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Abstract: We propose a carbon-nanotube-based neural sensor designed to exploit the electrical
sensitivity of an inhomogeneous fractal network of conducting channels. This network forms the
active layer of a multi-electrode field effect transistor that in future applications will be gated by
the electrical potential associated with neuronal signals. Using a combination of simulated and
fabricated networks, we show that thin films of randomly-arranged carbon nanotubes (CNTs) self-
assemble into a network featuring statistical fractal characteristics. The extent to which the network’s
non-linear responses will generate a superior detection of the neuron’s signal is expected to depend
on both the CNT electrical properties and the geometric properties of the assembled network. We
therefore perform exploratory experiments that use metallic gates to mimic the potentials generated
by neurons. We demonstrate that the fractal scaling properties of the network, along with their
intrinsic asymmetry, generate electrical signatures that depend on the potential’s location. We discuss
how these properties can be exploited for future neural sensors.

Keywords: carbon nanotubes; fractal networks; neural sensing; non-linear processes

1. Introduction

Fractal patterns have been observed in electrical currents as they spread out through
mesoscopic systems [1] and also in how the conduction varies when electric and magnetic
fields are applied [2,3]. Fractals are prevalent in nature, and their repetition of patterns at
different magnifications generates significant complexity. Investigations of this complex-
ity have broadened our understanding of fundamental aspects of electrical conduction
mechanisms. In addition, exploiting the associated non-linear response of fractals has the
potential for novel applications. Investigations of fractal conduction effects induced by
electrons scattering off device walls and material impurities [1–4] inspired simulations of
conduction through fractal circuits. The proposed practical examples of fractal circuits
include solar panels [5], retinal implants [6,7], and transistors [8]. For the latter case, elec-
trostatic gates were used to deplete regions of the circuit, and the subsequent re-routing of
current displayed highly non-linear changes in the conduction. The electric field generated
by neurons firing should in principle also induce non-linear changes in the conductance of
fractal circuits. Here, we propose applying this effect for neural sensing.

The ability to record signals from large numbers of neurons simultaneously in the
intact brain represents a major interdisciplinary challenge. An ideal sensor needs sensitivity
and spatial accuracy to precisely track the electrical activity of multiple neurons over time
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combined with non-subjective measures of signals with quantified errors and minimal post
processing. Current applications of carbon nanotube (CNT) thin films in neural sensing
use CNT thin films in the metallic phase to replace the electrodes used to stimulate and
record neural activity [9,10]. While these applications promise to improve the electrode
performance by exploiting the exceptional properties of CNTs to create flexible, highly
conductive interfaces with a large surface area, they build on conventional in-vivo electrical
recording strategies. Conventional in-vivo electrical recordings use extracellular probes
that are limited by signal variability amongst neurons, electrical drift, and post-processing
using algorithms [11,12]. Here, we propose a field effect transistor (FET) sensor that
exploits the inherent sensitivity of a fractal network of conductors and has the potential to
overcome these limitations. By employing CNT films not as electrodes but rather as the
active layer in the FET, we open up the opportunity for a distinctly different operational
design for multi-neuronal sensing. The proposed sensor features 16 electrodes connected
to different locations along the network’s perimeter. The simultaneous measurement of
multiple currents can then be used to detect neuron-induced changes to conduction in the
network occurring due to the electric field effect. For sensor operation, the material chosen
for the fractal network must also have a measurable gating response to typical electric
fields generated by neurons firing, and for simultaneous recording with spatial accuracy it
must lack inhomogeneity to exhibit detectable electrical asymmetries across the network.
Additionally, the selected active layer needs to be biocompatible with neurons. We will
present experimental results which demonstrate that thin films of randomly aligned carbon
nanotubes have all these necessary characteristics for our neural sensors.

Previous studies have shown that neurons prefer to adhere to CNT structures [10,13,14]
rather than to the smooth surfaces of traditional sensors [10]. Thin film CNT FETs have
been employed for a range of electronic sensing applications, from hormone detection
to the detection of molecular dynamics [15–19]. CNT thin films are also known to form
complex networks with morphologies that affect their FET performance [16,19–23]. How-
ever, although this complexity makes them a compelling candidate for the fractal active
layer of our sensors, to our knowledge the fractal aspect of CNT thin films has not been
verified until now. We will use fractal dimension, D, to quantify the relative contributions
of the fractal network’s coarse and fine structures to its conduction properties. We will also
demonstrate that the ability to change the CNT thin film’s density can be used to tune the
network’s D value and so impact the network’s electrical sensitivity.

