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Abstract

Myopia is increasing worldwide hence it exists a pressing demand to find effective myopia

control strategies. Previous studies have shown that light, spectral composition, spatial fre-

quencies, and contrasts play a critical role in refractive development. The effects of light on

multiple retinal processes include growth regulation, but also visual performance and per-

ception. Changes in subjective visual performance can be examined by contrast sensitivity

(CS). This study was conducted to investigate whether retinal light stimulation of different

wavelength ranges is able to elicit changes in CS and, therefore, may be used for myopia

control purposes. In total, 30 right eyes were stimulated with the light of different wavelength

ranges, including dominant wavelengths of*480 nm,*530 nm,*630 nm and polychro-

matic light via a commercial liquid crystal display (LCD) screen. Stimulation was performed

screen full-field and on the optic nerve head only. CS was measured before any stimulation

and after each stimulation condition using a novel and time-efficient CS test. Post-stimula-

tion CS changes were analyzed by ANOVA regarding the influencing factors spatial fre-

quency, stimulation wavelength and stimulation location. A priorly conducted verification

study on a subset of five participants compared the newly developed CS test to a validated

CS test. The novel CS test exhibited good reliability of 0.94 logCS and repeatability of 0.13

logCS with a duration of 92 sec ± 17 sec. No clinically critical change between pre- and post-

stimulation CS was detected (all p>0.05). However, the results showed that post-stimulation

CS differed significantly at 18 cpd after stimulation with polychromatic light from short-wave-

length light (p<0.0001). Location of illumination (screen full-field vs. optic nerve head) or any

interactions with other factors did not reveal significant influences (all p>0.05). To summa-

rize, a novel CS test measures the relationship between retinal light stimulation and CS.

However, using retinal illumination via LCD screens to increase CS is inconclusive.

Introduction

The prevalence of myopia has been increasing worldwide, and by the year 2050, half of the

world population is assumed to be myopic [1, 2]. Myopia, also known as short-sightedness, is a
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spherical refractive error defined by focusing the light anterior to the retina, either due to an

elongated ocular axial length or the excessive refractive power of the eye lens and cornea [1, 3–

6]. In addition, myopia presents a risk for the eye health [7, 8], which leads to a need for effec-

tive and safe control strategies to inhibit myopia onset and progression [2]. Current myopia

control strategies include optical, pharmacological, environmental and surgical options [9,

10]. Moreover, recent studies showed that environmental factors play an important role for

refractive development [7, 11–13]. Especially spending time outdoors, under conditions of

higher light intensities, higher spatial frequencies, a broader range of contrasts and short- to

middle-wavelength sunlight is suggested to prevent myopia onset and slow down myopia pro-

gression in humans [12–14].

Along this line, animal models that were exposed to light of different wavelengths indicated

inconclusive results regarding axial elongation. In mice [11, 15–19], chicks [20–24] and fish

[25, 26] short-wavelength light promote hyperopic shifts, whereas the eyes of rhesus monkeys

[27–30] and guinea pigs [11, 30–35] reacted oppositely. Hypotheses on light-induced shifts in

refractive error are commonly based on the longitudinal chromatic aberration [36], creating

myopic and hyperopic defocus as growth stimulus for the retina [10, 12, 37]. In addition, pho-

toreceptor activation, retinal signaling and neuromodulator activity have an influence on regu-

lation of ocular growth [38]. Especially the neuromodulator dopamine is suggested to be up-

regulated by light [39] via activation of melanopsin, a photopigment of intrinsically photosen-

sitive retinal ganglion cells (ipRGCs) [2, 40–42] with a peak spectral sensitivity of *482 nm

[15, 41–44]. Comparing the distribution of ipRGCs, cones and rods, about 120 million rods, 6

million cones and 50,000 melanopsin containing ipRGCs are distributed around the retina

[41]. Melanopsin activation is assumed to enhance cone sensitivity [43, 45].

Therefore, light-induced changes in retinal signaling and visual performace could be

detected via psychophysically testing of contrast sensitivity (CS) [46]. This hypothesis is rein-

forced as reduced CS was found in myopes, being associated with decreased photoreceptor

sensitivity and defocus [39, 47].

