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Abstract: Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated
nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes:
PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism
and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands
have been proposed as potential therapies for a variety of diseases such as metabolic syndrome,
cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies.
In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process
that plays important roles in numerous pathological conditions for which therapeutic use of PPAR
modulation has been suggested.

Keywords: peroxisome proliferator-activated receptor; angiogenesis; endothelial cells; signaling
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1. Introduction

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor
family. Three PPAR isotypes with different tissue distribution, ligand specificity, and metabolic
regulatory activities exist: PPARα, PPARβ/δ, and PPARγ. PPARs regulate many metabolic pathways
upon activation by endogenous ligands, such as fatty acids (FAs) and derivatives, or synthetic
modulators, which bind to the ligand-binding domain of the receptor, triggering a conformational
change. Subsequent recruitment of coactivators to the PPAR/retinoid X receptor heterodimer assembled
at specific DNA response elements, named PPAR responsive elements (PPREs), results in transactivation
or repression of target genes (reviewed in [1]).

PPAR expression in endothelial cells has been reported two decades ago [2] and all PPARs are
modulating angiogenesis. PPARα and PPARγwere identified to mediate anti-angiogenic processes,
in contrast, PPARβ/δ emerged as a pro-angiogenic nuclear receptor (reviewed in [3]). However,
today, there exist controversial results if PPAR ligands act as inhibitors or inducers of angiogenesis.
The intention of this review is to assess the data regarding the effects of PPAR modulation in distinct
in vitro and specific pathophysiological and therapeutic settings with the aim to provide practical
considerations for their use in different diseases implicating angiogenesis or vascular abnormalities.
The multiple functions of PPARs in modulation of metabolic disorders e.g., diabetes mellitus, obesity,
or non-alcoholic fatty liver disease are reviewed in detail elsewhere [1,4–8] and are beyond the scope
of this review.

2. PPARs and Cellular Models of Angiogenesis

In 1999, two independent papers showed that PPARs are expressed in endothelial cells (HUVEC
model) and treatment with PPARγ agonists inhibits proliferation, tube formation, [9] and migration [10]
and induces apoptosis [2]. These principle observations were confirmed nearly twenty years later using
a more sophisticated Tie2CrePPARγ(flox/flox) mouse model and isolation of pulmonary microvascular
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endothelial cells [11]. Different PPARγ agonists inhibited VEGF-and FGF-induced angiogenesis
in vitro [12–14]. These antiangiogenic effects of PPARγ activation were attributed to increased
endothelial nitric-oxide (NO) production and subsequent maxi potassium channel opening [15].
Alternatively, PPARγ agonists might inhibit angiogenesis by suppressing PKCα -and CREB-mediated
COX-2 expression in human endothelial cells [16] and activate p38 MAPK pathway and inhibit
phosphorylation of p42/44 MAPK, while VEGFs and FGFs only stimulate p38MAPK, but do not affect
p42/44 phosphorylation [17]. Importantly, treatment with PPARγ agonists also reduced expression
of VEGF receptors in HUVECs [9,18] although later the opposite result was published in the same
HUVEC model [19]. PPARγ agonists inhibited VEGF promoter activity and expression in endometrial
cells [20]. In bovine retinal endothelial cells, 15d-PGF2 and pioglitazone suppressed VEGFR2
expression and promoter activity due to interference with SP1 and SP3 binding [21]. In contrast, PPARγ
activation increased VEGF production in smooth muscle and macrophage cell lines [22,23], which
might not be pro-angiogenic as VEGF receptors are downregulated in endothelial cells in response to
PPARγ stimulation. In cardiac myofibroblasts, PPARγ activation induced VEGF and VEGF receptor
expression [24]. Also in a bladder cancer cell line, VEGF expression was upregulated in response
to stimulation with PPARα, PPARβ/δ, and PPARγ agonists, while another bladder cancer cell line
responded only to PPARβ/δ activation [25]. PPARβ/δ activation stimulated VEGF expression in breast
and prostate cancer and HUVEC cells and increased endothelial cell proliferation [26]. The in vivo
relevance of this observation remained unclear. Piqueras et al. showed that PPARβ/δ activation induces
VEGF expression, endothelial cell proliferation, aortic sprouting, and in vivo angiogenesis in Matrigel
plug assays [27]. More recent results show some different metabolic alterations of HUVEC cells in
response to VEGF or PPARβ/δ activation using GW0742 [28] and our group confirmed increased
endothelial cell proliferation of HUVEC cells as well as upregulation of pro-angiogenic gene expression
upon PPARβ/δ activation with GW0742 [29].

Also the angiogenic capacity of endothelial progenitor cells depends on PPARβ/δ, but also on COX-1
and PGI(2) synthase [30]. PPARβ/δ agonist treatment induced heme oxygenase-1 expression, which
renders endothelial cells in culture resistant to cellular stress induced by hydrogen peroxide or leptin [31].
PGC-1α represents an important co-regulator of PPARβ/δ for transcriptional activation of heme
oxygenase-1 [31]. In contrast to these findings, treatment with very high concentrations of PPARβ/δ

agonists inhibited VEGFR2 expression and in vitro angiogenesis of HUVECs [32]. Furthermore, the
PPARβ/δ ligand L-165041 was shown to inhibit VEGF-stimulated angiogenesis by suppressing the cell
cycle progression independently of PPARβ/δ [33].