Within this picture, how the current percolates through the fractal network is crucial.
To conduct current, a CNT network must feature at least one continuous path between
electrodes. Below a certain CNT density (the percolation threshold, ρth), the network has
zero probability of forming a continuous path, and the network’s properties vary drastically
in proximity to this critical density. As a result, CNT thin films exhibit significant electrical
sensitivity near ρth. We will therefore map the dependence of the CNT network’s electrical
sensitivity as a function of its D value in order to determine the optimal percolation
conditions for the neural sensor.

We first use simulations to demonstrate the operational principles of our sensor design
and to establish the relationship between the percolation and fractal dimension of simulated
CNT networks. Then we use atomic force microscopy (AFM) to compare the fractal nature
of CNT thin film samples to simulations. Next, we present electrical characterization
measurements from two device designs, one to investigate inhomogeneity using conduction
measurements between multiple electrodes and the second to investigate the network’s
response to electric fields. The latter uses SU-8 encapsulated top gates to generate electric
potentials similar to neurons. Finally, we will return to simulations for a systematic,
controlled study to understand the relationship between network sensitivity and D. Taken
together, this interplay of simulations and experimental measurements demonstrates the
promise for future studies of CNT-based fractal sensing of neural networks.
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2. Materials and Methods

2.1. Sensor Simulations

To illustrate the operational principles of our sensor we simulated the current through
a 16 electrode FET in response to multiple neuron scenarios. Each scenario varied in
number of neurons (1 or 2), location of neurons (x and y position within the plane of the
channel and height above the surface (0 or 15 µm)), and the magnitude of the neuron’s
signal (magnitude of electric potential). For simplicity, we used a uniform semiconducting
channel that, when depleted, undergoes a change in resistance proportional to the surface
potential responsible for the depletion [8]. We obtained the voltage profile at the channel
surface due to the electric field of a neuron firing by assuming neurons are point sources
at their respective locations. Lastly, the current through pairs of electrodes spanning the
channel was calculated for each scenario.

2.2. CNT Network Simulations

CNT thin film networks were modeled using a 2-dimensional (2-d) random stick
network and the Monte Carlo process. CNTs were represented as sticks with a fixed length.
The tube length and overall size of the network were chosen to be consistent with the
observed CNT network morphology determined from AFM and typical device channel
sizes. The sticks were assigned to be either metallic or semiconducting and placed at
random x-y positions and orientation angle in the simulated device channel. A black
and white bitmap image was created for each simulated network and a fractal analysis
performed on its structure.

We also simulated the impact of the electrostatic gating for a subset of networks to
understand the role of network structure in electrical sensitivity. CNT networks are junction-
dominated networks, meaning that the network resistance is dominated by the barriers that
form at the junctions between tubes [24,25]. Therefore, to simulate the electrical properties
of the network we included only the contributions of the inter-tube junctions. The simulated
network was simplified using graph theory. A node represented each tube, and the
junctions between two overlapping sticks were represented as edges. Modified nodal
analysis was used next to solve Kirchhoff’s equations and calculate the network current.
Junctions between metallic-metallic (m-m) tubes and semiconducting-semiconducting (s-s)
tubes were assigned resistances of 100 kΩ and 1 MΩ, respectively, based on typical junction
resistances measured experimentally [23,24]. While m-m and s-s junctions exhibited linear
current voltage characteristics, metallic-semiconducting (m-s) junctions showed leaky
diode characteristics thought to arise from the Schottky barriers [22,23]. Therefore, we
approximated the current across m-s junctions using the ideal diode equation. An applied
electrostatic gate will impact the m-s junction current by altering the size of the energetic
barrier [25]. This effect was modeled by assuming a linear dependence of the junction
barrier height on gate voltage. For each simulated gate voltage, the current through each
m-s junction was determined using an adjusted barrier height. This value along with m-m
and s-s junction resistances was then used to calculate the network current as a function of
gate voltage, Vg.

