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Hepatocellular carcinoma (HCC) is a highly malignant and aggressive cancer with
high recurrence rates and mortality. Some studies have illustrated that RNA binding
proteins (RBPs) were involved in the carcinogenesis and development of multiple cancers,
but the roles in HCC were still unclear. We downloaded the RNA-seq and corresponding
clinical information of HCC from The Cancer Genome Atlas (TCGA) database, and 330
differentially expressed RBPs were identified between normal and HCC tissues. Through
series of the univariate, the least absolute shrinkage selection operator (LASSO), and the
stepwise multivariate Cox regression analyses, six prognosis-related key RBPs (CNOT6,
UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) were screened out from DE RBPs,
and a six-RBP gene risk score signature was constructed in training set.
Survival analysis indicated that HCC patients with high-risk scores had significantly
worse overall survival than low-risk patients, and furthermore, the signature can be
used as an independent prognostic indicator. The good accuracy of this prognostic
signature was confirmed by the ROC curve analysis and was further validated in the
International Cancer Genome Consortium (ICGC) HCC cohort. Besides, a nomogram
based on six RBP genes was established and internally validated in the TCGA cohort.
Gene set enrichment analysis demonstrated some cancer-related phenotypes were
significantly gathered in the high-risk group. Overall, our study first identified an RBP-
related six-gene prognostic signature, which could serve as a promising prognostic
biomarker and provide some potential therapeutic targets for HCC.

Keywords: hepatocellular carcinoma, RNA binding proteins, prognostic signature, risk score, nomogram
INTRODUCTION

Liver cancer, the fifth most frequent type of malignancy with high morbidity and mortality, has become
the second leading cause of cancer death globally. It was estimated that 841,080 new liver cancer cases
were diagnosed worldwide and 781,631 deaths occurred in 2018 (1, 2). Hepatocellular carcinoma (HCC),
the main pathological type of primary liver cancer, represents approximately 80–90% of all liver cancer
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cases (3, 4). At present, the major treatments include systemic
pharmacological treatment, surgical resection, transplantation,
ablation therapies, transcatheter arterial chemoembolization, and
radiotherapy (3, 5). In recent decades, the incidence andmortality of
HCC has been increasing globally (1). In spite of the significant
progress made in diagnosis and treatment, the prognosis for
patients with HCC still remains poor due to the high complexity
and heterogeneity of hepatocarcinogenesis (3). Therefore, it is
critical to identify prognostic biomarkers and develop novel
accurate prediction models for predicting prognosis of patients
with HCC and guiding clinical therapy.

RNA binding proteins (RBPs) play a crucial role in post‐
transcriptional gene regulation (6). RBPs can bind various types
of RNAs include coding RNAs (mRNAs) and no-coding RNAs
(rRNAs, ncRNAs, snRNAs, miRNAs, tRNAs, snoRNAs) through
an RNA-binding domain directly (7, 8). So far, more than 1,500
human RBPs (7.5% of the proteome) have been identified that
contain 600 structurally distinct RNA-binding domains (7). They
form ribonucleoprotein complexes by binding their target RNAs
and regulate RNA metabolism, include RNA maturation, splicing,
transport, localization, polyadenylation, stability, degradation, and
translation (8, 9). Most RBPs are evolutionarily conserved and
ubiquitously expressed to maintain cellular homeostasis (7, 10). Due
to the extremely significant biological function of RBPs, its
dysfunction can lead to the occurrence of multiple diseases,
including cardiovascular system diseases (11), blood diseases (10),
neurodegenerative disorders (12), and cancers (11–14).

