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Brain health is an important research direction of neuroscience. In addition to the effects

of diseases, we cannot ignore the negative effect of aging on brain health. There have

been many studies on brain aging, but only a few have used dynamic models to

analyze differences in micro brain characteristics in healthy people. In this article, we

use the relaxed mean-field model (rMFM) to study the effects of normal aging. Two main

parameters of this model are the recurrent connection strength and subcortical input

strength. The sensitivity of the rMFM to the initial values of the parameters has not been

fully discussed in previous research. We examine this issue through repeated numerical

experiments and obtain a reasonable initial parameter range for this model. Differences

in recurrent connection strength and subcortical input strength due to aging have also

not been studied previously. We use statistical methods to find the regions of interest

(ROIs) exhibiting significant differences between young and old groups. Further, we carry

out a difference analysis on the process of change of these ROIs on a more detailed

timescale. We find that even with the same final results, the trends of change in these

ROIs are different. This shows that to develop possible methods to prevent or delay brain

damage due to aging, more attention needs to be paid to the trends of change of different

ROIs, not just the final results.

Keywords: aging, micro brain characteristics, relaxed mean-field model, initial parameter sensitivity, recurrent

connection strength

1. INTRODUCTION

Aging is an irreversible that all human beings must experience. All parts of the body are subject to
aging, including the brain. Most somatic cells have a brief life, and new cells will replace them after
apoptosis. However, things are different for neurons: they are longer-lived, and some even survive
for the whole of an individual’s lifetime. On the other hand, most neurons will not regenerate once
they have become apoptotic. Therefore, aging will lead to serious damage to the brain structure,
usually manifested as a decline in memory and cognition, and is accompanied by an increased risk
of brain diseases such as Alzheimer’s disease. Therefore, with the aim of preventing, or at least
delaying, the aging of the brain, it is important not only to explore which regions of interest (ROIs)
of the brain undergo changes in aging, but also to try to find out the processes involved.
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Toward the end of the last century, researchers started to
seriously study the aging of the brain. With the development
of network neuroscience (Bullmore and Sporns, 2009; Bassett
and Sporns, 2017), research on brain aging has developed in
a number of directions. Chen (2019) summarized the current
state of knowledge of the physiological basis of healthy aging
and age-related neurodegeneration as revealed using functional
magnetic resonance imaging (fMRI). More recently, Bi et al.
(2021) combined MRI and positron emission tomography (PET)
techniques in a study of 42 elderly normal-cognition subjects
and elucidated the metabolic mechanism of the brain’s structural
connections and its relationship with normal aging. In another
recent study, to examine the differences in structural connectivity
and cognition underlying motor adaptation in visual-motor
learning tasks, Wolpe et al. (2020) used structural MRI in over
300 subjects of different ages.

Many studies to date have been limited to either structural or
functional connectivity alone, despite the fact that, especially in
brain aging, these are closely interrelated (Honey et al., 2009). In
many age-specific comparative studies, because of limitations of
experimental design and the number of subjects, it is difficult to
collect data from all age groups. It has also been pointed out that
only using two cohorts for comparison cannot reflect the process
of change from youth to advanced age (Wang et al., 2010).

In this study, we use the relaxed mean-field model (rMFM)
(Wang et al., 2019) to simulate the dynamic process relating
structural connectivity and functional connectivity. We then
evaluate the model parameters through a comparison between
the young group and the old group in all ROIs. The overall
goal is to explore the process of change of brain differences with
age, and thereby help prevent or delay brain aging in advance.
First, we analyze the initial parameters of the rMFM model to
explore the influence of different parameter initializations on the
fitting results. We then establish whole-brain dynamic rMFMs in
the young and old groups, respectively. After this, we compare
microscale brain properties (the recurrent connection strength
and subcortical input strength) of the two groups and identify the
brain regions exhibiting significant differences. Finally, we use
more samples from different age groups to explore the changes
in these two micro brain characteristics with age.

2. MATERIALS AND METHODS

2.1. Data
The data we used in this experiment were from the Nathan Kline
Institute (NKI)/Rockland Sample public dataset. The dataset
includes 196 subjects. Each subject received semi-structured
diagnostic psychiatric interviews, and completed a battery of
psychiatric, cognitive, and behavioral assessments. Then, after
data acquisition by Siemens Trio 3T scanner, and preprocessing
such as head movement correction, denoising, and thresholding,
188 ROIs were delineated according to the Craddock 200 atlas
(Craddock et al., 2012), and the structural connectivity (SC)
matrix and functional connectivity (FC) matrix obtained by
diffusion tensor imaging (DTI) and fMRI. The dataset also
included the subject ID, age, gender, name of ROIs (full and
abbreviated), and the spatial position of ROIs in the brain. Some

TABLE 1 | Sample statistics.