2.3. CNT Thin Film’s Deposition

The composition of the CNT thin film should be of high semiconducting tube purity
in order to maximize the field effect response of the active layer for sensor operation. CNT
thin films were fabricated with varying densities using solution deposition [21,26–29]. The
CNTs used were purchased and pre-purified by NanoIntegris (IsoNanotubes-S Buckypaper
composed of single-walled CNTs containing 99% semiconducting CNTs) [28]. A 5 µg/mL
CNT dispersion was made from Buckypaper weighed on a precision balance (Sartorius
ME36S, Sartorius AG, Göttingen, Germany) and dispersed into dichlorobenzene (DCB)
(99% Sigma Aldrich, St. Louis, MO, USA) by an ultrasonic bath (Sonorex DT 100, Bandelin
electronic GmbH & Co. KG, Berlin, Germany) with an average power of 80 Watts for
15 min. Degenerately doped Si with a 300 nm SiO2 layer was used as the device substrate.
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The substrates were prepared for CNT adhesion using a polydimethylsiloxane (PDMS)
stamping method [26]. A blank cured PDMS stamp was made using Sylgard 184 (Dow
Corning, Midland, MI, USA) with a base to curing agent ratio of 10:1, which was mixed
and then degassed via vacuum desiccation and cured in air at room temperature in a
plastic container lid. The stamp was then exposed to an O2 plasma (Plasma Etcher-50,
50 W, 20–50 KHz) (Plasma Etch, Carson City, NV, USA) for 1 min prior to spin coating
a 10 mg/mL solution of 2-mercaptopyridine (Sigma Aldrich) at 2000 rpm with an initial
acceleration of 500 rpm/s for 40 s. The 2-mercaptopyridine-coated PDMS was then pressed
down on top of the clean substrate surface for 3 min followed by a 3 s rinsing in ethanol
to remove any excess 2-mercaptopyridine. The substrates were then dried in a stream
of N2, ensuring no remaining ethanol was present, and then submerged in the prepared
CNT-DCB suspension for a fixed amount of time. Using our technique, the CNT network
density can be controlled by varying the submersion time of the CNT deposition [21,27].
We used submersion times from 1–80 min, which yielded densities varying from 3.0 to
21.2 tubes/µm2. After CNT deposition the substrates were submerged in ethanol for
10 min and then blow-dried with N2.

2.4. Structural Characterization of CNT Thin Films

The characterization of CNT thin films’ morphology was performed using atomic
force microscopy (Asylum MFP-3D, Santa Barbara, CA, USA). To determine the density,
average tube length, and fractal geometry of the networks, AFM images were analyzed
using the image analysis software ImageJ [30] (1.51, National Institutes of Health, Bethesda,
MD, USA). Raman spectra were performed after CNT thin film deposition to verify that
the tube diameter and purity agreed with the manufacturer’s specifications. The results
are shown in Figure S1.

2.4.1. CNT Network Morphology

It is common for CNT thin films produced via buckypaper deposition routes to be
composed of both individual tubes and bundles of tubes [21,25]. In our analysis, both tubes
and bundles of tubes were counted as tubes (both the equivalent of a stick in our simulated
random stick network). The density and average tube length were determined from at
least three AFM images from different 4 µm × 4 µm regions of the film. Tube density was
determined by counting the number of tubes present in each image, and average tube
length was determined from the measured length of all tubes and bundles. The density
value reported is the average value determined from all the images from different regions
of a given thin film. The uncertainty in this value is defined as one standard deviation of
the value for each set of images.

2.4.2. Fractal Analysis

Fractal analysis was performed using standard box-counting [31] using the FracLac
feature of ImageJ. For each 7 × 3 mm thin film sample, several 10 µm × 10 µm high
resolution images were taken at different locations on the CNT network film. For each
simulated network, a black and white bitmap image was generated for analysis. However,
to perform the analysis on the experimentally fabricated CNT networks, AFM images were
processed to create black and white bitmap images. The sticks and individual CNTs were
one pixel thick in the simulated and fabricated network images, respectively.