Ibuprofen, an activator of PPARα [34], was found to increase expression of CD36, the
anti-angiogenic Thrombospondin-1 (TSP-1) receptor [35] in human melanoma cells [36]. In line with
an anti-angiogenic action of PPARα, it has been reported that Gypenoside XLIX, a naturally occurring
gynosaponin and natural PPARα agonist, as well as Wy14643, a synthetic PPARα agonist, inhibited
tissue factor (TF) promoter activity in human monocytes, which could be blocked by the selective
PPARα antagonist MK-886 [37]. TF expression in cancers contributes to a shift in the balance between
endogenous pro-angiogenic and anti-angiogenic factors thereby facilitating tumor progression [38].
Anti-angiogenic properties of pomegranate peel extract have been suggested to be mediated by PPARα
and PPARγ, as simultaneous treatment of HUVEC cells with pomegranate extract and antagonists
of PPARα and PPARγ inhibited the anti-angiogenic response of endothelial cells to pomegranate
extract [39]. The PPARα agonist fenofibrate inhibited endothelial cell proliferation, migration, tube
formation, and induced apoptosis at high concentrations, which was attributed to decreased Akt
activation and Cox-2 expression [40]. Targeting vascular NADPH oxidase 1 resulted in upregulation
of PPARα and subsequent inhibition of endothelial cell migration and tube formation, which is in
agreement with an anti-angiogenic role of PPARα [41]. The experimental PPARα agonist (R)-K-13675
reduced expression of inflammatory markers, but did not affect proliferation or tube formation of
human coronary endothelial cells [42]. Whether these effects are specific for the agonist or the cell line
remained unclear. Although all the experiments using cellular model systems described in this chapter
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contribute to the understanding of the molecular actions of PPARs in angiogenic modulation, it remains
unclear to what extent they describe the in vivo function of PPARs in influencing angiogenesis, as the
concentrations of compounds used largely differ and the PPAR expression and activation level in each
cell type might be different.

3. PPARs and Tumor Angiogenesis

3.1. PPARα

In non-melanoma skin cancer, PPARα expression was less likely to occur in actinic lesions and
squamous cell carcinoma than in normal skin, however, no correlation with microvessel densities could
be established. In contrast, PPARβ/δ was upregulated in malignant lesions and the observed PPARβ/δ

overexpression correlated with higher vessel densities in these tumor samples [43]. In contrast to these
findings in human tumors, an elegant in vivo study by Kaipainen and colleagues demonstrated that
PPARα favors tumor progression in mice. Using subcutaneous implantation of syngenic Lewis lung
carcinoma (LLC1) or B16 melanoma cells in PPARα deficient mice, the authors demonstrated that
tumor growth is prevented in the absence of PPARα. PPARα deficiency induced a strong inflammatory
response with an excess of TSP-1 production leading to suppression of tumor angiogenesis. Inhibition of
TSP-1 restored tumor growth and bone marrow transplantation and granulocyte depletion experiments
showed that PPARα expressing granulocytes, probably myeloid derived suppressor cells, are critically
involved in tumor angiogenesis and growth [44]. However, the same group demonstrated one
year later that treatment with the PPARα agonist fenofibrate inhibited tumor growth in syngenic
LLC1 or B16 melanoma tumor bearing mice, due to an increase of TSP-1 and inhibition of tumor
angiogenesis. The authors contribute this paradox of PPARα effect to a bi-phasic dose-response
curve of host tissue: Both, very high, or, in contrast, very low concentrations of PPARα result in
suppression of tumor angiogenesis [45]. In favor of an anti-tumorigenic PPARα action, Yokoyama and
colleagues reported that treatment with clofibric acid, a PPARα agonist, reduced ovarian cancer cell
growth and tumor angiogenesis in xenotransplanted animals. This was accompanied by a significantly
reduced expression of the pro-angiogenic factors prostaglandin E (2) (PGE(2)) and vascular endothelial
growth factor (VEGF) [46]. PPARα anti-angio-and tumorigenic action was further supported by
a study from Pozzi and coworkers. They demonstrated that PPARα agonists downregulate the
biosynthesis of epoxyeicosatrienoic acids, expoxygenase products, which are pro-angiogenic. Using a
PPARα-humanized mouse (hPPARα) model, where the human PPARα gene was introduced onto a
PPARα deficient background, they determined that tumor angiogenesis and growth were inhibited in
animals which received Wyeth (pirinixic acid, a potent PPARα agonist). They further demonstrated
a reduced endothelium-associated epoxygenase expression in the PPARα agonist administered
animals, concluding that the tumor-angiogenesis inhibition by PPARα activation involves reduced
vascular expoxygenase expression [47]. In line with this, PPARα agonists reduced expression of
epoxyeicosatrienoic acids, leading to decreased vascularization and growth of non-small cell lung
cancers in murine K-Ras or orthotopic models [48]. However, a recent study by Wu and colleagues
showed that the PPARα agonist AVE8134 indeed reduced epoxyeicosatrienoic acid fabrication, but
increased their hydroxyl product, 11-hydroxyeicosatetraenoic acids (11-HETE). 11-HETE in contrast
promote angiogenesis and tumor growth, therefore neutralizing the beneficial effect of the PPARα
agonist AVE8134. Addition of the cyclooxygenase (COX) inhibitor Indomethacin neutralized the
undesired effects of AVE8134 and restored the beneficial anti-tumor properties of PPARα agonism [49].
One mechanism favoring tumor angiogenesis is the inhibition of PPARα by the NADPH oxidase
NOX1. NOX1 deficient mouse liver endothelial cells displayed 5-fold higher PPARα levels than
their wildtype derived counterparts and impaired angiogenic properties, which could be rescued by
administration of the PPARα antagonist GW6471. Inducing syngenic LLC1 or B16 tumors, the authors
showed that NOX1 deficient mice displayed less tumor vascularization and growth. To further
consolidate the relevance of PPARα repression by NOX1 for tumor angiogenesis, the authors induced



Int. J. Mol. Sci. 2020, 21, 5723 4 of 22

syngenic tumors in PPARα deficient and wildtype mice and treated them with the NOX1 inhibitor
GKT136901. Tumor vascularization was inhibited in wildtype, but not in PPARα knockout animals,
which confirmed the repression of PPARα through NOX1 as an important event in favor of enhanced
tumor angiogenesis [41]. PPARα and PPARγ have also been suggested as mediators of the anti-angio-
and tumorigenic effects of pomegranate extract as their respective antagonists abolished the beneficial
effects of pomegranate extract on cancer vascularization and growth [39,50]. In contrast to these studies,
Huang and colleagues did not observe a reduction of tumor vascularization upon PPARα activation
with fenofibrate in mice bearing B cell lymphomas [51].