Number Age range Age mean (± std) Gender (M:F)

DataSet 196 4–85 34.96 (± 20.04) 120:76

Young 53 4–20 13.79 (± 4.18) 29:24

Old 31 60–85 70.26 (± 7.20) 14:17

ROIs have the same names, and through mapping observation,
we speculate that because these ROIs are in the same lobe and
are very close in spatial location, the dataset author did not
distinguish them bymore specific naming. Therefore, we retained
these same names, but dealt with them differently in model
fitting, and we show their spatial location in the results.

The age range of subjects in the whole data set was [4, 85]
(years). According to the aim of the study, we first placed subjects
into a young group and an old group, depending on whether they
were under the age of 20 or over 60, respectively, for finding
ROIs where significant aging occurred. The data for subjects
with ages in the range [20, 60] were used to characterize the
changing trends in the aging process (see Table 1 for specific
statistical information).

2.2. Relaxed Mean-Field Model
The whole-brain dynamic mean-field model (dMFM) (Deco
et al., 2013) can be used to simulate neuronal activity through
structural connection and is obtained by mean-field reduction
of a detailed spiking neuronal network model within each
brain region to the following set of nonlinear stochastic
differential equations

Ṡi = −
Si

τs
+ r(1− Si)H(xi)+ σvi(t)

H(xi) =
axi − b

1− e−d(axi−b)

xi = wJSi + GJ
∑

j

CijSj + I

where xi, H(xi), and Si are the total input current, the population
firing rate, and the average synaptic gating variable at the i-
th cortical region, respectively. Recurrent connection strength
w, subcortical input strength I, global scaling factor G, and
neuronal noise σ are unknown parameters that are artificially
given initial values and adjusted during model fitting, we will
discuss the initial sensitivity of these parameters in the next
subsection. Following previous work (Deco et al., 2013), the
kinetic parameters for synaptic activity were set to be r = 0.641
and τs = 0.1s. Parameter values for the input-output function
H(xi) were set to be a = 270N/C, b = 108Hz, and d = 0.154s.
The value of synaptic coupling was set to be J = 0.2609nA. vi(t)
is uncorrelated standard Gaussian noise, and the amplitude is
controlled by σ .

The simulated neuronal activities Si are fed to the Balloon-
Windkessel hemodynamicmodel (Friston et al., 2003) to simulate
the BOLD time series for each ROI. The specific process
is, neuronal activity Si in each ROI causes an increase in
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the vasodilatory signal zi, with an inflow fi proportional to
this signal, accompanied by changes in blood volume vi and
deoxyhemoglobin content qi. The equations concerning these
neurophysiological processes are as follows

żi = Si − κzi − γ (fi − 1)

ḟi = zi

τ v̇i = fi − v
1
α
−1

i

τ q̇i =
fi

ρ

[

1− (1− ρ)
1
fi

]

− qiv
1
α
−1

i

where the kinetic parameters rate of signal decay κ = 0.65s−1,
rate of elimination γ = 0.41s−1. Hemodynamic transit time
τ = 0.98s, and Grubb’s exponent α = 0.32. ρ = 0.34 is the
resting oxygen extraction fraction. When qi and vi are obtained,
the BOLD time series is calculated by the following equation
(Stephan et al., 2007; Heinzle et al., 2016).

BOLDi = V0

[

k1(1− qi)+ k2(1−
qi

vi
)+ k3(1− vi)

]

where V0 = 0.02 is the resting blood volume fraction and the
equations for k1, k2, k3 are as follows

k1 = 4.3ϑ0ρTE

k2 = εr0ρTE

k3 = 1− ε

In the NKI dataset, the magnetic field strength B0 = 3T. At
this time, the frequency offset of the outer surface of magnetized
vessel ϑ0 = 28.265B0, the intravascular relaxation rate r0 =

110Hz, and the ratio between intravascular and extravascular MR
signal is ε = 0.47. The echo time TE = 30ms in the NKI dataset.