2.5. Device Fabrication

The CNT devices were fabricated using standard photolithographic techniques. Sche-
matics for the devices are shown in Figure 1, with (a) an open channel multi-electrode
device and (b) a SU-8 encapsulated multiple-top gated FET. To pattern the CNT networks,
the FET channel region was protected by AZ1518 (Microchemicals, Newton, MA, USA)
photoresist, and the remaining exposed CNT film was etched by 3 min exposure to a
200 W O2 plasma (Oxford Instruments, Plasmalab 80 Plus, Abingdon, United Kingdom ).
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The photoresist mask was then removed by acetone and IPA cleaning. Source and drain
electrodes were patterned via photolithography, in alignment with the FET channel region
and deposited by thermal evaporation of Cr/Au 5/50 nm (Angstrom Engineering, Nex
Dep 200, Kitchener, ON, Canada).

Figure 1. Schematics of the device designs: (a) an open channel carbon nanotube (CNT) network multi-electrode device and
(b) an SU-8 encapsulated multi-top gate CNT network field effect transistor (FET).

For the FET devices onto which localized top gates were fabricated (Figure 1b), the
source and drain electrodes were patterned using AZ5214E (Microchemicals) photoresist.
This change in resist was to prevent the formation of edge spikes on the electrodes. A
325 nm thick top dielectric was fabricated by dissolving GMPI-60 SU8 (Microchemicals) in
cyclopentanone to produce a low viscosity solution, 15% by weight, which was spun onto
the CNT FETs at 6000 rpm for 40 s. To uncover the source and drain electrodes, the SU8
was patterned using photolithography followed by development in an SU8 developer (Mi-
crochemicals). Top gates (thermal evaporation of Cr/Au 5/50 nm (Angstrom Engineering,
Nex Dep 200)) were then fabricated over the dielectric layer via photolithography.

2.6. Electrical Measurements

All electrical measurements were taken at room temperature. Current and voltage
measurements were taken using a Keithley sourcemeter (2400) (Solon, OH, USA). Electro-
static gating measurements were performed using an Agilent 4156C parameter analyzer
(Santa Clara, CA, USA) on a Rucker and Kolls probe station (Milpitas, CA, USA). For the
gating measurements, a source-drain voltage of 100 mV was applied while the individual
gate voltage, Vg, was swept from −20 V to 20 V. To quantify the electrical sensitivity of the
device to a given gate, the normalized current change ∆I/I0 = (I − I0)/I0, was calculated
from the resulting transfer characteristics. I0 is the network current with no applied gate,
Vg = 0.

3. Results

3.1. Simulation Results

3.1.1. Sensor Architecture

The fundamental operational principles of the multiple electrodes FET design are
illustrated in Figure 2. The 16 electrodes arranged around the active layer allow for
15 independent measurements of the current in the channel. The simulations quantified
the sensitivity of the 15 measurements to the location and magnitude of the electric field
generated by neurons firing (their positions indicated by the blue circles in Figure 2a,b).
Five example neuron scenarios, numbered 1–5, are shown by column in Figure 2. For
each scenario, the resulting potentials at the sensor surface and the current between six
terminals were calculated (Figure 2c,d, respectively). The six current measurements show
the unique current signature for each of the neuron configurations. In particular, note that
a weak neural signal in contact with the sensor’s surface (scenario 5) produced a different
signature to a strong signal 15 µm above the surface (scenario 3). Consequently, the sensor
can distinguish the signal’s origin (x, y, z) and magnitude for each neuron.
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Figure 2. Illustrative examples of neurons (blue) acting as electrostatic gates on the active layer
(light gray) of a multi-electrode FET probe using 16 electrodes (gold) to serve as source and drain.
Five different neuronal positions and magnitudes, shown per column, lead to unique sets of current
measurements. The top-down (a) and side projections (b) of 10 µm (dark blue) or 7 µm (light blue)
neurons. (c) The unique surface potentials associated with the (x, y, z) coordinates of neurons in each
case. (d) The associated normalized current changes, ∆I/I0 = (I − I0)/I0, through specific electrodes
in each case. I0 is the electrode’s current with no stimulus. (e) The current signatures (for three
currents) are shown for one neuron at different locations and signal strengths (purple = small; signal,
magenta = large signal).