Previous published studies have indicated that aberrant
expression of some RBPs can affect cell growth and
proliferation and promote tumor occurrence and progression
(15). In addition, its aberrant expression is also significantly
related to malignant degree and clinical prognosis of patients
with cancer (16). For instance, the RNA binding proteins
Musashi-1 and Musashi-2 were found to be overexpressed in
colorectal cancer, and they regulate the mRNA stability and
translation in essential oncogenic signaling pathways (17).
Negative elongation factor E (NELFE) promotes metastasis of
pancreatic cancer through activating the Wnt/b-catenin
signaling pathway and decreasing the NDRG2 mRNA
stabilization (18). Human ribosomal protein S3 (RPS3) is
upregulated in HCC and is closely relevant to the prognosis of
patients with HCC. RPS3 stabilized SIRT1 mRNA through
binding with the 3′ UTR of SIRT1 mRNA to sustaining HCC
progression and the somatic copy-number alterations of NELFE
enhanced MYC signaling and promote cell proliferation in HCC
(19, 20). The molecular mechanism by which RBPs promote
carcinogenesis and development is still not clear.
Abbreviations: HCC, Hepatocellular carcinoma; RBPs, RNA binding proteins;
TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome
Consortium; OS, Overall survival; ROC, Receiver operating characteristic; DE
RBPs, Differentially expressed RBPs; GO, Gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; FC, Fold change; FDR, false discovery
rate; PPI, Protein-protein interaction; MCODE, Molecular Complex Detection;
LASSO, Least absolute shrinkage selection operator; AUC, Area under the curve;
GSEA, Gene set enrichment analysis; HPA, Human Protein Atlas; BP, Biological
process; CC, Cell component; MF, Molecular function; NES, Normalized
enrichment score.

Frontiers in Oncology | www.frontiersin.org 2
Consequently, we considered that RBPs were potential
prognostic biomarkers for HCC patients. In our study, the
RNA-seq data and corresponding clinical information of HCC
cases were obtained from The Cancer Genome Atlas (TCGA)
database, and then we identified differentially expressed RBPs
between tumor and normal liver tissue. Based on differentially
expressed RBPs, survival related RBPs were screened out and an
RBP-associated prognostic model was constructed to predict the
clinical outcome of HCC patients. The prognostic value of this
model was validated in another HCC cohort from the
International Cancer Genome Consortium (ICGC) database.
MATERIALS AND METHODS

TCGA HCC Dataset and
Difference Analysis
The normalized RNA-seq data (Fragments Per Kilobase Million,
FPKM) and corresponding clinical data, which contained 374
HCC samples and 50 normal liver tissue samples, were
downloaded from TCGA database as training set. Wilcox Test
was utilized to perform difference analysis and identify the
differentially expressed RBPs (DE RBPs) between the HCC and
normal tissue. RBPs with |log2 fold change (FC)| ≥ 0.5 and adj
P-value < 0.05 were used for subsequent analysis.

GO and KEGG Functional Enrichment
Analyses
To explore main biological functions and signaling pathways of
the differently expressed RBPs, the R package “clusterProfiler”
was used to carry out Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and Gene Ontology (GO)
enrichment analyses (21), and the results were visualized via
“GOplot” R package. The false discovery rate (FDR) < 0.05 was
thought to be statistically significant.

PPI Network
Protein-protein interaction (PPI) networks in differently
expressed RBPs were constructed by using the STRING
database and visualized via Cytoscape software (22). The
Cytoscape plugin Molecular Complex Detection (MCODE)
was used to detect the important modules in PPI network (23),
and GO and KEGG analyses were conducted to further
investigate their molecular function in HCC.

Prognosis-Related Key RBPs Screening
The univariate Cox regression analysis was carried out to find the
prognosis-related RBPs among the differentially expressed RBPs
via “survival” R package, and P-value < 0.01 were considered for
subsequent analysis, using the least absolute shrinkage selection
operator (LASSO) regression analysis to further screen
prognostic-related RBP genes with “glmnet” R package. Finally,
the stepwise multivariate regression analysis was performed to
screen out optimal key prognostic-related RBP genes and obtain
their standardized regression coefficients.
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Survival, Expression, and Genetic
Alteration Analyses of Key Prognosis-
Related RBP Genes
The Kaplan–Meier curves survival was utilized to evaluate the
prognostic value of each key RBP gene in TCGA cohort, and
P-value < 0.05 was considered to have statistical difference. The
copy-number alterations and mutations were detected with the
online database cBioPortal (24), and the protein expression was
detected by Human Protein Atlas (HPA) database (25).