We used a modified version of the MFM here, namely, the
relaxed mean-field model (rMFM). In developing this model,
Wang et al. (2019) relaxed the global parameters w and I, and
optimized them into local parameters, so that each ROI has a pair
of w and I matched to it, while G and σ remain unchanged. By
adjustment of the parameters, a 53% improvement was obtained
in the correlation between simulated FC and empirical FC, as
estimated from a comparison of the empirical SC with the
original model.

Therefore, we used the rMFM model to predict the neuronal
activity in each ROI. As shown in Figure 1, we took the SC
state of each ROI as the model input while given a set of
initial parameters to simulate the neuronal activity of each ROI.
Then, the BOLD time series of each ROI were simulated using
the Balloon–Windkessel hemodynamic model, and the Pearson
correlation coefficients of the BOLD time series of each ROI
were calculated to give the simulated FC. Finally, we used the
empirical FC to correct the model parameters and substituted
the corrected parameters into the model until the error accuracy
met the required level or the simulation time reached a stipulated
maximum value.

2.3. Parameter Initialization Analysis
Although the rMFM model improves the correlation between
simulated and empirical FC, neither Deco et al. (2013) nor Wang
et al. (2019) specified the impact of initial parameters on the
final fitting correlation in establishing the model. In general,
different initial parameters will lead to different results from a
model, and we believe that the rMFM model is no exception in
this respect. We therefore designed a numerical simulation to
examine this issue.

First, we averaged the empirical SC and FC of all 196 samples
to get the group average SC and FC. These two groups of
average connectivitymatrices were used only to explore the initial
parameter sensitivity of the rMFMmodel, and were not used as a
reference in the later evolution analysis experiments.

Next, we used the control variable method to study the
influence of different parameter initializations on the results. For
wi and Ii taking uniform values in steps of 0.1 within the range
[0.1, 0.9], 81 groups of initial parameters were obtained. After
model fitting, the correlation between simulated and empirical
FC was recorded, and we obtained the correlation surface in the
space of initial parameters. On this basis, we took more precise
steps for the initial parameter interval with high correlation to
get more accurate results. Although this method is simple, it
confirmed our belief regarding the sensitivity of the results to
the initial values of the parameters (see section 4.1 for specific
results).

2.4. Estimation of Model Parameters
We simulated all 196 samples and obtained 378 parameters
(188 recurrent connection strengths wi, 188 subcortical input
strengths Ii, a global scaling factor G, and a noise coefficient σ ).

After we had obtained the first simulated FC using the initial
parameters, we optimized the parameters by using the maximum
expectation algorithm in dynamic causal modeling (Friston et al.,
2003) (see Wang et al., 2019 for the detailed steps of the
algorithm). We optimized each sample for 500 iterations and
selected the one with the highest Pearson correlation between
simulated and empirical FC as the final parameter of the sample.

After all 196 sample parameters were fitted, we took out the
young group and the old group, performed a two-sample t-test
for each parameter for each ROI, and marked the ROIs with
significant difference (p < 0.05, FDR corrected). We will present
our results in detail in section 3.1.

Next, we drew scatter plots of parameter values with age for
all ROIs, and fitted these values with first- and second-order
polynomials. Through polynomial fitting, we could see how each
parameter of the ROI changes with age. We will present these
results in detail in section 3.2.

3. RESULTS

3.1. Comparison of Model Parameters
All model fitting results were obtained by running the
simulations on MATLAB R2020a (MathWorks Inc., Natick, MA,
USA). By comparing the parametersw and I of the rMFMmodel,
we studied the micro brain characteristics of the young group
and the old group. Here, we used the two-sample t-test to judge
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FIGURE 1 | Overview of rMFM & simulated FC correction. (A) Relaxed mean-field model. The empirical SC and initial parameters are given to the relaxed mean-field

model to obtain the neuronal activities in each ROI and then input the neuronal activity into the hemodynamic model to obtain the BOLD time series. Calculated the

correlation of the BOLD time series to obtain the simulated FC. (B) Simulated FC correction. Using the maximum expectation algorithm in the dynamic causal model

to correct the simulated FC.

whether each ROI showed significant differences between the two
groups. We found ROIs with significant differences in recurrent
connection strength w, as shown in Figure 2, but we did not find
ROIs with significant differences in subcortical input strength
I. Because of the large number of ROIs, for clarity, only ROIs
with significant differences are shown in Figure 2 (see Table 2 for
statistical information).