Myopia control is possible through modulated photoreceptor activation cascades with for

example illumination. This purpose was carried out in a previous virtual-reality study using

blue light to stimulate different areas of the retina [48]. However, this study aimed to investi-

gate the influence of stimulation via commercial screen technology on a larger sample size. For

a broad usage outside laboratory settings a commercially available screen technology for stim-

ulation conditions and assessing CS was used in this current study. For this purpose, a novel,

time-efficient, and suitable CS test was developed.

Materials and methods

Inclusion and exclusion criteria

This prospective main study and the additional verification study of the novel CS test were car-

ried out at the University of Tübingen. The study protocol followed the Declaration of Helsinki

1964 and the following amendments, and the data protection regulations. The study was

approved by the ethics committee of the Faculty of Medicine of the University of Tübingen.

Written informed consent was obtained from all subjects prior to the measurements. Partici-

pants between 18 years and 40 years of age were included, with a spherical refractive error of

±6.0 D or lower, cylindrical refractive error of maximum −2.0 D, best corrected visual acuity

of at least 0.1 logMAR and no known ocular diseases. Additionally, participants with a pupil

diameter of less than 4.0 mm were excluded from the main study’s data analysis. To assess

inclusion the following tests were conducted prior to the measurement. Color vision was

determined with the Ishihara test (Kanehara Trading Inc., Tokyo, Japan). Objective refraction
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was measured with the ZEISS i.Profiler plus (Carl Zeiss Vision GmbH, Aalen, Germany). The

ZEISS VISUSCREEN 500 and VISUPHOR 500 (Carl Zeiss Vision GmbH, Aalen, Germany)

were used to assess subjective refraction. Optical coherence tomography was conducted with

the ZEISS PlexElite 9000 (Carl Zeiss Meditec Inc., Dublin, USA) to examine eye health. Biome-

try of the eye was measured by ZEISS IOL Master 700 (Carl Zeiss Meditec AG, Jena,

Germany).

Apparatus and stimulation conditions

All test procedures were based on the software Matlab (MATLAB R2020a, MathWorks Inc.,

Natick, MA, USA) using the Psychophysics Toolbox Version 3 (PTB) [49, 50]. All stimuli

were displayed on a liquid crystal display (LCD) screen (ViewPixx/3D, VPixx Technologies

Inc., Saint-Bruno, Canada), which contains the DATAPixx Toolbox. The experiment

included in total eight different stimulation conditions including screen full-field (FF) stimu-

lation and only optic nerve head (ONH) stimulation with the following wavelength ranges

with expected exposing wavelengths of *480 nm (S), *530 nm (M), *630 nm (L) and

*380 nm–780 nm (P) [51]. Wavelengths were chosen based on spectral sensitivities of mela-

nopsin containing ipRGCs, middle-wavelength cones and long-wavelength cones, whereby P

and FF stimulation conditions were defined as control factors. To achieve a constant lumi-

nance of 40 cd/m2, the monitor settings were adjusted according to the wavelengths’ spectral

transmission.

All measurements were performed on the right eye, while the left eye was occluded. Individ-

ual refractive errors were corrected to distance vision using trial lenses (Oculus BK 1/T, Oculus

GmbH, Wetzlar, Germany) in a trial frame (Oculus B5, Oculus GmbH, Wetzlar, Germany).

An artificial pupil with a diameter of 4 mm [52] was placed in front of the participants’ eye to

ensure a constant retinal illumination area and exclude confounding factors for CS measure-

ments between study participants [53]. Therefore, the individual pupil size was recorded

before and after the main experiment using an USB-camera (DMK 22AUC03, The Imaging

Source, Germany) connected with an infrared light-emitting diode.

Psychophysical testing procedure of the Adjustment CST

CS was measured with a newly developed, computer-based CS test in a time efficient manner,

the so-called Adjustment CST. It is based on the psychophysical method of adjustment, a non-

forced choice method measuring contrast thresholds as the mean value over barely visible sti-

muli starting with contrasts below the expected thresholds [54, 55]. The test incorporated

Gabor patches with a visual angle of 1.7˚ each. The stimulus size was adjusted according to the

lens magnification factor of correction lenses to keep a constant retinal image size for all par-

ticipants [56]. Adjustment CST presents four Gabor patches per trial with equal spatial fre-

quency (SF; measured in cycles per degree (cpd)) but different orientations (0˚, 45˚, 90˚ and

135˚), see Fig 1.

