point represents the mean of 3–5 biological replicates measured in
triplicate. Error bars SD.
doi:10.1371/journal.pone.0010723.g010
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development. In Diptera and Lepidoptera wing disk growth

proceeded normally only when fat body extracts were added to the

culture media [35,36,37]. Studies with Drosophila have demon-

strated the importance of the fat body in the coordination of

nutrition and growth, indicating a primary role for the fat body in

the control of growth [19,20,38]. It seems likely, therefore that the

abdominal factor required for imaginal disk growth after a larva

passes the critical weight is produced by the fat body, although the

possibility that neurosecretion from the ventral never cord plays a

role cannot be excluded. The possibility that this factor is a fat

body-specific Bbx cannot be excluded, although we have been

unable to detect expression of Bbx in fat body during the larval

development.

Another possibility is that the fat body factor is the disaccharide

trehalose. Our experiments show that trehalose is a requisite

stimulus for disk growth. Prior to the critical weight starvation

leads to a rapid decline in the level of trehalose in the hemolymph,

but after the critical weight starvation actually leads to a slight rise

in trehalose. The mechanism by which trehalose stimulates growth

is not clear. One possibility is that trehalose stimulates Bbx

synthesis or release, although such a function has never been

demonstrated. More likely is the possibility that trehalose is broken

down into glucose, which stimulates Bbx release. Because glucose

is rapidly cleared from the hemolymph it is not seen to

accumulate.

A reinterpretation of the comparative biology of
nutrition and disk growth control in the last larval instar

We have shown that in Manduca the critical weight in the last

larval instar marks a transition in the regulation of the growth of

wing imaginal disks. An interesting parallel phenomenon has been

described in Drosophila where there is also a point in the last larval

instar after which wing imaginal disk growth becomes independent

of nutrition [39]. This point is the minimal viable size [40]. If

larvae are starved before the minimum viable size the growth of

imaginal disks stops and larvae eventually die. But if starved above

the minimum viable size imaginal disk growth continues and

larvae pupate normally, albeit at a much reduced body size. The

minimal viable size in Drosophila is also commonly called the

critical weight [41,42,43], but, although the response of wing

growth to starvation appears to be superficially similar to that we

describe here for Manduca, the minimum viable size of Drosophila

and the critical weight of Manduca are quite different develop-

mental-physiological phenomena. In Manduca, the critical weight is

part of the mechanism that controls body size at metamorphosis

[25,26,44,45,46]. At the critical weight the JH titer in the

hemolymph declines and the activity of JH-esterase increases.

The disappearance of JH disihibits ecdysone secretion, which

induces initiation of the wandering stage and subsequent pupation

[47,48,49]. The terminal growth period (between the critical

weight and the wandering stage) is identical for starved and

feeding larvae [23,25,27,50]. The terminal growth period can be

experimentally extended in a dose-dependent way with exogenous

JH, and shortened by removal of the corpora allata, the glands

that secrete JH [48,51]. Thus the time required to clear JH

controls the duration of the terminal growth period.

The minimum viable size in Drosophila, by contrast, is not

associated with a developmental event that can be shown to be

independent of starvation, and there is no evidence for an

inhibitory role of JH. Most importantly, the terminal growth

period is not the same for feeding and starved larvae, but is shorter

in larvae that are starved [15,52,53]. This shortening of the

terminal growth period suggests that the act of starvation may

actually be a trigger for the metamorphic molt. This suggestion is

reinforced by the effect of a low-nutrient diet, instead of outright

starvation. When larvae are fed a low-nutrient diet they grow

more slowly and metamorphosis is delayed until they have reached

nearly normal final size [54]. This indicates the operation of a

mechanism for body size regulation in feeding larvae that delays

metamorphosis until larvae have grown to their normal size. In

Manduca this is the function of the critical weight.

Thus Drosophila responds very differently to starvation and to a

low nutrient diet: under starvation metamorphosis is accelerated,

but under low nutrition it is delayed. This response to starvation is

similar to that described in Onthophagus, where starvation is known

to trigger metamorphosis [55]. This may be an adaptation for

survival on an evanescent food resource (e.g. a piece of rotting

fruit). We’ll call it the ‘‘bail-out’’ response: a developmental

adaptation in species whose larvae are unlikely to be able to move

to a new food source when the first one runs out. Even a low

amount of nutrient inhibits the bail-out response, and allows larvae

grow (slowly) until they reach their species-characteristic size (or

until the food runs out). The bail-out response explains why in

Drosophila the growth of internal organs becomes independent of

nutrition when larvae are starved above the minimum viable

weight: because starvation sets in motion the events that lead to

pupariation, and those are nutrition-independent. The finding that

ecdysone signaling is involved in mediating the switch in the

developmental response to starvation that occurs at the minimal

viable weight [41,42] suggests the possibility that in Drosophila

starvation induces metamorphosis by enhancing ecdysone

secretion.

Conclusion
In Manduca nutrition is an absolute requirement for disk growth

before the critical weight, and the brain is in control of imaginal

disk growth via the secretion of Bbx and the tropic regulation of

ecdysone secretion. After a larva passes the critical weight growth

of the wing disks becomes uncoupled from nutrition, and the

inhibitory effect of JH on wing disk growth is abolished. After this

point the brain is no longer required for the control of disk

growth, and this role appears to be passed to factors originating

from the abdominal region. The uncoupling of imaginal disk

growth from nutrition and from the brain ensures that growth

continues uninterrupted when the nutritive and cerebral

neuroendocrine signals undergo the drastic changes associated

with metamorphosis.