Construction of an RBP-Gene Prognostic
Signature
A risk score signature was constructed by using multivariate Cox
regression based on the previously obtained RBPs using the survival
R package in TCGA. The risk score was calculated by the following
formula: Risk score = Expression of gene1 × Coefficient of gene1 +
Expression of gene2 × Coefficient of gene2 + … Expression of
geneN × Coefficient of geneN (26, 27). By the median value of the
risk score, all HCC patients were assigned into low-risk groups and
high-risk groups, and the Kaplan-Meier curve analysis and log-
rank test were used to assess the survival difference between two
subgroups by “Survival” R package. The receiver operating
characteristic (ROC) curves were plotted and the area under the
curve (AUC) values were calculated with “SurvivalROC” R
package, which was used to evaluate the predictive power (28).
Then, the LIRI-JP project in ICGC dataset contained 229 HCC
patient cases with complete clinical information and follow-time
more than 1 month was used as testing set to validate the predictive
capacity of this model (29). In addition, the univariate and
multivariate Cox regression analyses were utilized to determine
the correlation between RBP signature and clinical characteristics
and OS in the TCGA and ICGC cohort, respectively. The statistical
difference of risk scores between the stratified clinicopathologic
features was calculated by using the Kruskal–Wallis test.
Frontiers in Oncology | www.frontiersin.org 3
After that, a prognostic nomogram based on key prognosis-
related RBP genes was generated by using “rms” R package to
predict OS of HCC patients at 1-, 3-, and 5-years in the TCGA
cohort. Meanwhile, the calibration curves were plotted to
appraise the prognostic performance of the nomogram.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was conducted with GSEA
v4.0.3 software to identify different signaling pathways between
two subgroups. Hallmark gene sets (h.all.v6.0.symbol.gmt) were
downloaded from Molecular Signatures Database as the
reference gene set (30). Nominal p-value < 0.05 and FDR
q-value < 0.05 were set as the cut-off.
RESULTS

Identification of the Differentially
Expressed RBPs
The 1,542 human RBPs found so far were included in our study
(7), a total of 330 DE RBPs were identified by Wilcox Test
between 374 HCC tissues and 50 normal liver tissues, including
208 upregulated and 122 downregulated RBPs, according to the
adj P-value < 0.05, |log2FC| ≥ 0.5 (Figure 1).

Enrichment Analysis of DE RBPs
We carried out the GO and KEGG pathway enrichment analyses
of the DE RBPs in HCC by using the R package “clusterProfiler.”
GO analysis consists of biological process (BP), cellular
component (CC), and molecular function (MF). The DE RBPs
were significantly gathered in ncRNA processing, RNA splicing,
regulation of translation, RNA catabolic process, and RNA
phosphodiester bond hydrolysis of the BP category (Figure
2A); cytoplasmic ribonucleoprotein granule, ribonucleoprotein
A B

FIGURE 1 | Identification of differentially expressed RNA binding proteins (DE RBPs) in TCGA dataset and enrichment analysis. (A) Volcano plot of all DE RBPs
between HCC and normal samples, 208 were up-regulated and 122 were down-regulated. Red: up-regulated RBPs; Black: unchanged RBPs; Green: down-
regulated RBPs. (B) Heat map of the DE RBPs based on their expression data log2 transformed FPKM values. The red represents high expression, and the green
represents low expression.
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granule, spliceosomal complex, ribosome, ribosomal subunit,
and P-body of the CC analysis (Figure 2B); RNA catalytic
activity, mRNA 3'-UTR binding, single-stranded RNA binding,
ribonuclease activity, nuclease activity, and endoribonuclease
activity of the MF analysis (Figure 2C). The KEGG analysis
results indicated that the DE RBPs were significantly gathered in
RNA transport and degradation, mRNA surveillance pathway,
spliceosome, ribosome, ribosome biogenesis in eukaryotes, and
RIG-I-like receptor signaling pathway (Figure 2D). Many
emerging studies have suggested that RBPs participate in RNA
metabolism and formation of mRNA spliceosomal complex, and
mediate post‐transcriptional gene regulation. The ribosome is a
kind of ribonucleoprotein granule and is considered as a
molecular machine for protein synthesis. Some RBPs are
closely related to ribonucleoprotein formation, they can
assemble specific RNAs to form ribonucleoprotein granules in
eukaryotic cells, like P-bodies and stress granules. P-bodies are
conserved cytoplasmic ribonucleoprotein granules in eukaryotic
organisms, which involved in translational repression and
mRNA decay and degradation (31–34). These results suggested
that RBPs play an essential role in RNA processing and protein
synthesis, and their aberrant expression could promote
carcinogenesis and progression of a variety of tumors.