The test includes five randomized presented SFs (3 cpd, 6 cpd, 12 cpd, 18 cpd and 24 cpd),

each measured three times. Each trial started with a preset contrast threshold below the CS

function. Participants were instructed to adjust the contrast such that all four Gabor patches

are just barely visible. Acoustic feedback was provided when the contrast adjustment was set

and saved as the contrast threshold. Fig 2 visualizes the test procedure.

Verification study

The Adjustment CST was verified against a computer-based standardized and validated CS

test, the Tuebingen Contrast Sensitivity Test (TueCST) [56]. It is based on a four alternative
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forced choice (4AFC) method incorporating a Bayesian adaptive staircase procedure, the

so-called psi-method. A total of 50 trials per SF was applied as recommended. Each trial pres-

ents a Gabor patch with a visual angle of 1.7˚ in a randomized orientation (0˚, 45˚, 90˚ or

135˚) for tested SFs of 3 cpd, 6 cpd, 12 cpd, 18 cpd and 24 cpd [56].

Fig 1. Example of one trial of Adjustment CST consisting of four Gabor patches at four different orientations and

a spatial frequency of 6 cpd.

https://doi.org/10.1371/journal.pone.0254877.g001

Fig 2. Psychophysical procedure of the new contrast sensitivity (CS) test (Adjustment CST) following the method

of adjustment and a total of 15 trials, which means all five selected spatial frequencies were measured three times.

https://doi.org/10.1371/journal.pone.0254877.g002

PLOS ONE Effects of screen-based retinal light stimulation measured with a novel contrast sensitivity test

PLOS ONE | https://doi.org/10.1371/journal.pone.0254877 July 29, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0254877.g001
https://doi.org/10.1371/journal.pone.0254877.g002
https://doi.org/10.1371/journal.pone.0254877


Before starting the CS measurements, participants were seated in 1 m distance to the screen

in a 25 lux lightened room for 5 min to ensure equal adaptation. After an initial training

period, measures by the Adjustment CST and TueCST were performed twice in a randomized

order.

Main study protocol

Prior to the illumination, the individual ONH sizes and positions were detected. Therefore,

Goldmann-perimetry standard stimulus was radially moved from inside the expected ONH

(not seen) to outside (seen). The detected ONH was subsequently resized to 70% of the original

size to avoid false-positive illumination of the surrounding retina during ONH-only illumina-

tion conditions. It was followed by a ten-minute adaptation in a 25-lux lighted room, looking

on a gray screen in 1 m distance with a mean luminance of 40 cd/m2. Afterward, the right eyes

pupil size was recorded. To get familiar with the new Adjustment CST, each participant had to

perform training in advance. Thereafter, CS was measured before any illumination (reference

CS) and after each stimulation condition. Eight randomized stimulation conditions had to be

performed, including four wavelength ranges (S, M, L, and P) and two locations (FF and

ONH). Fig 3 consist of the CS test procedure of the main study.

Statistical analysis

Data analysis was performed using Matlab (MATLAB R2020a, The MathWorks, Inc., Natick,

MA, USA) combined with the Statistics and Machine Learning Toolbox. The verification

study results were tested regarding intraclass correlation coefficient (ICC) for reliability,

Bland-Altman analysis for agreement, and coefficient of repeatability (COR) for repeatability.

ICCs smaller than 0.40 are considered as poor, between 0.40 and 0.59 as fair, between 0.60 and

0.74 as good and between 0.75 and 1 as excellent reliability [57].

Fig 3. Main study test procedure with a total of 8 repetitions due to 8 stimulation conditions.

https://doi.org/10.1371/journal.pone.0254877.g003
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Normal distribution of the main study results was tested with Shapiro-Wilk test. CS values

of the testing conditions against the reference value were compared via the Wilcoxon-Test.

The area under the logarithmic contrast sensitivity function (AULCSF) was calculated to com-

pare measurements among logarithmic SFs [58]. A three-factor repeated-measures analysis of

variance (ANOVA) was fitted to identify which stimulation conditions significantly affect CS.