In Figure 2, there were 16 ROIs with significant differences
in the parameter w (p < 0.05, FDR corrected), accounting for
8.5% of the total ROIs. These ROIs are mainly concentrated
in the bilateral frontal pole, the bilateral superior frontal,
bilateral middle frontal, bilateral postcentral, and a few areas
of the occipital. We can also see in Figure 2 that for recurrent
connection strength w, the average value of the old group is
significantly weaker than that of the young group in the above
ROIs, and shows high consistency. For example, in one left
frontal pole, the mean parameter value in the young group is
above 0.9, while in the old group it is less than 0.5. The same is
the case for one right frontal pole, which is above 0.8 in the young
group and only about 0.4 in the old group.

For subcortical input strength I, we did not find ROIs with
significant differences between the young and the old group.

However, this is only the result of the two-sample t-test and does
not mean that there is no change in subcortical input strength
with age. We will show the reason for this in the next subsection.

To obtain an intuitive view of the ROIs with significant
differences, we used the BrainNet toolbox (Xia et al., 2013) to
map the spatial positions of the above regions in the brain, as
shown in Figure 3. We can see that the ROIs with significant
differences between the young group and the old group are
mainly concentrated in the frontal pole, frontal and central
regions, and a few occipital regions.

3.2. Trends of Parameter Changes
Following the results described in the previous subsection, we
carried out a further statistical analysis on regions such as
the frontal pole, superior frontal, middle frontal, postcentral,
and occipital. Taking the left frontal medial as an example, we
extracted the values of the parameters w and I of all samples,
and then drew scatter plots to observe the changes with aging.
Finally, we used first- and second-order polynomials to fit these
parameters, giving the results shown in Figure 4A. As well as
the left frontal medial, the results for the left middle frontal,
right central opercular, right cingulate anterior, and bilateral
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FIGURE 2 | ROIs with significant difference in w. Each pair of bars represents the mean value of the parameter w in the same ROI for the young group (dark blue) and

the old group (light blue). The lines on the bars indicate the standard deviation.

TABLE 2 | ROIs with significant difference in w.

ROI names full (abbrev) Young group mean (± std) Old group mean (± std) pcorrected

Left Frontal Medial (LFMC) 0.64 (± 0.13) 0.44 (± 0.12) 0.0336

Left Frontal Pole (LFP) 0.49 (± 0.10) 0.36 (± 0.09) 0.0395

Left Frontal Pole (LFP) 0.96 (± 0.47) 0.42 (± 0.19) 0.0363

Left Lingual (LLG) 0.47 (± 0.15) 0.28 (± 0.05) 0.0252

Left Middle Frontal (LMFG) 0.57 (± 0.11) 0.41 (± 0.11) 0.0376

Left Middle Frontal (LMFG) 0.56 (± 0.13) 0.37 (± 0.09) 0.0291

Left Postcentral (LPG) 0.61 (± 0.13) 0.43 (± 0.11) 0.0376

Left Superior Frontal (LSFG) 0.42 (± 0.08) 0.32 (± 0.07) 0.0460

Right Central Opercular (RCOC) 0.57 (± 0.14) 0.41 (± 0.08) 0.0470

Right Cingulate anterior (RCGad) 0.46 (± 0.13) 0.28 (± 0.05) 0.0311

Right Frontal Pole (RFP) 0.81 (± 0.40) 0.38 (± 0.20) 0.0460

Right Lateral Occipital inferior (RLOCid) 0.59 (± 0.11) 0.42 (± 0.11) 0.0399

Right Middle Frontal (RMFG) 0.52 (± 0.18) 0.32 (± 0.09) 0.0401

Right Middle Frontal (RMFG) 0.51 (± 0.10) 0.34 (± 0.10) 0.0382

Right Postcentral (RPG) 0.64 (± 0.14) 0.47 (± 0.11) 0.0444

Right Superior Frontal (RSFG) 0.43 (± 0.08) 0.32 (± 0.08) 0.0391

postcentral are also shown in Figure 4. We can see that for the
recurrent connection strength w, there are significant differences
between the young group and the old group. When all samples
are combined, the second-order polynomial used for fitting
almost overlaps with the first-order polynomial, which means
that the recurrent connection strength decreases linearly and
slowly with age.