Current measurements were associated with unique values for position and size of
each signal’s depletion pattern. The plot shown in Figure 2e was created using just three
current measurements for one neuron at different locations and signal strengths. The
library of data points plotted in the current space represents the range of different scenarios
for a given neuron. In future applications, once a library is established, a search algorithm
could then be used to convert measured current values into the positions and magnitudes
for each neuron present. The accuracy of the sensor will depend on the degree to which
scenarios can be distinguished in the library, and this is determined by how the data points
fill the available space. In particular, degeneracies (i.e., two scenarios occupying the same
data location) will increase if data points occupy only a small fraction of the current space.
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The improvement of sensor performance can be achieved by increasing the number of
electrodes, because the signature will then feature more distinguishing current components.
Ultimately however, the fabrication capabilities will limit the size, and hence the number of
possible electrodes. A more effective strategy for lifting degeneracy would be to replace the
uniform channel with a statistical fractal network (i.e., a network in which the statistical
characteristics of the patterns repeat at different scales). As in the uniform channel, a fractal
network depletion of a local region of the channel will induce a re-arrangement of current.
However, the non-linearity of this re-arrangement produces an enhanced sensitivity of
the measured current to the location of the depletion region, and hence to the neuron
signal. A statistical fractal takes advantage of the sensitivity to electrical changes that
fractal conductors have been shown to exhibit [8] while also introducing asymmetry in
the channel’s response. The inhomogeneity of a statistical fractal channel will lead to a
lack of electrical symmetry that can reduce the locational degeneracy between neurons.
Together, the non-linearity and asymmetry of the conductive layer will increase the spread
of data in the current space, increasing our ability to distinguish between the unique current
signatures of different neuronal scenarios.

3.1.2. CNT Network Structure

Having established the basic operational principle of the sensor, the next step in our
investigation was to use simulations to confirm that randomly-aligned CNT thin films
form networks with statistical fractal characteristics. If statistically fractal, they will satisfy
the two essential elements for the sensor discussed above (the non-linear sensitivity and
inhomogeneity). However, it is also important to understand how proximity to percolation
plays a role in the operation of the neuron sensor. Previous work has shown the enhanced
electrical sensitivity of CNT thin films close to their percolation threshold [20,21]. To
investigate how the fractal structure evolves near percolation, we simulated CNT films for
a range of densities straddling the percolation threshold. Our results are shown in Figure 3.

Figure 3. (a) Details of simulated networks at densities of 0.6, 1.4, and 4.0 (top to bottom) with
any percolated paths highlight in red. (b) Fractal dimension, D, of simulated CNT thin film
networks as a function of density. The D value changes rapidly near the percolation threshold
(ρth = 1.172 sticks/µm2) indicated with a dashed line. Error bars indicate the variance of D value for
three networks at each density. The inset shows the box-counting plot resulting from fractal analysis
for a network with a density of 4.0 sticks/mm2. The linearity of the plot indicates fractal scaling with
the slope of the best-fit line, which determines the fractal dimension D (value given for plot shown).
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Networks with dimensions of 20 µm × 20 µm and tube length of 2 µm were simulated
at 11 different densities (three networks per density), and fractal analysis was performed on
the resulting networks to determine their D values. A tube length of 2 µm was chosen to be
consistent with the actual CNT thin films. The densities ranged from 0.3 to 10 sticks/µm2

and spanned the percolation threshold for this size network of 1.172 sticks/µm2. The
percolation threshold was determined by generating 100 networks and using percolation
theory to fit a plot of the network’s probability of reaching percolation versus its density.
Figure 3a shows 9 µm × 6 µm regions of three example networks with different densities.

Our analysis shows that the simulated networks display fractal characteristics. We
used the traditional form of fractal analysis in which the image is covered with a mesh of
identical squares (boxes). For a network to be considered fractal, the minimum number of
boxes, N(ε), required to cover the network scales according to box size, ε, as N(ε)~ ε−D. As
an example, the box-counting plot for a network with a density of 4 sticks/µm2 is shown
in the inset to Figure 3b. The linearity of the plot indicates that the simulated networks are
fractal within the observable range indicated by the arrows. The lower limit of observation
was set by the smallest feature size (the thickness of a tube, 1 pixel) and the upper limit
set by the counting statistics of the box-counting algorithm (20% of the total network size).
The fractal dimension for each case was determined from the slope of the best-fit line.