Materials and Methods

Experimental animals
Larvae of the tobacco hornworm Manduca sexta were reared on a

standard laboratory diet in individual cups at 26uC under long-day

conditions (16h light: 8h dark). Age during the fifth (last) larval

instar was measured as time since ecdysis: the day of ecdysis to the

last larval instar was designated as day 1 of the feeding phase. On

day 6 most of the larvae had transitioned from the feeding phase to

the wandering phase. The wandering phase lasted from day 6 to

day 10, after which most animals pupated. All experiments were

performed 2–4h after lights-on.

Wing size measurement
Wing disks were dissected out after anesthetizing the larvae for

5 min in CO2. Wing disk dry weight was determined by rinsing

dissected wing disks in water, placing them on a small tared disc of

aluminum foil, and drying them at 60uC for 48h. Wing disk weight

was determined to the nearest 1mg on a Cahn-25 Electrobalance.

Cell number estimates were obtained by dissociating wing disks in
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0.35M citric acid and counting the cells in a hemocytometer. Cells

were counted in duplicate samples in a total volume of 0.1ml.

Cell proliferation
To obtain an estimate of wing disk cell proliferation the number

of cells in M phase were identified with a 1:2000 dilution of anti-

phosphorylated histone H3 antibody (PH3), conjugated to Alexa

FlourH 488 (Cell Signaling Technology, Inc. # 9708). Wing disks

were fixed for 1h in 3.7% formaldehyde in phophate-buffered

saline (PBS; 130mM NaCl, 7mM Na2HPO4, 3mM NaH2HPO4,

pH 7.2) for 1h at room temperature, followed by rinses in PBS and

1% Triton-X.

Starvation
Fifth instar larvae were starved at different body weights

(before/after attainment of critical weight) during the feeding

phase and kept without food for 48 h. To prevent larvae from

desiccating, their containers were sprayed with water twice a day.

Brain removal
Removal of the brain was performed on CO2 anesthetized

larvae through a small triangular incision in the front of the head

capsule on the first day of the wandering phase (day 6). The brain

was gently drawn out of the incision and removed with micro-

scissors. The incision was sealed by applying a small drop of wax

around the triangular flap of cuticle. The effect of the treatment

was measured by comparing the difference in wing disk growth

between brainless and sham-operated larvae after 24h.

Ligations
Ligations were performed by placing a tight cotton thread

around the larval body. Abdominal ligations were placed between

the thorax and the abdomen. Thoracic ligations were placed

between the second and third thoracic segment. The effect of this

treatment was measured by comparing the differences in wing disk

dry weight between ligated and non-ligated larvae after 24h.

Hemolymph glucose and trehalose concentration
Glucose and trehalose (a disaccharide of glucose) are the two

major forms of carbohydrates circulating M. sexta hemolymph.

Hemolymph was collected in micro-centrifuge tubes by making an

incision in the proleg. The concentration of glucose was

determined by using the FreeStyleH Blood Glucose Monitoring

System (Abbott). The limit of detectablilty for glucose is 0.2 mg/

ml, so any concentration below was recorded as 0. Trehalose

concentration was determined by incubating 100ml of hemolymph

with 0.01 units of trehalase (Sigma, T8778) overnight at 37uC and

measuring the amount of glucose liberated.

RNA extraction
Total RNA was extracted using the RNeasy Mini Kit (Qiagen).

Tissues were dissected in cold sterile insect saline. For a given

determination the RNA was extracted from 6 brains or 3 wing disks.

Expression of Bbx and InR
Transcript levels of bombyxin (Bbx) levels in brain tissue and InR

levels in the wing disks were determined using real-time quantitative

PCR (qPCR). First stranded cDNA was generated using oligo-dT

priming with the SuperscriptH II kit (Invitrogen). Q-PCR was

performed using an iCycler (Bio-Rad) with iQTM SYBRH Green

Supermix (Bio-Rad). Q-PCR reactions were performed according to

manufactures instructions. Primers were designed based on cDNA

sequences for M. sexta retrieved from genebank: Bbx (DQ080209),

InR (FJ169464) and actin (L13764). Primers are: Bbx-Fw,

AGTGCGCAGTGGTGTTGTGT and Bbx-Rv, ATAGTT-

CGTCCAGCGTGCAG; InR-Fw, GGGATTTCGGCATGAC-

CAGAGATATT and InR-Rv, TCGTTCGACAGGCCCTGA-

TATGG; Act-Fw, AAGGACCTGTACGCCAACAC and Act-Rv,

ACATCTGCTGGAAGGTGGAC. Relative expression levels of

Bbx and InR were calculated based on the DDCt method [56] and

normalized with actin levels. Each sample was run in triplicate and 3–

5 biological samples were run for each of the experimental conditions.

Statistical analysis
The effect of starvation on wing disk growth was analyzed using

an analysis of covariance (ANCOVA) with body size at the

beginning of the treatment as a covariate. The effect of brain

removal and abdomen ligations on wing disk growth was analyzed

using a one-tailed T-test. Differences in cell proliferation were

examined using a mixed model nested analysis of variance

(ANOVA). The effect of thoracic ligations on fore- and hindwing

growth was examined by ANCOVA with forewing as a covariate.

Transcript levels for Bbx and InR were analyzed using a nested

two-tailed t-test. All statistical analyses were conducted using

JMPH 7.0.2 (SAS Institute Inc., Cary, NC).
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