For the ANOVA, the factors were defined as follows: CS as dependent variable, no between-

subject factor, stimulation wavelength (four levels: S vs. M vs. L vs. P), location (two levels:

ONH vs. FF) and SF (five levels: 3 cpd, 6 cpd, 12 cpd, 18 cpd, 24 cpd) as the three within-sub-

ject factors. Significant main effects and their interactions underwent subsequent posthoc test-

ing with multiple comparisons and Bonferroni correction. Statistical results were considered

significant if p<0.05 for a significance level of α = 0.05.

Results

Baseline values

A total of 30 participants was included in the main study, all with normal color vision. The

mean age of the participants was 23.93 years ± 3.88 years. Mean objective and subjective

refraction of the right eyes were -1.58 D ± 2.04 D and −1.58 D ± 2.10 D with a visual acuity of

at least 0.1 logMAR. The mean eye length was 24.17 mm ± 1.24 mm. Before the main proce-

dure, pupil measurements resulted in pupil size of 6.20 mm ± 1.04 mm and 6.02 mm ± 0.99

mm at the end of the experimental procedure. The averaged time for one test session with the

Adjustment CST amounts up to 133 sec ± 56 sec.

For verification of the Adjustment CST, a subset of five participants were included with a

mean age of 26.20 years ± 1.79 years. All right eyes had a visual acuity of at least −0.1 logMAR,

subjective refraction of 0.35 D ± 0.45 D, and an eye length of 23.65 mm ± 0.99 mm. In the veri-

fication study, one of five participants had to be excluded for the SF of 24 cpd due to an invalid

measurement (n = 4).

Verification of method of adjustment test procedure

CS was measured by TueCST and Adjustment CST; both showed a typical CS function curve

with a maximum at 3 cpd. Table 1 contains all verification results of two repeated measures of

each test, including median and interquartile range (IQR), agreement (Bland Altman), reliabil-

ity (ICC), repeatability (COR) and time. Regarding agreement, Bland-Altman analysis was

conducted and reported higher CS values of TueCST of 0.19 logCS (±0.45 logCS) compared to

Adjustment CST. ICC was determined and showed an excellent correlation of 0.94 logCS. The

Adjustment CST showed equal or slightly better COR values (0.12 logCS to 0.14 logCS) than

the TueCST (0.10 logCS to 0.23 logCS). Regarding time efficiency, TueCST took five times lon-

ger (490 sec ± 52 sec) than Adjustment CST (92 sec ± 17 sec).

Relationship of light stimulation and contrast sensitivity

The influence of SFs, stimulation wavelengths and stimulation location on CS was investigated

in the main study. CS results are listed in Table 2 and represented in Fig 4. There was no statis-

tically significant difference between the reference CS and post-stimulation CS (all p>0.05).

When only post-stimulation CS values were analyzed, factor SF showed a significant influ-

ence (F = 305.10, p = 3.81e-63), as expected from the regular CS function. Stimulation location

revealed no significant effect (F = 2.25, p = 0.14). Wavelengths did not differ significantly from

each other (F = 1.25, p = 0.30). In addition, SFs interacted with stimulation wavelength turned

out to has a significant effect on CS (F = 1.97, p = 0.03). Therefore, post-hoc analysis was
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conducted, which revealed one significant effect (p<0.0001) at 18 cpd when comparing S and

P stimulation condition (difference = j0.05j, p = 0.004). CS at 18 cpd is higher after stimulation

with P than after stimulation with S (Table 2). Interactions of SF and location (F = 1.36,

p = 0.25), wavelength and location (F = 1.04, p = 0.38), SF, wavelength and location (F = 0.33,

p = 0.97) turned out to be not significant (all p>0.05). Furthermore, analysis revealed in no

significant correlation between CS and the degree of myopia, as the between-subject factor of

the refractive groups myope and non-myope has been included (p = 0.09).

Discussion

The purpose of this study was to investigate whether retinal stimulation with light of different

dominant wavelengths, emitted by commercially available screen technology, increases the CS

Table 1. Verification values of TueCST, Adjustment CST and Adjustment CST versus TueCST regarding median and interquartile range (IQR), agreement (Bland-

Altman), reliability (Intraclass Correleation Coefficient (ICC)) and repeatability (Coefficient of Repeatability (COR)) all measured in logCS and time measured in

sec (n = 5, except for 24 cpd: n = 4).