PPI Network Analysis
For further understanding the function of DE RBPs in HCC
procession, we constructed a PPI network that consists of 163
nodes and 1,047 edges by using STRING database and Cytoscape
software (Figure 3A). Moreover, pivotal modules were identified
Frontiers in Oncology | www.frontiersin.org 4
from the PPI network using MODE plug in Cytoscape. Module 1
included 23 upregulated DE RBPs and 3 downregulated DE
RBPs (Figure 3B), and enrichment analysis indicated they were
correlated with RNA splicing, RNA 3'-end processing, and
mRNA surveillance. Module 2 included 14 upregulated DE
RBPs and 7 downregulated DE RBPs (Figure 3C), significantly
enriched in ncRNA processing, rRNA processing, and ribosome
biogenesis. Module 3 included 7 upregulated DE RBPs and 7
downregulated DE RBPs (Figure 3D), related to mitochondrial
gene expression, mitochondrial translational termination,
and elongation.

Selection of Prognosis-Related RBPs
We download the RNA-seq data and corresponding clinical
information of HCC patients from the TCGA and ICGC
databases, the TCGA HCC cohort as training set, the ICGC
HCC cohort as testing set, and the clinical detailed characteristics
were collated in Table 1. A total of 343 HCC cases with follow-up
time more than 30 days in training set were included in the next
series of analyses. The univariate Cox regression analysis was
utilized to screen prognosis-related RBPs on DE RBPs by
survival R package, and 37 survival-related RBPs among the
DE RBPs were identified (p<0.01) (Figure 4A). Thereafter, the
LASSO regression analysis was conducted for further decreasing
the number of survival-related RBPs using 10-fold cross
validation via “glmnet” R package (Figures 4B, C). Finally, we
obtained six key prognosis-related RBP genes: CNOT6, UPF3B,
MRPL54, ZC3H13, IFIT5, and PPARGC1A by stepwise
multivariate regression analysis (Figure 4D and Table 1).
A B

D

C

FIGURE 2 | GO and KEGG enrichment analyses of DE RBPs. (A–C) Top six enriched GO terms respectively enriched in Biological processes (BP), Cellular
components (CC), and Molecular functions (MF); (D) Five significantly enriched KEGG pathways for DE RBPs. The outer circle shows a scatter plot for each term or
pathway of the logFC of the assigned genes, red circles represent up-regulation and blue represent down-regulation.
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Expression, Alteration and Survival Analyses
of the Six Prognosis-Related RBP Genes
We further analyzed the expression of these RBPs via HPA
database, and the immunohistochemistry results offive key RBPs
Frontiers in Oncology | www.frontiersin.org 5
in HCC and normal tissues were presented in Figure 5A, with
PPARGC1A not included in the database. By using the
cBioPortal online database, we found that 39 out of the 366
HCC patients (11%) have genetic alterations (mutations and
copy-number alterations) in the six RBP genes, and ZC3H13
with the highest alteration frequency (Figure 5B). The six key
RBP genes were analyzed by using Kaplan–Meier curve analysis
to further verify their prognostic value on the TCGA cohort, and
the results demonstrated that HCC patients with UPF3B and
CNOT6 low-expressions had longer OS, while patients with
IFIT5, MRPL54, PPARGC1A, and ZC3H13 high-expression
had better survival rate (Figure 5C).

Construction Validation of the RBP-
Related Risk Score Signature
Based on the previously obtained six key prognosis-related
RBP genes, we established a risk core model, and the risk score of
each HCC patients was calculated using the formula: Risk score =
(0.34900 × CNOT6 Exp) + (0.50277 × UPF3B Exp) + (-0.43143 ×
MRPL54 Exp) + ( -0.21809 × ZC3H13 Exp) + ( -0.46413 × IFIT5
Exp) + ( -0.19919 × PPARGC1A Exp). Among these six prognosis-
related RBPs, CNOT6 and UPF3B were high-risk factors (HR>1);
MRPL54, ZC3H13, IFIT5, and PPARGC1A were protective factors
(HR<1) (Table 2).