Figure 3b shows the average D at each density for all networks and reveals a clear
dependence of D on density. Near the percolation threshold (dashed line in Figure 3b), D
changes rapidly and then saturates at higher densities. We also see the largest variance in
D value for networks of the same density near percolation. When interpreting the shape
of this curve, recall that D is an indicator of the ratio of fine to course structure of the
network. As more tubes are added to the network, its fine structure increases, raising
the D value. Although fractal analysis has not been previously applied to determine the
structure of the network composing CNT thin films, studies of the surface roughness of
CNT coatings determined CNT film surfaces to be bi-fractal (quantified by one D value
across micro-length scales and another D across nano-length scales) [32]. DeNicola et al.
found that at densities well above percolation the surfaces had the same D values for all
densities [32] consistent with our results.

Our results reveal a saturation in D value—a signature of the network moving past
the percolation threshold predicted by percolation theory. For a CNT network, how tubes
fill the 2-d space of the channel is intimately connected to the formation of paths and
the likelihood of percolation. D is a quantified measure of how the tubes fill space and
therefore an appropriate indicator of the evolution of a network through percolation. In
Figure 3a we show details of three simulated networks with densities below, just past, and
well above the percolation threshold. These illustrate how the structure of a CNT network
evolves when adding more tubes to the network. Below the percolation threshold, the
network is not connected. Just past the threshold, few conductive paths have formed, and
this therefore offers few detour possibilities for bypassing a given region. Further past
the percolation threshold, many paths are established, and the addition of more tubes
increases the number of interconnects between them rather than significantly increasing
the path number.

3.2. Experiemental Results

3.2.1. Fractal Analysis of CNT Network Thin Films

To confirm the findings of the simulations, we applied the same fractal analysis to
the CNT network’s thin film samples. Their fractal dimensions were found to range from
1.91 to 1.94 (±0.01). Figure 4 shows three example images of thin films analyzed and
their resulting fractal box-counting plots. The top film has a density of 3.0 tubes/µm2

(±0.5) and is below percolation. The middle and bottom images are from different regions
of the same sample, with a density of 9.9 tubes/µm2 (±0.9). The average tube lengths
determined for the films shown were 1.6, 1.9, and 1.9 µm (±0.5), respectively. The linearity
of the plots in Figure 4c indicate a fractal behavior of over 1.5 orders of magnitude. The
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arrows on Figure 4c indicate the expected observation limits, with the lower limit set by the
smallest feature size and the upper limit set by the counting statistics of the box-counting
algorithm. In addition to showing the expected fractal character of the networks, our
results also indicate that D is robust across a given thin film. The middle and bottom rows
of Figure 4 are images from two different regions of the same CNT network film, and both
are characterized by the same D value (1.94 ± 0.01), which is larger than the D value of the
lower density CNT film shown in the top row of Figure 4.

Figure 4. Fractal analysis of a random CNT thin film network structure. (a) Atomic force microscopy
(AFM) images of typical CNT thin film networks (note the presence of bundles). (b) To perform the
fractal analysis, these images were converted to black and white bitmap images. (c) The associated
box-counting fractal analysis plots, where the log of the minimum number of boxes, N(ε), required to
cover the network is plotted with box size, ε. The linearity of the plot indicates the network is fractal,
and the slope of the best fit line indicates the fractal dimension D, indicated for each image shown on
the graph. The arrows indicate the expected limits to assess D.

3.2.2. Electrical Characterization

To determine the degree to which thin film CNT networks are inhomogeneous we
created an open channel CNT network device (see Figure 1a) with ten electrodes spaced
along the channel. The inset to Figure 5a shows the device’s geometry. The vertical spacing
between device electrodes is 20 µm, and the horizontal spacing between neighbors is 30 µm
(center to center). The density of the thin film used in this device was 3.3 tubes/µm2 (±0.8),
and the average tube length was 1.5 µm (±0.5). Current voltage measurements were made
for all possible electrode combinations. In all cases the current voltage characteristics
were linear, with well-defined resistances between pairs. This result is important for the
proposed neural sensor operation because it allows for a reliable implementation of an
established “current library” across different source drain biases. When compared, the
resistances of all analogous electrode pairs were discernible, indicating that the network
inhomogeneity is measurable.
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Figure 5. (a) Current voltage measurements for ten electrode CNT thin film devices. The device
geometry is shown in the inset. The colored lines between electrodes indicate the electrode pairings
and are color-coded to associated data in the graph. Vertical electrodes are spaced 20 µm apart, and
neighboring electrodes are 30 µm apart from center to center. (b) Normalized current change as a
function of gate voltage for a different device with two electrodes and four independent top gates.
The inset shows the device geometry with gates color coded to match the data, and source and drain
electrodes shown in gold. The distance between source and drain electrodes is 60 µm, and the nearest
gates from the electrodes is 8 µm. Left and right gates each cover a 60 µm × 10 µm region of the
channel, while middle gates each cover a 20 µm × 10 µm region.