However, the situation is different for the left frontal pole,
right middle temporal, and bilateral superior frontal. We present

the parameter changes of these ROIs in Figure 5. Figure 5A
shows the results for the left frontal pole, while Figure 5B shows
the results for the right middle frontal, and Figures 5C,D for the
bilateral superior frontal. We can see that although there is a
significant difference in the value of the parameter w between the
young group and the old group, the value for ages between 30 and
60 is almost the same as in the young group. The time at which
these ROIs change in recurrent connection strength is from
middle age to old age, but there is no significant change before
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FIGURE 3 | Spatial locations of ROIs. Blue dots indicate the locations of the ROIs which the parameter w is significant.

that. The second-order polynomial fit presents another unique
state, an inverted U-shape. With increasing age, this micro brain
characteristic first gradually increases until it becomes stable in
middle age, after which it decreases.

The above is an analysis of the trend of recurrent connection
strength w with age. In section 3.1, we mentioned that for
subcortical input strength I, we did not find ROIs that showed
significant differences between the young group and the old
group by the two-sample t-test, but this does not mean that
this microscopic brain character did not change with age. The
second-order polynomial fit of parameter I was similarly inverted
U-shaped in these brain regions of the brain-stem, right lateral
occipital superior, and right cingulate shown in Figure 6. There
was an increase from young to middle age and a decrease from
middle to old age, so that the difference in the parameter I
between the young group and the old group could not be tested
using only a two-sample t-test.

4. DISCUSSION

We have used the rMFM model to study the effect of aging on
micro brain characteristics under natural conditions. We have
found that aging will lessen the recurrent connection strength
in most ROIs, including frontal pole, superior frontal, middle
frontal, postcentral, central opercular, and cingulate anterior.
These differences in micro brain characteristics show different
trends of change with age.

4.1. Influence of Initial Parameters
In section 2.3, we noted that different parameter initializations
will lead to different results, and we designed an experiment to

prove this conclusion. The results of this experiment are shown
in Figure 7.

Figure 7A shows the fitting results of the model when we took
different values of the initial parameters. We can see when the
parameter I is less than 0.2 or greater than 0.6, the correlation
between simulated and empirical FC is close to 0, which means
that we cannot get effective results. The appropriate initial range
for the parameter I is [0.3, 0.5]. The initial value of the parameter
w does not have such a significant effect. However, we can still
see when the initial value of I is in the range [0.3, 0.5], small
initial values of the parameter w give a better correlation than
for large ones.

Figures 7B,C show the changes in fitting results as one
parameter varies while the other is fixed. These curves enable us
to select the initial value of the parameter more easily. Neither
the dependence on w nor that on I shows the characteristics of
a smooth curve. This is because there is a parameter σ , called
neuronal noise, that arises in the process of rMFM model fitting,
and the randomness of this parameter leads to jitter in a single
simulation curve. If the simulation was repeated a number of
times and the average value of the results was taken, this reduced
the jitter and gave a smoother result.

4.2. Micro Brain Characteristics With Aging
For the recurrent connection strength w, the brain regions that
showed significant differences between the young group and the
old group were mostly distributed in the frontal, including left
frontal medial, frontal pole, superior frontal, and middle frontal.
The surface area of the frontal pole is negatively correlated with
visuospatial working memory ability (Zacharopoulos et al., 2020)
and plays an important role in controlling and maintaining
information related to its behavior (Arai et al., 2016). And it is the
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FIGURE 4 | ROIs with no significant difference in first- and second-order polynomial fits of recurrent connection strength w. The points represents the parameter

values, the dashed lines are the first-order polynomial fits, and the solid lines are the second-order polynomial fits. Blue indicates w and red indicates I. (A) Left Frontal

Medial. (B) Right Central Opercular. (C) Left Middle Frontal. (D) Right Cingulate anterior. (E,F) Bilateral Postcentral.

frontal region that is closely related to cognitive ability. Damage
to this region will lead to impairment of cognition, extraction
of vocabulary, and other functions (Wierenga et al., 2008; Wang
et al., 2010; Goh et al., 2013).

Other regions, such as right lateral occipital inferior,
postcentral, right central opercular, and right cingulate anterior,
similarly exhibited intergroup differences. The right occipital
pole is part of the occipital cortex. The fractional anisotropy
(FA) of its connecting bundle with the thalamus decreases
significantly with age, which affects visual short-term memory
ability (Menegaux et al., 2019, 2020). Some experiments have
shown that with an increase in working memory load, young
people can activate the default mode network (DMN) region
faster than old people. Meanwhile, the neuroregulatory ability of
young people is significantly higher (Qin and Basak, 2020).