All of the 343 HCC patients were assigned into high-risk
(n = 171) and low-risk groups (n = 172) using the median risk
score in the testing cohort. Low-risk patients had a significantly
longer OS compared with the patients in high-risk group
(p=7.588e−07) (Figure 6A). The AUC value for this six-RBP
A

B DC

FIGURE 3 | PPI network and modules analysis. (A) PPI network for DE RPBs; (B) Key module 1 in PPI network; (C) Key module 2 in PPI network; (D) Key module
1 in PPI network. Red: up-regulation, Blue: down-regulation.
TABLE 1 | The clinical Characteristics of HCC patients from TCGA and ICGC
database.

Characteristics Detailed data

TCGA cohort
(n=343)

ICGC cohort
(n=229)

Status
Dead 117 (34.11%) 40 (17.47%)
Survival 226 (65.89%) 189 (82.53%)

Age at diagnosis
(years)

≤65 219 (63.85%) 89 (38.86%)
>65 124 (36.15%) 140 (61.14%)

Gender
Female 107 (31.20%) 61 (26.64%)
Male 236 (68.80%) 168 (73.36%)

Histological grade
G1 53 (15.45%) NA
G2 164 (47.81%) NA
G3 113 (32.94%) NA
G4 13 (3.79%) NA

TNM stage
I 164 (47.81%) 36 (15.72%)
II 77 (22.45%) 106 (46.29%)
III 81 (23.62%) 68 (29.69%)
IV 3 (0.87%) 19 (8.31%)
NA 18 (5.25%) 0 (0.00%)
NA, not available.
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gene risk score signature was 0.762 in the 1-year ROC curve,
0.737 in the 3-year ROC curve, and 0.692 in the 5-year ROC
curve (Figure 6B). The risk scores and survival status
distribution of HCC patients between two subgroups were
presented in Figures 6C, D. We found that as the risk score
increased, the number of HCC deaths also increased in the
training set. The heatmap of six RBP genes expression level
was shown in Figure 6E.

Next, to further verify the prognostic performance of this model,
we collected 229 HCC cases with follow-up time >30d as the testing
set from the ICGC database, and we used the same formula to
calculate their risk score. Same as TCGA cohort, according to the
cut-off value of TCGA cohort, the results showed that patients with
high-risk scores (n=141) had a worse OS than those in low-risk
group (n=88) (p=2.55e−2), the AUC value of 1-, 3-, 5-year was
0.822, 0.738 and 0.631, respectively (Figure 7). These results
indicated that our prognostic signature had considerable
robustness in predicting OS for HCC patients.

Association
Between Clinical Characteristics and the
Six-RBP Gene Signature
Univariate and multivariate Cox regression analyses were
performed for clinical features: age, gender, grade, stage, and
Frontiers in Oncology | www.frontiersin.org 6
risk score in training and testing set respectively. The results
demonstrated the stage (P<0.001) and risk score (P<0.001) were
independent prognostic indicators in the TCGA cohort (Figures
8A, B and Table 3), whereas in the ICGC cohort, the gender
(P=0.014352), stage (P<0.001), and risk score (P<0.001) were
independent prognostic indicators (Figures 8C, D and Table 3).

As shown in Figure 9A, we found that most dead patients had
higher risk scores, which suggested that high-risk patients
usually had worse clinical outcomes. Moreover, HCC patients
with advanced tumor clinicopathological parameters (stage II
and stage III, G3 and G4, pT3 and pT4) were more likely to have
higher risk scores than patients with early-stage HCC. We
conducted further survival analyses that were stratified by clinical
characteristics, and patients in the low-risk group had greater OS
than high-risk in all clinical characteristics for stratification survival
analyses, including age, gender, grade, and stage (Figure 9B).

A Nomogram Establishment on the Six
Key Prognosis-Related RBP Genes
The selected six key prognosis-related RBP genes were used to
establish a prognostic nomogram through the multivariate Cox
regression analysis. We can plot a perpendicular line between the
total points axis and each prognostic axis, and estimated the survival
probability of HCC patients at 1-, 3-, and 5-year (Figure 10A). We
A B

DC

FIGURE 4 | Selection of prognosis-related RBPs in the training cohort. (A) Univariate Cox regression analysis; (B, C) LASSO regression analysis; (D) Multivariate
Cox regression analysis to screen out the key RBPs most relevant to prognosis.
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also drew the calibration curves, which indicated that nomogram
had good prediction performance in HCC patients (Figure 10B).