As an example, Figure 5a shows the current versus voltage behavior measured be-
tween all vertical and crossed nearest neighbor electrode pairs. The resistances from all
vertical electrode pairings (shades of red) can be readily distinguished from the crossed
nearest neighbor electrode pairings (shades of blue). This is expected due to the difference
in length between the two sets of electrodes in each case. Furthermore, specific regions of
the network of the same electrode-electrode distance were also distinguishable, resulting in
a detectable electrical asymmetry which becomes more pronounced at larger source-drain
voltages. CNT thin films have the required statistical fractal structure we are looking for to
increase the spatial accuracy of neuron detection. This is a key result because it means that
the location degeneracy associated with the uniform channel of the simulated sensor in
Figure 2 is reduced. As a result, we expect sensors using CNT thin films to have a larger
spread of data in current space data (with each point representing the current signatures for
a given neuron scenario), allowing for an increased discernment of neurons during sensing.

Another characteristic essential to the implementation of CNT thin films in the pro-
posed sensor is whether the localized electric fields expected from individual neurons
firing are enough to measurably impact the current in actual devices. To determine this,
we investigated the CNT network’s electrical sensitivity to localized gating. CNT devices
fabricated with four top gates (see Figure 1b) of two different sizes were used. The inset
of Figure 5b shows the device design, which includes two gates covering 60 × 10 µm2

network regions each, and two gates covering 20 × 10 µm2 regions each. The sizes of the
top gates used are comparable to the neurons and represent the impact that a neural signal
would have on the network current.

Top gated devices were fabricated using CNT films of ten different deposition submer-
sion times. We analyzed AFM images of films created under the same circumstances at the
same time and verified that CNT density increased with deposition time. Figure 5b shows
the normalized current response versus the gate voltage to each of the four top gates from
a device with a CNT deposition time of 10 min. Consistent with all devices measured, the
network showed a unique current response for each individual top gate. As expected, the
larger gates changed the network current the most, but the response was measurable for
all gates.
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These measurements were made under dry gating. Under these conditions we es-
timated the electric potential at the CNT network surface to be 1% of the applied gate
voltage. This was done using the Poisson equation and solving it numerically (SU8 has
a dielectric constant of 3.9). Typical extracellular neural signals range from 0.5 to 1 mV,
which corresponds to a relatively small change in current for our devices. However, actual
neuronal measurements would be performed under liquid gating conditions. CNT thin
film devices have a significant larger network response under liquid gating than dry back
gating [15,28]. For example, a normalized current change of 0.5–1 nA can be achieved
with a gate potential of 0.5 mV. The exact range can be further altered by controlling the
CNT density and the operation potential of the FET [28]. In addition, the measurements in
Figure 5b were taken with a source-drain current of 100 mV. Increasing this voltage will
increase the distinguishability between changes in current signatures, as seen in Figure 5a.
We therefore expect changes in network current induced by neural signals to be observable
with our CNT network devices.

Of the devices measured, the device with the lowest density, of 4 tubes/µm2, had the
greatest sensitivity to gating, and device sensitivity decreased as the density increased. This
trend is consistent with what we have seen in CNT thin film aptasensors where devices
with sparse network densities, near percolation, performed better at sensing [21]. This
result has significant importance for the tuning of CNT thin film properties for enhanced
neural sensor performance.

4. Discussion

Our simulations and measurements show that randomly aligned CNT networks have
the statistical fractal qualities required for the active layer of the proposed neural sensor.
Furthermore, our experiments highlight the dependence of the CNT network’s electrical
sensitivity on the network’s proximity to the percolation threshold. This provides an
opportunity to further tune the system qualities for enhanced sensor performance. To
explore the latter effect, we returned to the simulations to investigate the relationship
between electrical sensitivity and the fractal dimension D.