3.2. PPARβ/δ

The peroxisome-proliferator activated receptor PPARβ/δ favors tumor angiogenesis. As already
mentioned, PPARβ/δwas found to be overexpressed in malignant squamous cell carcinoma and its
expression correlated with higher vessel densities [43]. A supreme study confirmed the significance
of PPARβ/δ for tumor angiogenesis. Using cDNA arrays of human microvascular cells submitted
to pro-angiogenic stimuli, PPARβ/δwas identified to be the hubnode of the “angiogenic switch” in
cancers, marking the shift in the angiogenic balance to a pro-angiogenic state of the tumor, favoring
progression and metastasis. Correlation analysis of different human cancer types further confirmed
the link between high PPARβ/δ expression and advanced stage of tumor progression and metastasis.
These findings were confirmed in vivo using PPARβ/δ knockout mice bearing syngenic subcutaneously
implanted LLC1 lung or B16 melanoma tumors. Cancer growth and angiogenesis were found to be
dramatically reduced in PPARβ/δ deficient animals [52]. Müller-Brüsselbach and colleagues further
demonstrated a significantly diminished tumor blood flow due to a hyperplastic non-functional
microvasculature in LLC1 and B16 tumors of PPARβ/δ knockout mice, leading to the impairment of
tumor growth. PPARβ/δ had therefore been suggested to be a pre-requisite for microvessel maturation
and differentiation [53]. In human colorectal cancer samples, Yoshinaga and colleagues correlated
PPARβ/δ and cyclooxygenase 2 (COX-2) expression with VEGF expression, microvascular densities,
and incidence of venous vessel invasion. Their results suggested that simultaneous expression of
PPARβ/δ and COX-2 increased angiogenesis and metastasis in colon cancer, thereby worsening the
patients prognosis [54]. Recently, it has been demonstrated that high expression levels of PPARβ/δ in
cancer cells significantly contribute to tumor angiogenesis. Lung metastasis formation by tail vein
injection of different cancer cell types (B16 melanoma, LLC1 lung carcinoma, HCT116 colon carcinoma,
Panc-02 pancreatic carcinoma, and 4T1 breast cancer) was diminished upon knockdown of PPARβ/δ in
the cancer cells. The fewer lung metastases formed by the cancer cells with knockdown of PPARβ/δ

displayed significantly reduced microvessel densities. Angiogenic VEGF and Interleukin 8 expression
levels were dramatically reduced in cancer cells silenced for PPARβ/δ. These findings clearly indicate
that PPARβ/δ is pro-angio-tumorigenic independent of its source of expression: Normal host cells
which contribute to the tumor stroma or cancer cells [55]. Our group showed that treatment of LLC1
tumor bearing mice with the PPARβ/δ agonist GW0742 increased tumor angiogenesis and growth.
We then addressed the question if solely selective overexpression of PPARβ/δ in endothelial cells
would be sufficient to enhance tumor angiogenesis and growth independently of the status of PPARβ/δ

expression in cancer and non-endothelial host cells. To investigate this, we made use of mice with
inducible vascular specific overexpression of PPARβ/δ [56] with subcutaneously implanted LLC1
tumors. We observed increased tumor angiogenesis, growth, and metastasis formation upon vessel
specific overexpression of PPARβ/δ. RNA sequencing of tumor sorted endothelial cells revealed a high
number of upregulated pro-angiogenic genes in response to PPARβ/δ increase. By combining top
ten network analysis with a search for PPAR responsive elements, we identified the platelet-derived
growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) pathway, tyrosinkinase KIT
(c-Kit), and the VEGF/vascular endothelial growth factor receptor (VEGFR) pathway as mediators of
the pro-angiogenic tumor promoting effect of PPARβ/δ [29].
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3.3. PPARγ