GSEA Analysis
To further explore biological functions and pathways correlated
with the risk score signature, GSEA was carried out between high-
Frontiers in Oncology | www.frontiersin.org 7
and low-risk groups in the TCGA HCC cohort. Some cancer-
related gene sets were significantly gathered in HCC patients with
high risk score, including “DNA repair,” “MYC targets V1,”
“mTORC1 signaling,” “PI3K-AKT-mTOR signaling,”
“glycolysis,” “G2M checkpoint,” “E2F targets,” “Wnt/beta-
catenin Signaling,” “P53 pathway,” shown in Figure 11.
A

B

C

FIGURE 5 | Comprehensive analysis of the six selected RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A). (A) Immunohistochemistry of five RBPs
using HPA database, except PPARGC1A. (B) Alteration analysis of these RBP genes. (C) Kaplan-Meier survival curves for the six genes.
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DISCUSSION

HCC has become a severe health concern in China; its incidence
and mortality rate are stil l gradually rising due to
hepatitis virus infection (1–3). Some research has shown that
RBPs were closely related to the tumorigenesis and development
Frontiers in Oncology | www.frontiersin.org 8
of multiple cancers, but what role RBPs play in HCC were still
unclear (11–14). In this study, we integrated the RNA-seq data of
HCC from TCGA database, then identified 330 DE RBPs. The
PPI network and functional enrichment analysis were conducted
to explore the biological function and signaling pathways of DE
RBPs in HCC. Next, we filtered out six key RBP genes (CNOT6,
TABLE 2 | The six prognosis-associated key RBPs identified by multivariate Cox regression analysis.

RBP name Coefficient HR Lower 95% CI Upper 95% CI P-value

CNOT6 0.349007 1.417659 0.908826 2.21138 0.123921
UPF3B 0.502772 1.653298 1.18189 2.312733 0.003327
MRPL54 -0.431433 0.649577 0.468813 0.90004 0.009517
ZC3H13 -0.218092 0.804051 0.62116 1.040793 0.097658
IFIT5 -0.464131 0.628681 0.428497 0.922387 0.017643
PPARGC1A -0.199195 0.81939 0.695361 0.965543 0.017375
October 2020 | Volume 10 | Artic
HR, hazard ratio; CI, confidence interval.
A

B

D

E

C

FIGURE 6 | Construction of the six-RBP gene prognostic signature in the TCGA cohort. (A) Kaplan-Meier survival curve of HCC patients in the high- and low-risk
groups. (B) ROC curves for predicting 1-, 3-, 5-year overall survival. (C–E) Distribution of risk score, survival time, and heat map of six genes expression.
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UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) that were
most relevant to prognosis by using the univariate, LASSO, and
multivariate Cox regression analyses. Based on the six prognosis-
related RBP genes, we established a promising six-RBP gene
signature and nomogram to predict OS of HCC patients and
validated its robustness in the ICGC cohort. The HCC patients
were assigned into two subgroups, high- and low-risk groups,
and patients in the high-risk group had poorer outcomes. Next,
the GSEA analysis was utilized to investigate the differences in
some critical signaling pathways between two subgroups in the
TCGA HCC cohort.

Among the six key RBP genes, CNOT6 and UPF3B were highly
expressed in the HCC tissues relative to the normal tissues and
were considered as unfavorable factors that may lead to worse
overall survival. Four genes (MRPL54, ZC3H13, IFIT5, and
PPARGC1A) were downregulated and may function as
tumor suppressor genes in HCC, and showed a positive
correlation with prognosis. CNOT6 encodes Ccr4a protein that
was a deadenylase subunit of the CCR4-Not complex (5, 35), and
Frontiers in Oncology | www.frontiersin.org 9
the CNOT6 rs2453176 C>T polymorphism was related to an
increased risk of lung cancer (36). Previous research found that
CNOT6 was overexpressed in non-metastatic lung squamous cell
carcinoma, and it may be associated with low invasiveness (37).
Moreover, the CNOT6 expression level was significantly lower in
acute leukemia patients than healthy controls (38). UPF3B
encodes a protein that participated in nonsense-mediated
mRNA decay, and the mutation of UPF3B was associated with
mental retardation (39). However, the role of UPF3b in cancer has
not yet been reported and needs further study. López et al. used the
machine-learning classification model to recognize that MRPL54
may be strongly connected to breast cancer (40). In our study, we
found for the first time that UPF3b and MRPL54 were
independent prognostic indicators in HCC. Liu et al. suggested
ZC3H13 was downregulated in HCC, and patients with lower
ZC3H13 expression had poorer overall survival, consisten with
our findings (41). ZC3H13 also has been demonstrated to have
prognostic value in other cancer types, such as lung
adenocarcinoma, clear cell renal carcinoma, and anal squamous
A