Analysis TueCST Adjustment CST

Median ± IQR (logCS) 3 cpd 2.11 ± 0.13 1.89 ± 0.19

6 cpd 2.04 ± 0.29 1.81 ± 0.19

12 cpd 1.62 ± 0.21 1.48 ± 0.15

18 cpd 1.29 ± 0.20 1.11 ± 0.21

24 cpd 0.95 ± 0.26 0.69 ± 0.20

Bland Altmann (logCS)

Mean difference

[lower bound; upper bound]

0.19 [-0.26; 0.64]

ICC (logCS)

[lower bound; upper bound]

0.94 [0.90; 0.97]

COR (logCS) 3 cpd 0.10 0.12

6 cpd 0.18 0.13

12 cpd 0.23 0.12

18 cpd 0.18 0.13

24 cpd 0.15 0.14

Time (sec) 490 ± 52 92 ± 17

https://doi.org/10.1371/journal.pone.0254877.t001

Table 2. Contrast sensitivity (CS), in logCS, measured before any stimulation as reference and after each stimulation condition including short- (S), middle- (M),

long-wavelength light (L) and polychromatic light (P) stimulating the eye screen full-field (FF) or only the optic nerve head (ONH). Median, interquartile range

(IQR) and area under the logarithmic contrast sensitivity function (AULCSF) are listed to compare each condition (n = 30; ��� p<0.0001).

Stimulation condition 3 cpd

(logCS)

6 cpd

(logCS)

12 cpd

(logCS)

18 cpd

(logCS)

24 cpd

(logCS)

AULCSF

(logCS)

Reference 1.79 ± 0.12 1.73 ± 0.11 1.41 ± 0.25 1.01 ± 0.31 0.70 ± 0.35 1.32

S-ONH 1.78 ± 0.14 1.71 ± 0.13 1.36 ± 0.38 0.92 ± 0.49 ��� 0.70 ± 0.40 1.29

S-FF 1.78 ± 0.16 1.69 ± 0.16 1.39 ± 0.29 0.97 ± 0.29 ��� 0.69 ± 0.34 1.30

M-ONH 1.79 ± 0.06 1.71 ± 0.09 1.39 ± 0.28 0.92 ± 0.36 0.65 ± 0.35 1.29

M-FF 1.79 ± 0.12 1.69 ± 0.14 1.38 ± 0.27 0.97 ± 0.22 0.69 ± 0.33 1.30

L-ONH 1.78 ± 0.09 1.71 ± 0.12 1.40 ± 0.36 1.00 ± 0.32 0.66 ± 0.37 1.31

L-FF 1.76 ± 0.13 1.69 ± 0.17 1.34 ± 0.30 0.97 ± 0.32 0.66 ± 0.30 1.28

P-ONH 1.79 ± 0.13 1.70 ± 0.18 1.39 ± 0.22 1.05 ± 0.35 ��� 0.74 ± 0.34 1.32

P-FF 1.80 ± 0.12 1.70 ± 0.16 1.34 ± 0.29 0.95 ± 0.42 ��� 0.65 ± 0.32 1.28

Median ± IQR 1.79 ± 0.12 1.70 ± 0.14 1.38 ± 0.31 0.97 ± 0.36 0.68 ± 0.35

https://doi.org/10.1371/journal.pone.0254877.t002
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using a newly developed CS testing procedure. Two main outcomes can be reported: Firstly,

the adjustment-based CS test can be considered as a time-efficient, accurate and repeatable test

procedure. Secondly, the interaction of wavelength range and SF has an influence on CS at 18

cpd after P and S stimulation only. However, stimulus location did not show significant effects

in this study.

Verification of Adjustment CST

The Adjustment CST applies the method of adjustment as a non-forced choice method and

was designed to measure CS in a time-efficient, reliable and repeatable fashion.