In contrast to PPARβ/δ, most studies identified PPARγ as an inhibitor of tumor angiogenesis.
Although no upregulation or correlation with vascular density could be detected in skin squamous cell
carcinoma [43], PPARγwas less expressed in high grade and more vascularized gliomas than in low
grade gliomas which display less microvascular density. PPARγ expression in gliomas further positively
correlated with anti-angiogenic TSP-1 expression [57]. Panigrahy and colleagues demonstrated PPARγ
expression in tumor endothelium, reduced tumor growth and metastatic spreading of subcutaneously
implanted LLC1, glioblastoma, liposarcoma, and rhabdomyosarcoma upon treatment with the PPARγ
agonist rosiglitazone. Double-labeling of vessels for PPARγ and proliferating nuclear antigen (PCNA)
revealed significantly reduced endothelial cell proliferation in the tumor specimens from animals
which received rosiglitazone [58]. It has been further shown that PPARγ ligands increase the success of
tumor anti-angiogenic therapies with exogenous TSP-1 or its peptide derivative ABT510. The PPARγ
agonists 15d-PGJ2, rosiglitazone, and troglitazone increased TSP-1 receptor CD36 expression on
the endothelial cell surface, thereby improving the sensitivity to exogenous TSP-1 or its peptide
derivative ABT510 and inhibiting angiogenesis through induction of endothelial cell apoptosis.
Simultaneous PPARγ activation improved the anti-tumor activity of ABT510 in bladder carcinoma
bearing mice [59]. As already mentioned, PPARγ antagonists have been demonstrated to abolish
the beneficial effects of pomegranate extract in inhibition of tumor angiogenesis and growth [39,50].
PPARγ has also been shown to inhibit tumor angiogenesis and growth of A594 lung cancers in vivo
by blocking the production of CXCL1, CXCL5, and interleukin 8, or CXCL8 (CXC chemokines with
a specific amino acid sequence of glutamic acid-leucine-arginine (ELR) before the first cysteine of
the CXC motif (ELR-positive)). This is mediated through transcriptional inhibition of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) activity, a transcription factor which regulates
expression of chemokines [60]. The PPARγ agonist RS5444 inhibited tumor vascularization and growth
of xenotransplanted anaplastic thyroid carcinomas. Anti-tumor activity could be further enhanced
by combination therapy with paclitaxel chemotherapy [61]. Inhibition of tumor angiogenesis and
growth in vivo by PPARγ activation with thiazolidinediones has further been reported for ovarian
carcinoma [62,63], and pancreatic cancer [64]. Combination of radiotherapy with the PPARγ agonist
rosiglitazone enhanced the effectiveness of radiotherapy against tumor angiogenesis, distant metastasis
formation, and tumor recurrence in animal models with subcutaneous breast or colon cancer cell
implantation [65]. Berger and colleagues identified activation of suppressor of cytokine signaling 3
(SOCS3) by PPARγ agonists as another pathway implicated in suppression of tumor angiogenesis and
growth. Activation of SOCS3 by PPARγ inhibited differentiation of proinflammatory T helper (Th)
17 cells and their secretion of Interleukin (IL)-17. PPARγ activation with n-3 fatty acid docosahexaenoic
acid (DHA) in vivo inhibited tumor vascularization and progression in a IL-17 dependent manner, but
failed to reduce tumor vessel formation and growth in immunodeficient or IL-17 knockout animals,
suggesting that the tumor angiogenesis inhibiting effects of PPARγ activation depend on T cells
and the secretion of the pro-inflammatory cytokine IL-17 [66]. Deletion of PPARγ in the mammary
epithelium promoted mammary stem cell (MSCs) expansion favoring angiogenesis and breast cancer
growth. PPARγ deficient breast cancers were insensitive to chemotherapy, but normalization of the
abundant tumor vasculature with the anti-angiogenic drug sunitinib increased efficiency of cytostatic
chemotherapy. The PPARγ agonist rosiglitazone increased micro RNA miR-15a expression which
inhibited angiopoietin-1, resulting in decreased angiogenesis, MSC expansion, and tumor growth
in vivo [67]. In contrast to these studies, Tian and coworkers demonstrated that activated PPARγ
promoted tumor angiogenesis and growth in breast cancer. Ligand activation of PPARγ induces a
conformational change in the receptor, which the authors mimicked by mutation before introducing it
in NAFA cells derived from oncogenic MMTV-ErbB2 mice. They compared the constitutively active
PPARγ (PγCA) mutant with the wild-type PPARγ in ErbB2-induced mammary tumorigenesis by
implantation into immunocompetent FVB mice. Enhanced tumor growth associated with increased
angiogenesis and higher numbers of endothelial stem cells was observed in animals implanted with
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PγCA cells. Genome-wide expression profiling identified a group of genes within the angiogenesis
pathway, including angiopoietin-like 4 (Angptl4), fibroblast growth factor 1 (Fgf1), and pleiotrophin
(Ptn) as targets of activated PPARγ favoring tumor angiogenesis [68]. An important study from the
group of Michalik further cautions the risks of the use of thiazolidinedione PPARγ agonists in cancer
patients. They could not demonstrate any correlation of PPARγ expression with the different stages of
melanoma disease, but evidenced an increased release of pro-tumorigenic cytokines (Interleukin 1β (IL1
β, Interleukin 6 (IL6)), chemokines (granulocyte-macrophage colony-stimulating factor (GM-CSF)), and
angiogenic factors (angiopoietin-like 4 (ANGPTL4), Interleukin 8 (IL8)) by melanoma cells treated with
the thiazolidinedione rosiglitazone. The pro-tumorigenic secretome of rosiglitazone treated melanoma
cells activated nonmalignant stromal cells, fibroblasts, immune, and endothelial cells to promote tumor
growth in vivo. PPARγ activation with thiazolidinediones could therefore have deleterious effects
in patients with cancer [69]. In conclusion, PPARβ/δ clearly favors tumor angiogenesis (reviewed
in [70]). Although PPARα and PPARγ have initially been described as anti-angiogenic (reviewed
in [3]), conflicting results have been obtained over the time. The different approaches described in
this chapter are summarized in a simplified manner in Table 1. In vitro versus in vivo studies, the use
of immunodeficient mice displaying only a partial real response to in vivo tumor growth, different
behavior of divergent cancer cell types, differential dose-response kinetics, and cross-activation of
different PPARs upon ligand incitement contribute to the plethora of reasons for these conflicting
results. Unfortunately, in none of the clinical studies concerning the use of PPAR ligands in cancer
(listed in chapter seven), the effects on tumor vascularization have been investigated. Ultimately,
therapeutic modulation of any PPAR should be considered with great care given its potential activation
of tumor angiogenesis.

Table 1. PPAR Modulation in in vivo Studies of Tumor Angiogenesis.

PPAR Condition Final Effect on Tumor Angiogenesis Reference

PPARα PPARα knockout mice ↑ [44]
PPARα PPARα agonist fenofibrate ↓ [45]
PPARα PPARα agonist clofibric Acid ↓ [46]
PPARα PPARα agonist Wyeth (pirinixic acid) ↓ [47]
PPARα PPARα agonists bezafibrate and Wyeth-14,643 ↓ [48]
PPARα PPARα agonist AVE8134 ↑↓ [49]
PPARα PPARα repression by NOX1 inhibitor GKT136901 ↓ [41]
PPARα PPARα antagonist GW6471 ↓ [50]

PPARβ/δ PPARβ/δ knockout mice ↑ [52]
PPARβ/δ PPARβ/δ knockout mice ↑ [53]
PPARβ/δ PPARβ/δ knockdown in cancer cells ↑ [55]
PPARβ/δ PPARβ/δ agonist GW0742 ↑ [29]
PPARβ/δ Conditional vascular PPARβ/δ Overexpression ↑ [29]
PPARγ PPARγ agonist rosiglitazone ↓ [58]
PPARγ PPARγ agonists 15d-PGJ2, rosiglitazone, troglitazone ↓ [59]
PPARγ PPARγ antagonist T0070907 ↓ [50]
PPARγ PPARγ agonists troglitazone, pioglitazone ↓ [60]
PPARγ PPARγ agonist RS5444 ↓ [61]
PPARγ PPARγ agonist ciglitazone ↓ [46,62,63]
PPARγ PPARγ agonist rosiglitazone ↓ [64]
PPARγ PPARγ agonist rosiglitazone ↓ [65]

PPARγ PPARγ activation with n-3 fatty acid
docosahexaenoic acid (DHA) ↓ [66]

PPARγ PPARγ agonist rosiglitazone ↓ [67]

PPARγ Insertion of a constitutively active PPARγ (PγCA)
mutant in cancer cells ↑ [68]

PPARγ PPARγ agonist rosiglitazone ↑ [69]

↑ Indicates an increase, ↓ represents a reduction.