B

D

E

C

FIGURE 7 | Validation of the six-RBP gene prognostic signature in the ICGC cohort. (A) Kaplan-Meier survival curve of HCC patients in the high- and low-risk
groups. (B) ROC curves for predicting 1-, 3-, 5-year overall survival. (C, E) Distribution of risk score, survival time, and heat map of six gene expression.
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cell carcinoma (42–44). ZC3H13 expression was higher in lung
adenocarcinoma, and its expression pattern was the same as that
in HCC. However, ZC3H13 had a lower expression level in clear
cell renal carcinoma. Trilla et al. suggested that the genetic variant
Frontiers in Oncology | www.frontiersin.org 10
of ZC3H13 was associated with poor disease-free survival.
IFIT5 belongs to the interferon-induced tetratricopeptide repeat
(IFIT) protein family (44). Some previous studies have indicated
that IFIT5 was high-expressed and negatively correlated with the
A B

DC

FIGURE 8 | Identification of independent prognostic indicators. (A) Forest plots for Univariate Cox regression analysis; (B) Multivariate Cox regression analysis in
TCGA cohort; (C) Forest plots for Univariate Cox regression analysis; (D) Multivariate Cox regression analysis in ICGC cohort.
TABLE 3 | Univariate and multivariate analyses of different clinical characteristics in TCGA and ICGC cohorts.

TCGA cohort Univariate Cox analysis Multivariate Cox regression

HR 95%CI P-value HR 95%CI P-value

Age 1.005 0.990–1.020 0.50645 1.01 0.994–1.026 0.198323
Gender 0.807 0.542–1.203 0.293326 0.896 0.590–1.361 0.608359
Histological grade 1.111 0.854–1.446 0.43213 0.998 0.749–1.328 0.988103
TNM stage 1.804 1.456–2.234 <0.001 1.687 1.345–2.117 <0.001
Risk score 1.61 1.442–1.798 <0.001 1.591 1.411–1.794 <0.001

ICGC cohort Univariate Cox analysis Multivariate Cox regression

HR 95%CI P-value HR 95%CI P-value

Age 1 0.969–1.032 0.987595 1 0.965–1.035 0.990104
Gender 0.454 0.240–0.860 0.015353 0.432 0.221–0.846 0.014352
Histological grade NA NA NA NA NA NA
TNM stage 2.12 1.448–3.104 <0.001 1.927 1.344–2.764 <0.001
Risk score 1.542 1.310–1.815 <0.001 1.421 1.185–1.705 <0.001
Octob
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A

B

FIGURE 9 | Correlation of risk score and clinical characteristics. (A) Risk score distribution between different clinical characteristics; (B) Kaplan-Meier survival
analysis of the signature stratified by clinical characteristics.
A