Fig 4. Contrast sensitivity in logCS (median and interquartile range) before (Reference) and after stimulation under different conditions: S ONH

(short-wavelength range at optic nerve head), S FF (short-wavelength range via screen full-field), M ONH (middle-wavelength range at optic

nerve head), M FF (middle-wavelength range via screen full-field), L ONH (long-wavelength range at optic nerve head), L FF (long-wavelength

range via screen full-field), P ONH (polychromatic light at optic nerve head) and P FF (polychromatic light via screen full-field) (n = 30; ���

p<0.0001).

https://doi.org/10.1371/journal.pone.0254877.g004

PLOS ONE Effects of screen-based retinal light stimulation measured with a novel contrast sensitivity test

PLOS ONE | https://doi.org/10.1371/journal.pone.0254877 July 29, 2021 8 / 15

https://doi.org/10.1371/journal.pone.0254877.g004
https://doi.org/10.1371/journal.pone.0254877


The novel CS test showed excellent reliability, confirmed by high ICC values and good

agreement. This reliability approves that the test measures CS in a correct range. However, the

TueCST showed higher contrast thresholds than the Adjustment CST. The setup as cause of

these biases can be ruled out as the exact same setup was used. Instead, the method of adjust-

ment as psychophysical procedure could be responsible as it is more criterion-based and time

unlimited compared to a 4AFC method. Compared to previous data, the method of adjust-

ment is the simplest and most direct method for contrast estimation [59], but lower results are

expected using this method [60]. Due to adaptation effects, the adjustment method is not

expected to be as precise as forced-choice procedures [61]. Furthermore, increasing contrast

from a sub-threshold preset value avoids adaptation compared to supra-threshold starting

points, however, still leading to a small amount of contrast adaptation during the adjustment

phase [61].

In addition, the Adjustment CST revealed good repeatability with slightly better COR

values compared to the TueCST and TueCST validation study [56] while Adjustment CST

maintaining high time efficiency. A short duration of contrast testing was among the main pri-

orities for the development of the Adjustment CST, as any post-illumination effects could have

been lost due to a lengthy test duration. Furthermore, long and repetitive testing procedures

lower concentration and attention [56, 62]. A short test duration in the current study was

achieved by simultaneously presenting Gabor patches in four different orientations, which

cuts down the required number of trials. Comparing both tests, the TueCST takes about five

times longer than the Adjustment CST [56].

Retinal light stimulation with commercial screen technologies

Retinal light stimulation was performed with a commercially available LCD screen technology.

With this, it is not possible to emit light of one wavelength but rather parts of the visible spec-

trum with a dominant wavelength. The chromatic monitor settings were chosen to match the

sensitivities of melanopsin-ipRGCs, middle- and long-wavelength cones. This resulted in the

following dominant wavelengths [minimum wavelength; maximum wavelength; absolute

bandwidth]: 481 nm [444 nm; 572 nm; 128 nm], 516 nm [467 nm; 582 nm; 115 nm], 626 nm

[584 nm; 656 nm; 72 nm] and polychromatic [440 nm; 663 nm; 223 nm]. However, these are

not narrow-width filter but dominant wavelengths of the spectrum emitted by the screen. Fig

5 consists of normalized intensities, including spectra and luminosity function V(λ) emitted

from LCD monitor.

In order to rule out overlapping stimulation effects, a 1 min (de-)adaptation phase was

implemented before any light stimulation. This phase leads to at least 75% compensation of

chromatic adaptation [61]. Ideally, additional CS measurements right before each stimulation

condition would have excluded the effects of chromatic adaptation to previous illumination

conditions. This was not done due to doubling the total experimental time and subsequent

loss of attention by participants with less reliable results [56, 62].

Retinal light stimulation affects contrast sensitivity in the context of

emmetropization

Higher SFs are known to play a role in emmetropization [24], therefore a range from 3 cpd to

24 cpd were included in the current study to evaluate if there are effects in lower, middle, or

higher frequencies. In this study 18 cpd as a higher SF turned out to significantly affect CS

after stimulation of polychromatic and short-wavelength stimulation. Whether 18 cpd is the

most effective SF regarding emmetropization cannot be concluded from this study. Neverthe-

less, a recent study on humans found a significant change of CS for the SFs of 6 cpd, 12 cpd

PLOS ONE Effects of screen-based retinal light stimulation measured with a novel contrast sensitivity test

PLOS ONE | https://doi.org/10.1371/journal.pone.0254877 July 29, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0254877


and 18 cpd after illuminating the ONH with short-wavelength light [40]. Through photorecep-

tor activation their sensitivity should be increased which leads to an increased CS. In the cur-

rent study, we used stimulation via a LCD screen. Post-hoc analysis showed a higher CS after P

than after S stimulation. Moreover, another study showed reduced CS in myopes when using a