4. PPARs and Cardiovascular Disease

Endothelial dysfunction is a typical feature of type 2 diabetes. Endothelial progenitor cells
(EPC) contribute to angiogenesis and endothelial function. Pistroch et al. showed that the migratory
function of EPCs is reduced in diabetic patients compared to controls and rosiglitazone treatment



Int. J. Mol. Sci. 2020, 21, 5723 7 of 22

normalized the migratory function and increased the number of EPCs [71]. In diabetic mice, blood
flow recovery was impaired after hindlimb ischemia compared to non-diabetic controls. Treatment
with PPARγ agonists partially restored blood flow recovery and increased the capillary density in
ischemic hindlimbs of control and diabetic mice [72] and in muscles of diabetic rats [73]. These positive
effects of PPARγ agonist treatment were NO-dependent and related to eNOS upregulation [74]. Also
peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) contributes to recovery
from hindlimb ischemia via direct induction of VEGF expression independent on hypoxia-inducible
factor 1 (Hif-1) [75].

Coronary arteriosclerosis with lumen obstruction is frequently treated with angioplasty. After
angioplasty, inflammation, adventitial angiogenesis, constrictive remodeling and intimal hyperplasia
result in re-stenosis. Kasai et al. demonstrated that treatment with the PPARα agonist fenofibrate
reduced inflammation, angiogenesis, and re-stenosis in a porcine angioplasty model [76]. However,
the PPARα agonist fenofibrate induced angiogenesis in the rat hindlimb ischemia model and in the
myocardium of diabetic rats [77,78]. Whether these differences are related to the investigated species
or the doses and time frame remains an open question. Importantly, fenofibrate reduced the risk for
first and minor amputations in diabetic patients in the Fenofibrate Intervention and Event Lowering in
Diabetes (FIELD) study [79], which was probably through non-lipid mechanisms and might involve
induction of angiogenesis. Deng et al. showed that fenofibrate normalizes the function of endothelial
progenitor cells in diabetic mice, which led to increased angiogenesis and accelerated wound closure.
This was attributed to an increase in NO production and inhibition of the Nod-like receptor protein 3
inflammasome pathway [80].

In rats with focal cerebral ischemia, treatment with the PPARγ agonist rosiglitazone increased
angiogenesis, improved functional recovery, reduced apoptosis, and diminished the lesion size [81].
In human aortic segments with early atheromatous lesions, however, endogenous lipid mediators of
PPARγwere enriched in the intimal layer, which was associated with enhanced VEGF production of
smooth muscle cells in the media layer and subsequent increased angiogenesis. PPARγ antagonists
blocked these effects while rosiglitazone mimicked the pro-angiogenic effects [82]. These findings seem
to be in contrast to the in vitro angiogenesis data for PPARγ, but are highly relevant as they take into
account the interplay between the different human cell types in situ. As angiogenesis favors intraplaque
hemorrhage and plaque rupture, a potential use of PPARγ agonists in the setting of atherosclerosis
should be considered with care. Small clinical trials showed some benefits of pioglitazone on plaque
inflammation [83], and reduction of systolic and diastolic blood pressure, a decrease in the duration
and frequency of angina attacks, regression of atherosclerosis of the carotid vessels, and decrease
in the thickness of the intima-media complex [84]. A decrease in intima-media complex thickness
in response to pioglitazone treatment had been described already earlier [85]. Pioglitazone did not
affect endothelin-1 activity as the main endpoint in another clinical trial [86], but reduced aortic
stiffness, rheumatoid arthritis disease activity and CRP levels in patients with rheumatoid arthritis [87].
Pioglitazone as well as fenofibrate treatment of obese, glucose tolerant men reduced inflammation,
improved markers of endothelial function and reduced arterial stiffness [88]. In larger clinical studies,
the dual PPARα/γ agonist aleglitazar (AleCardio and ALEPREVENT randomized clinical trials) showed
no significant improvement of cardiovascular disease, but multiple significant side effects [89–92].
In the PROactive study, pioglitazone reduced cardiovascular complications [93], while independent
studies showed that rosiglitazone increased the rate of cardiovascular death [94,95]. These effects are
most likely no related to angiogenesis, but due to their differing effects on lipid levels [4,5,96].

Pharmacological PPARβ/δ activation in mice resulted in rapid remodeling of muscles with
an increase in oxidative fibers, myonuclear accretion, and angiogenesis [97,98]. Furthermore,
exercise-induced angiogenesis in skeletal muscle requires the presence of PGC-1α as co-activator. Mice
lacking PGC-1α were not able to respond to exercise with an increase in muscle angiogenesis [99].
Five years later, Han and colleagues claimed that the role of PPARβ/δ activation in vascular biology
and skeletal muscle is widely unknown and reported increased angiogenesis and muscle regeneration
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in a hindlimb ischemia model in mice in response to GW501516 treatment, which was attributed
to direct MMP9 activation followed by degradation of insulin-like growth factor-binding protein 3
and resulting IGF-1 receptor activation in surrounding target cells [100]. Also treatment with the
PPARβ/δ agonist GW0742 or the pan PPAR agonist bezafibrate or a Chinese traditional medicine
compound which activates PPARβ/δ increased capillary density in the hindlimb ischemia model
in control and diabetic rats and mice [101–103]. In the heart, pharmacological PPARβ/δ activation
induced rapid onset angiogenesis and cardiac hypertrophy without functional impairment, which we
could attribute to direct transcriptional activation of calcineurin [104]. These modifications resembled
exercise-induced phenotypes and thus, were in line with potential therapeutic benefits. However,
it remained unclear whether pharmacological PPARβ/δ activation in the heart acts on cardiomyocytes,
which secondary leads to increased vascularization or the opposite. Thus, we generated a model with
inducible endothelial-specific overexpression of PPARβ/δ. These mice showed increased angiogenesis
and cardiac hypertrophy suggesting that cardiomyocyte growth is secondary to the angiogenic process
in this model. Surprisingly, functional recovery after experimental myocardial infarction was not
improved, but cardiac fibrosis increased [56,105]. A similar observation of increased angiogenesis and
fibrosis without functional benefit after infarction in rats treated with a pharmacological PPARβ/δ

agonist was published by Park et al. [106]. Hypertrophy was not investigated in this study in detail.