B DC

FIGURE 10 | A nomogram in TCGA HCC dataset. (A) The nomogram was built based on this six-RBP gene signature in the training cohort. (B–D) The calibration
plots showed good predictive performance for OS at 1-, 3-, 5-year.
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prognosis in renal cell carcinoma, bladder cancer, and prostate
cancer patients. IFIT5 may function as an oncogene, promote
cancer invasion, metastasis, and progression by inducing
epithelial–mesenchymal transition (EMT) via modulating
turnover of tumor suppressive microRNAs, including miR-
363, miR-99a, and miR-128 (45–48). PPARGC1A, also
known as PGC-1a, functions as a master regulator of
mitochondrial biogenesis and oxidative phosphorylation and
plays a pivotal role in cancer cell metabolism and metastasis (49,
50). Some published studies have demonstrated that PPARGC1A
Frontiers in Oncology | www.frontiersin.org 12
was upregulated in lung cancer and invasive breast cancer, and
facilitated cancer metastasis and invasion. Moreover, PPARGC1A
high expression was correlated to poor prognosis in patients with
lung cancer and breast cancer (49, 51). However, the opposite
results have been observed in some other studies, and PPARGC1A
has been suggested as a tumor suppressor that suppresses
prostate cancer and melanoma cell proliferation, migration, and
metastasis (52, 53). In addition, Zhang et al. observed that
PPARGC1A rs2970847 C>T polymorphisms associated with
HCC risk (54). Given the importance of the six RBP genes
A B

D E F

G IH

C

FIGURE 11 | GSEA analysis between high- and low-risk groups. (A–I) Some cancer-related pathways were gathered in high-risk group: “DNA REPAIR,”
“MTORC1_SIGNALING,” “MYC_TARGETS_V1,” “PI3K_AKT_MTOR SIGNALING,” “GLYCOLYSIS,” “G2M_CHECKPOINT,” “E2F_TARGETS,”
“WNT_BETA_CATENIN_SIGNALING,” “P53_PATHWAY.” NES, Normalized enrichment score.
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in kinds of cancer types, these genes might be potential prognostic
b iomarke r s for pa t i en t s wi th HCC, but de ta i l ed
molecular mechanism during hepatocarcinogenesis needs
further in-depth exploration.

GSEA analysis showed that some cancer-related pathways
were enriched in high-risk HCC patients, such as Wnt/beta-
catenin signaling, P53 pathway, PI3K-AKT-mTOR signaling,
and MYC signaling. These molecular pathways have been
confirmed to be implicated in HCC carcinogenesis. Autophagy
can activate Wnt/b-catenin signaling and promote HCC cells
metastasis and glycolysis (55). Alpha-fetoprotein (AFP) inhibited
autophagy in HCC cells by activating of PI3K/Akt/mTOR
signaling, thereby promoting proliferation, migration, and
invasion (56). The c-Myc was a transcription factor that plays
an important role in hepatocarcinogenesis, NELFE promoted
HCC progression via enhancing MYC signaling (20). P53 as a
tumor suppressor protein, inhibiting the p53 pathway, may
promote HCC cells proliferation and inhibit apoptosis (57).

Thanks to the great progress in microarray and next-
generation sequencing technologies, a number of multigene
prognostic models have been developed to predict survival for
HCC patients, such as Wang et al. developed an immune-related
prognostic model in HCC (58), and Li et al. developed a CIMP-
associated prognostic model for HCC (59). However, RBPs-
associated prognostic model for HCC has not been reported
yet; this is the first study about a prognostic model in HCC
patients constructed using multiple RBP genes, to our
knowledge. According to our risk score signature, survival
analysis displayed significant difference of OS between high-
and low-risk subgroups, and usually low-risk patients had
better survival than patients with high risk score. The ROC
curves suggested that our prognostic model had a good accuracy,
and the AUC values of 1-, 3-year were greater than 0.75 both in
training and testing set. In addition, whether in the training set or
testing set, TNM stage and risk score were independent
prognostic indicators in HCC. Although our model has good
prediction performance, there are still some limitations that need
to be discussed. First, the six-RBP gene signature was built based
on TCGAHCC dataset and was only validated in the ICGC HCC
dataset, which has not been validated in our own clinical HCC
cases cohort. Second, most HCC patients in TCGA database
were Caucasian, and it is not clear whether it has the same
predictive effect in non-Caucasian races. Finally, our study was
retrospective and needs further validation by a larger
prospective study.

In conclusion, we identified differently expressed RBP genes
and constructed a promising six-RBP gene prognostic signature
Frontiers in Oncology | www.frontiersin.org 13
to predict clinical outcomes for HCC patients. This risk score
signature was proven to have good predictive ability and function
as an independent prognostic indicator for HCC patients,
contributing to guided clinical decision making and
personalized treatment. Moreover, this study would further
help us understand the prognostic value and biological
function of RBPs in HCC.
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