We simulated a series of CNT networks (with dimensions of 5 µm × 10 µm and tube
length of 1.4 µm) with densities within a narrow range, close to the percolation threshold.
The percolation threshold for these systems was estimated to be 1.05 tubes/µm2. For each
of the five different network sets simulated, we generated seven different densities and
computed the transfer characteristics. For each network, we determined the D value and
electrical sensitivity. Figure 6 shows the resulting normalized current change versus D
(bottom axis) and density (top axis).

Figure 6 is consistent with experimental results showing that network electrical sensi-
tivity dramatically increases as the system approaches percolation [20,21]. Near percolation
there are just a few conductive paths making any local changes to the current along the
path, such as that from a neuron firing, significant to the total network current. At densities
beyond the critical point, adding more tubes creates more paths, and this stabilizes the con-
ductive properties of the network. The evolution of D with the addition of tubes parallels
the evolution of the conductive properties of the network. As a result, the D value is an
important indicator of a system’s enhanced electrical sensitivity.

In theory, the best CNT film for sensing would be close to percolation, where sensitivity
is at its maximum. However, the variability in the conductive properties of networks
very close to the percolation threshold makes them too unreliable as working sensors.
For example, when simulating networks in the narrow range just past percolation, the
probability that networks have not yet formed a conducting path is more than 95%. For
example, 1 in 66 simulated networks with a density of 1.8 sticks/µm2 is percolated. This
value becomes 1 in 17 at a density of 2 sticks/µm2. Fortuitously, Figure 6 shows that
beyond the percolation threshold in the range when the D value begins to saturate, we see
still observe the significant normalized current responses necessary for sensing capacities.
We estimate that the device shown in Figure 5b is outside of the region shown in Figure 6
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and closer to the region when D begins to saturate. While this higher D value is not ideal,
the thin film still has the essential features from its statistical fractal structure (non-linearity
and inhomogeneity) for enhanced sensing.

Figure 6. Normalized change in current as a function of fractal dimension, D, and CNT density for
networks close to the percolation threshold, indicated with the blue dashed arrow.

Before concluding, we note that while the inhomogeneity within a given network
structure is an advantage for increasing the spatial accuracy of neuron detection, it intro-
duces a challenge for sensor calibration. Our sensors use a library of data in current space
which represents the measured current signature associated with different neuron locations
and signal strengths. This library could be calibrated using a controllable metal electrode,
which operates as an electrostatic gate to simulate neuron potentials. The gate would be
moved to specific locations in the CNT network while the current signature associated with
each electrode position is measured to create the calibration library. A 100 µm2 device with
a 20 µm electrode would require 25 measurements for calibration before operation. Because
each CNT thin film of the same density will have significant differences in the arrangement
of tubes (as seen in AFM images in Figure 4), each fabricated sensor will likely have a
unique library of current signatures. Consequently, each sensor might require individual
calibration before operation. However, combining calibration with device imaging could
make it possible to reduce the measurements necessary for individual device calibration.
For example, using machine learning to identify certain commonalities amongst CNT
network features and their resulting libraries, it might therefore be possible to simple image
each device to obtain its library.

5. Conclusions

We have taken the key initial steps in the application of CNT-based fractal sensing of
neural networks. We have used simulations and an experimental characterization of CNT
thin films as powerful tools to show that CNT random networks satisfy the criteria for the
fractal active layer of our proposed multi-electrode neural sensor. We have also shown
that a CNT network’s fractal dimension is linked to its electrical sensitivity. Our next step
will be to build the sensor and perform in-vitro investigations of its interaction with neural
networks. For these measurements, it will be important to determine the electrical impact
that the nutrient medium has on the CNT network conductance. To do this, the current
signature of the sensor will be measured for a number of nutrient mixtures in the absence
of neurons under experimental conditions similar to those for in-vitro measurements.
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Variations in these measurements will then provide a noise level for each of the currents
in the library and establish a baseline to which neuron network data can be compared.
Sensor performance will be assessed by comparing the electrical performance with two
photon calcium imaging [33]. Prior to these experiments, it will be important to explore
fabrication approaches aimed at lowering the D value of the CNT network to the optimal
value of 1.65—which will offer increased sensitivity whilst still being sufficiently far from
the threshold to fabricate reliably.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/3/636/s1, Figure S1: Raman spectra of CNT thin film.
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