5. PPARs and Ocular Angiogenesis

Xin et al. did not only investigate in vitro angiogenesis, but also used a rat corneal angiogenesis
assay. They mechanically wounded the cornea and locally applied VEGF, which increased angiogenesis.
This response was blunted by co-administration of a PPARγ agonist [9]. This finding was confirmed
in choroidal neovascularization models in rats and monkeys [107]. Curiously, a similar result was
published later using the PPARγ agonist pioglitazone. VEGF increased ocular angiogenesis. Addition
of pioglitazone did not have a significant effect; nevertheless the authors concluded that pioglitazone
reduced ocular angiogenesis [108]. Dietary supplementation withω-3 long-chain polyunsaturated fatty
acids reduced lesion sizes in a model of age-related macular degeneration in mice, which was attributed
to upregulation and activation of PPARγ and reduced angiogenesis. 17,18-epoxyeicosatetraenoic acid
and 19,20-epoxydocosapentaenoic acid were identified as key lipid mediators of disease resolution [109].
These data are in agreement with the studies mentioned above suggesting an antiangiogenic role
of PPARγ in ocular disease. Unfortunately, besides these exciting findings in mice, ω-3 long-chain
polyunsaturated fatty acid supplementation did not become a cure for age-related macular degeneration
in humans. In patients treated with the PPARγ agonist rosiglitazone, the onset of proliferative diabetic
retinopathy was delayed and the vision loss reduced compared to the control group, which was
attributed to reduced angiogenesis [110]. In line with this, 4-hydroxy-docosahexaenoic acid, a natural
5-lipoxygenase catalyzed product fromω-3 polyunsaturated fatty acids effectively reduced pathological
retinal neovascularization in a mouse model of oxygen-induced retinopathy via PPARγ [111,112].
Also 15-lipoxygenase-1 gene transfer decreased pathological retinal angiogenesis in a comparable
model via PPARγ and down-regulation of Vegfr-2 [113]. In a mouse model of ischemic retinopathy,
animals receiving an intravitreal injection of peroxisome proliferator-activated receptor-γ coactivator-1α
(PGC-1α) showed increased VEGF levels in the retina and enhanced angiogenesis [114]. Whether
this intravitreal injection of a normally nuclear expressed PPAR co-activator is relevant for retinal
pathologies is questionable.

In the murine corneal model of angiogenesis, Pola et al. determined that prostacyclin analogues,
which act non-specifically on PPARs, induce angiogenesis via VEGF upregulation while cicaprost, a
prostacyclin analogue acting on IP receptors, but not on PPARs failed to induce angiogenesis [115].
Later, the same group confirmed that PPARα (WY14643) or PPARγ (GW1929) activation induces corneal
angiogenesis in a VEGF-dependent manner [116]. WY14643 increased IL-1β-induced inflammatory
cytokines in primary human corneal epithelial cells, keratocytes, and retinal endothelial cells and
upregulated VEGF expression in corneal epithelial cells and keratocytes suggesting a proinflammatory
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and proangiogenic role of PPARα in ocular cells [117]. However fenofibrate suppressed retinal and
choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα in vitro
as well as in mice in vivo [118]. Very high doses of the pan PPAR agonist bezafibrate inhibited
inflammatory responses and VEGF expression in retinal microvascular endothelial cells and human
retinal pigment epithelial cells [119]. In the Fenofibrate Intervention and Event Lowering in Diabetes
(FIELD) study, the requirement for laser treatment for all retinopathy was significantly lower in the
fenofibrate group than in the placebo group independent on plasma lipid levels [120] suggesting a
function on angiogenesis.

The PPARβ/δ agonist GW0742 increased retinal endothelial cell tubulogenesis, while the antagonist
GSK0660 reduced tube formation in a dose-dependent manner. More importantly, GSK0660 was able
to inhibit ocular neoangiogenesis and inflammation in a rat model of hyperoxia/hypoxia [121,122]
while GW501516 inhibited re-epithelialization and induced angiogenesis in corneal wounds [123].
GSK0660 blocked the effect of TNFα on the expression of cytokines involved in leukocyte recruitment
i.e., CCL8, CCL17, and CXCL10 and thus the authors concluded that it might block TNFα-induced
retinal leukostasis [121,124]. Choroidal neovascular lesions were smaller in aged PPARβ/δ knockout
compared to wild-type mice and GSK0660 resulted in a significant inhibition of neovascular lesion
size, and extracellular matrix deposition in aged mice [125].

6. PPARs and Rheumatoid Arthritis

Arthritis is an inflammatory joint disease, which is in the early phase characterized by
vascularization and inflammation. Already in the 1990s, it had been reported that PPARγ activation
inhibits macrophages/monocytes and the inflammatory cytokine production, which are important
for arthritis [126,127]. Consequently, PPARγ activation reduced experimental arthritis [128–132] and
cartilage-specific knockout of PPARγ resulted in development of osteoarthritis in mice [133,134].
PPAR activators partially inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and
monocyte binding to human aortic endothelial cells [135].

A pilot clinical study by Bongartz et al., using pioglitazone showed positive responses in 6 out of
10 patients. As major side effects, edema and weight gain were observed [136]. Given the nature of
the study, angiogenesis and inflammation in the joints could not be investigated in detail. In another
small clinical trial, pioglitazone only modestly reduced rheumatoid arthritis disease activity [137] and
vascular function [138]. Morin, a flavonoid from dietary plants was identified as PPARγ agonist, which
attenuates synovial angiogenesis and arthritis via the PPARγ-PTEN-PI3K/Akt pathway [139].