S-cone stimulus [63]. The usage of different methodology could account for the differences in

the result. Besides the experimental setup, the photoreceptors’ spectral sensitivity could be a

further possible explanation. While S stimulation activates theoretically mainly ipRGCs due

their peak spectral sensitivity, P stimulation activates beside ipRGCs all cones [64]. A directly

and specifically stimulation of individual photoreceptor classes is not possible using stimula-

tion via commercial screen technologies due to its emission bandwidth. Another reason for

the shown significant effect might be a statistical artifact, even possible due to the highest IQR

at 18 cpd compared to all other SFs and the fact that ipRGCs do not respond to higher frequen-

cies. Assuming, that a larger reaction of only a few participants led to the given statistical result.

In addition, there was no effect found at the higher frequency of 24 cpd. However, this finding

would reflect less ipRGC sensitivity and thus less melanopsin expression in S than P condition

which seems counter-intuitive.

Another finding was that stimulation location, wavelength range, and their interaction did

not significantly affect CS. This finding is somewhat surprising as CS changes would have been

expected with the ONH condition due to the high relative density of ipRGCs axons [3, 41, 65].

This finding could potentially be explained by diffuse reflections of light from the targeted

ONH across the inner eyeball [66] or the insufficient delimitation of the ONH. Scattering and

reflections were not controlled in the current study based on the aim to use a commercially

Fig 5. Normalized intensity (normalized spectra including luminosity function V(λ)) of stimulation conditions with short- (S), middle-

(M), long-wavelengths (L) and polychromatic (P) light emitted from ViewPixx/3D.

https://doi.org/10.1371/journal.pone.0254877.g005
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available setup. For FF stimulation conditions, an artificial pupil with a constant diameter was

used to minimize this aspect between participants and rule out varying area sizes of illumina-

tion [67]. Additional pupil diameter measures were conducted to ensure a pupil size equal to

or larger than the artificial pupil diameter.

A critical change of at least 0.2 logCS in absolute differences [56] between pre- and post-

stimulation with different wavelength ranges was not found in this study. The fact that only

adults were included in the current study could be the reason that there are no significant dif-

ferences in CS between the different stimulation conditions. Adults commonly have completed

eye development, suggesting a stable dopamine level (except circadian rhythms and dependent

changes in refractive error, axial length, and retinal dopamine [68–70]). Based on refractive

status, in the current study no significant difference in CS was found between myopes and

non-myopes. However, there were myopes included with a low- to mid-range of myopia but

no high myopes participated in the study. However, it requires further investigation if there

indeed was no specific photoreceptor class activation or if the effects were too subtle to be

detected with the current setup.

Influence of different wavelength ranges in context of myopia control

Previous studies showed that stimulation with light and emmetropization have two possible

underlying mechanisms. First, short-wavelength light leads to melanopsin activation and

increases dopamine [71]. Second, short-wavelength light is focused in front of the retina

because of longitudinal chromatic aberration, leading to myopic defocus [36].

Studies on mice [15, 17–19] and chicken [20, 22, 23] have proven that melanopsin activa-

tion depends on the retinal dopamine level and thus an impact in modulating vision [11],

including CS, visual acuity and light adaptation and axial elongation. [11, 69]. However, find-

ings on rhesus monkey-studies [27, 29, 32] and guinea pig-studies [31–35] are controversial.

In addition, emmetropization might not only be caused by increased photoreceptor sensi-

tivity but also due to focusing short-wavelength light in front of the retina based on longitudi-

nal chromatic aberration and induced monochromatic myopic defocus [36]. A myopic

defocus appears protective against myopia progression in human and animal studies [21, 34,

37, 47, 72–75]. The complexity around short-wavelength retinal light stimulation or stimula-

tion with other wavelengths and myopia is high. Therefore, further research is needed to gain

understanding how retinal light stimulation affects CS.

Conclusion

The novel Adjustment CST is able to determine CS in a time-efficient and repeatable fashion.

A clinically critical increase of CS after retinal stimulation with light of differing wavelength

ranges was not found, neither compared to reference CS without any stimulation nor com-

pared to post-stimulation CS, except the significant effect of P and S stimulation at 18 cpd. Fur-

ther research is required to deepen the understanding of retinal signaling based on stimulation

with different wavelength ranges and translate it into effective, non-invasive strategies to con-

trol myopia psychophysically.
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