Corticobasal syndrome (CBS) is a progressive movement
disorder characterized by akinetic–rigid parkinsonism and a
varying combination of motor and nonmotor symptoms. It
is typically asymmetric and affects a single body region,
especially the upper limbs. Upadhyay et al. (2016) found
that the cortical thickness (CTh) of the precentral gyrus of
patients with CBS was significantly lower than that of healthy
people, and the CTh asymmetry of the postcentral gyrus was
negatively correlated with the duration of the disease. Multiple
sclerosis is a chronic neurodegenerative disease associated with
somatosensory abnormalities and decreased stability (Moore
et al., 2012). The postcentral gyrus is the central region of the
somatosensory network (Tomasi and Volkow, 2011), and for
patients with multiple sclerosis with somatosensory disorders,
the functional connection of the postcentral gyrus is significantly
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FIGURE 5 | ROIs with differences in first- and second-order polynomial fits of recurrent connection strength w. The points represent the parameter values, the dashed

lines are the first-order polynomial fits, and the solid lines are the second-order polynomial fits. Blue indicates w and red indicates I. (A) Left Frontal Pole. (B) Right

Middle Frontal. (C,D) Bilateral Superior Frontal.

weaker than in healthy groups (Fu et al., 2019). As a result,
the weakening of the postcentral will affect the human ability
to behave.

The cingulo-opercular network is closely related to the speed
of visual processing. Through a study of this network, Ruiz-
Rizzo et al. (2019) found that the internal functional connection
(iFC) of the right anterior paracingulate and bilateral middle
paracingulate decreased significantly with age, leading to a
decrease in the speed of visual processing in the old group. A
decrease in visual processing speed will reduce alertness, and
thus maintaining alertness is also an important function of
the cingulo-opercular network (Coste and Kleinschmidt, 2016;
Haupt et al., 2019).

4.3. Limitations
Our study did have some limitations. First, the number of
samples was small, so we were not able to group more
delicately. Given a sufficient number of samples with uniform age
distribution, the accuracy of age-related changes in micro brain
characteristics could be improved. Second, we grouped according
to age, and obtained our results by comparing parameters
between young and old groups, and the results could easily have
been affected by individual differences, i.e., outliers. If we can
obtain long-life-cycle data of several samples from youth to old
age, wemay be able to draw further conclusions. Then, the dataset
we used did not provide the original neuroscience imaging
data, only the constructed connectivity matrix. Therefore, we
have no way to do simulation evaluation, such as the number

of ROIs, different atlases, etc. Finally, we did not carry out a
theoretical derivation of the parameter initialization analysis, but
just used a parameter fitting based on the ROI divided according
to the Craddock 200 atlas, and we did not corroborate this by
substituting another data set or atlas. Therefore, we propose that
other researchers use the rMFM model to initialize and analyze
their data to get initial values of the parameters.

5. CONCLUSION

In this article, we used the rMFM model to study the effect
of aging on micro brain characteristics. First, we analyzed the
initial parameter sensitivity of the rMFM model and selected
an initial parameter range. We then identified the ROIs with
significant differences in recurrent connection strength between
young and old groups, mainly in the frontal, postcentral, central
opercular, and cingulate anterior, as well as ROIs such as right
lateral occipital inferior and left lingual. Further, we studied the
trends of change of these ROIs with age. For some ROIs, such
as the frontal medial, left middle frontal, and postcentral, the
decrease in recurrent connection strength was found to follow
a roughly linear trend with age. However, for other ROIs, such
as left frontal pole, right middle frontal, and right cingulate, the
decrease in recurrent connection strength or subcortical input
strength was found to be manifested mainly in the middle-aged
to elderly. The weakening of SC and FC caused by aging is
irreversible, but means to effectively delay brain aging are still
worthy of more research.
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FIGURE 6 | ROIs with differences in first- and second-order polynomial fits of subcortical input strength I. The points represent the parameter values, the dashed lines

are the first-order polynomial fits, and the solid lines are the second-order polynomial fits. Blue indicates w and red indicates I. (A) Brain-Stem. (B) Right Lateral

Occipital superior. (C,D) Right Cingulate anterior & posterior.

FIGURE 7 | Simulation results of parameter initialization. (A) Each point represents the correlation result corresponding to a pair of parameters (w, I). (B) Variation of

the correlation with the parameter I for given values of the parameter w. (C) Variation of the correlation with the parameter w for given values of the parameter I.
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