PPARα activation with fenofibrate was first reported in a clinical case study for the treatment of
rheumatoid arthritis [140]. In a following experimental study, it was shown that fenofibrate treatment
inhibits NF-kappaB activation, cytokine production, and the development of rheumatoid arthritis [141].
Fenofibrate treatment resulted in improvement of osteoarthritis symptoms, reduction in triglyceride
levels, decreased circulating IL-10 levels, while circulating endothelial progenitor cell counts were
unaffected in another small pilot study [142].

Most of the studies mentioned above focused on the role of PPARs in modulation of inflammation,
cartilage, and fibroblast function. Only studies which to some extend paid attention to the angiogenic
process or endothelial progenitor cells were described here.

7. PPARs and Uterine and Placental Angiogenesis

PPARγ is highly expressed in cytotrophoblasts and syncytiotrophoblasts in human placentas and
in the trophoblast zone of rodents [143–145]. In addition, PPARα and PPARβ/δwere detected in the
syncytiotrophoblast layer of human and rodent placentas [146–148].

Knockout of PPARγ in mice results in lethality between day 9.5 and 11.5 of embryonic development
due to placental defects [149,150]. To explore whether this placental defect was the only cause of
embryonic lethality in PPARγ knockout embryos, Nadra et al., established an epiblastic-specific
deletion strategy of PPARγ to demonstrate that the expression of PPARγ in the placenta is sufficient
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to rescue the embryonic lethality of PPARγ knockout embryos [151,152]. Rosiglitazone treatment in
wild-type mice during later stages of embryonic development resulted in a disorganization of the
placental layers and an altered placental microvasculature, accompanied by decreased expression
of proangiogenic genes such as Prl2c2, vascular endothelial growth factor, and Pecam1 [151], which
points to the limitations of the use for PPARγ agonists for the treatment of metabolic syndrome during
pregnancy. In line with this, treatment of pregnant rats with the PPARγ antagonist T0070907 induced
key features of preeclampsia, including elevated mean arterial blood pressure, proteinuria, endothelial
dysfunction, reduced pup weight, and increased platelet aggregation. VEGF levels were reduced
and plasma soluble fms-like tyrosine kinase 1 increased in response to the treatment. Placentas of
T0070907-treated rats were less differentiated, had increased cellular proliferation, and were strongly
positive for CD-31 staining indicating increased angiogenesis [153]. In contrast in pigs, adhesive,
proliferative and migratory capabilities of endothelial cells were potentiated by rosiglitazone and
suppressed by T0070907 [154].

In a mouse model of endometriosis, Nenicu et al. described that telmisartan, a partial agonist
of PPARγ, which additionally blocks angiotensin II type 1 receptors, reduced functional microvessel
density and blood perfusion, inhibited immune cell infiltration and cell proliferation which resulted
in smaller lesion sizes [155]. How this ectopic tissue transplantation in mice translates to the human
situation remained an open question.

Also knockout of PPARβ/δ has been shown to result in placental defects and midgestation lethality
in the majority of embryos [156]. PPARβ/δ plays a central role at various stages of pregnancy; while
maternal PPARβ/δ is critical to implantation and decidualization, embryonic PPARβ/δ is vital for
placentation [157]. Treatment of pregnant rats with the PPARβ/δ agonist GW501516 induced placental
malformations [158]. Angiogenesis or vessel density were unfortunately not determined in detail in
this model.

8. PPAR Modulators in Clinical Studies

Given the interest in therapeutic PPAR modulation it is astonishing to note that only few
clinical trials, most of them concerning cancer, are listed in the major clinical trials database
(https://clinicaltrials.gov) (Table 2). Only in one trial concerning cardiovascular disease and rheumatoid
arthritis, effects of PPAR regulation on angiogenesis were investigated [87]. This is unfortunate in the
case of cancer trials, given the tumor-promoting effects of angiogenesis which might even dominate
anti-proliferative actions of PPAR modulators on tumor cells [29]. Use of PPAR modulators in the
therapy of cardiovascular diseases is likely to influence angiogenesis which in turn affects the outcome
of such therapies [159]. As PPAR modulation regulates ocular and uterine angiogenesis, it is of
great importance to investigate the effects on angiogenesis in therapeutic interventions using PPAR
regulators against diabetic retinopathy or endometriosis, as both pathologies depend on an excessive
vascularization [160,161], which is also the case in rheumatoid arthritis [162]. Therefore, taking into
account the effects on angiogenesis in clinical studies implying PPAR regulators might help for a better
understanding of the clinical outcomes of such trials.

Table 2. PPAR modulators in Clinical Studies Related to This Review 1.

Identifier Condition Intervention Outcome

NCT00627653
Effect of a PPAR-Alpha Agonist on the
Age-Related Changes in Myocardial

Metabolism and Mechanical Function

Cardiovascular
Diseases

fenofibrate
(PPARα agonist) NC 2

NCT00408434
Study of an Experimental New Drug, PPAR
Agonist Taken by Mouth by Patients With

Advanced or Metastatic Cancer

Neoplasm
CS-7017

(efatutazone, PPARγ
agonist)

[163], angiogenesis or effects on
vascular cells not investigated

https://clinicaltrials.gov
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Table 2. Cont.

Identifier Condition Intervention Outcome

NCT00212004
Pioglitazone Protects Diabetes Mellitus

(DM) Patients Against Re-Infarction (PPAR
Study)

Diabetes Mellitus
Myocardial Infarction

pioglitazone
(PPARγ agonist) NC 2

NCT00554853
PPAR-gamma Agonists, Rheumatoid
Arthritis and Cardiovascular Disease

(RAPPAR)

Cardiovascular
Disease

Rheumatoid Arthritis

pioglitazone
(PPARγ agonist)

Sublingual
nitroglycerine

[87], vasculoprotective effects

NCT00318617
Effect Of GW501516X On How The Heart

Obtains And Uses Energy

Dyslipidemias
Heart Failure

GW510516X
(PPARβ/δ agonist) NC 2

NCT02152137
A Phase 2 Study of Efatutazone, an Oral

PPAR Agonist, In Combination With
Paclitaxel in Patients With Advanced

Anaplastic Thyroid Cancer

Thyroid Cancer
CS-7017

(efatutazone, PPARγ
agonist)

[164], Angiogenesis not
investigated

NCT00099021
Pioglitazone Hydrochloride in Preventing
Head and Neck Cancer in Patients With

Oral Leukoplakia

Head and Neck
Cancer

pioglitazone
(PPARγ agonist)

71% PR 3; 10% SD 4; 19% PD 5;
Angiogenesis not investigated

NCT00003058
Troglitazone in Treating Patients With

Liposarcoma
Sarcoma troglitazone

(PPARγ agonist)
[165], Angiogenesis not

investigated

NCT00004180
Rosiglitazone in Treating Patients With

Liposarcoma
Sarcoma rosiglitazone

(PPARγ agonist) NC 2

NCT00616642
Rosiglitazone in Treating Patients With

Pituitary Tumors

Brain and Central
Nervous System

Tumors

rRosiglitazone
(PPARγ agonist)

Terminated due to low patient
recruitment

NCT02249949
Efatutazone Dihydrochloride in Treating
Patients With Previously Treated Myxoid
Liposarcoma That Cannot Be Removed by

Surgery

Liposarcoma efatutazone
(PPARγ agonist)

0 out of 11 Complete Response or
Partial Response

NCT00552747
Effect of Fenofibrate on Endothelial

Function and High-density Lipoproteins
(HDL) in Patients With Coronary Heart

Disease

Coronary heart
disease,

hyperlipidemia

fenofibrate
(PPARα agonist) NC 2

NCT00322140
CDDO to Treat Solid Tumors and

Lymphomas

Solid tumors
Lymphoma

CDDO
(PPARγ agonist) NC 2

NCT01927315
Effects of Fenofibrate on Endothelial

Progenitor Cells in Diabetes
Diabetic Retinopathy fenofibrate

(PPARα agonist) NC 2

NCT03829436
TPST-1120 as Monotherapy and in

Combination With (Nivolumab, Docetaxel
or Cetuximab) in Subjects With Advanced

Cancers

Advanced Cancers TPST-1120
(PPARα antagonist) NC 2

NCT00115661
Use of Rosiglitazone in the Treatment of

Endometriosis
Endometriosis rosiglitazone

(PPARγ agonist) NC 2

NCT03345901
PROMINENT-Eye Ancillary Study

(Protocol AD)

Diabetic Retinopathy
Diabetic Macular

Edema

pemafibrate
(PPARα agonist) NC 2

NCT01199068
CS-7017 in Combination With Erlotinib in
Subjects With Stage IIIb/IV Non-small Cell

Lung Cancer (NSCLC)

Non-Small-Cell Lung
Carcinoma

CS-7017
(efatutazone, PPARγ

agonist)
NC 2
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Table 2. Cont.

Identifier Condition Intervention Outcome

NCT01199055
CS-7017 in Combination With

Carboplatin/Paclitaxel in Subjects With
Stage IIIb/IV Non-small Cell Lung Cancer

(NSCLC)

Non-Small-Cell Lung
Carcinoma

CS-7017
(efatutazone, PPARγ

agonist)
NC 2

NCT02852083
A Trial With Metronomic Low-dose

Treosulfan, Pioglitazone and
Clarithromycin Versus Standard Treatment

in NSCLC (ModuLung)

Squamous Cell Lung
Cancer

Non-Squamous Cell
Lung Cancer

Non-Small Cell Lung
Cancer

pioglitazone
(PPARγ agonist)

+
nivolumab, treosulfan,

clarithromycin

NC 2

NCT01504490
Phase I Study of CS-7017 and Bexarotene

Solid Tumors
Lymphoma

Multiple Myeloma

CS-7017 (efatutazone,
PPARγ agonist) and

Bexarotene
NC 2

NCT00923949
Pioglitazone to Treat Adults Undergoing
Surgery for Non-small Cell Lung Cancer

Non-Small-Cell Lung
Carcinoma

pioglitazone
(PPARγ agonist)

Terminated due to low accrual
Angiogenesis not investigated

NCT00951379
Pioglitazone for Oral Premalignant Lesions Oral Leukoplakia pioglitazone

(PPARγ agonist)

Terminated due to slow accrual
46% response in drug group;

32% response in placebo group
Angiogenesis not investigated

1 Clinical Studies were identified from the Clinical Trials Database of the National Institute of Health (https:
//clinicaltrials.gov); 2 NC: Not communicated. 3 PR: Partial response. 4 SD: Stable disease. 5 PD: Progressive disease.

9. Conclusions

Several in vitro and animal in vivo studies suggest that mainly PPARγ, but also PPARα has
antiangiogenic effects. Agonists for both nuclear receptors are in clinical use. PPARβ/δ in contrast
has pro-angiogenic functions. Therefore, a potential pharmacological application might be critical in
the settings of cancer. In general, small clinical studies showed some positive outcomes for the above
described pathophysiological conditions. Nevertheless, for a clinical benefit, not only endothelial
function and angiogenesis have to be considered, but also the interplay between the different cellular
systems i.e., vascular, immune and stromal cells.

In general, the concept of the role of angiogenesis for therapeutic interventions should be critical
revised as for example we and others showed that PPARβ/δ stimulation induces angiogenesis in the
heart, but unexpectedly this had no positive functional effects after myocardial infarction. Similar effects
might play a role under several pathophysiological situations, which makes it necessary to investigate
not only the angiogenic process, but also functional consequences. The influence of PPAR modulation
on angiogenesis remains an extremely interesting topic and should be taken into account seriously
when considering PPAR regulators for therapeutic use in pathological conditions strongly depending
on angiogenesis. Currently, the role of modulated angiogenesis through therapeutic intervention via
PPAR modulation presented in this review is a hypothesis based on mainly experimental studies.
Further large-scale clinical trials would be needed to justify this application.
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Abbreviations

Akt Protein kinase B
Angptl4 angiopoietin-like 4
CD36 cluster of differentiation 36
c-Kit tyrosinkinase KIT
Cox-2 Cyclooxygenase-2
CREB c-AMP Response Element-binding protein
CRP C-reactive protein
CXCL chemokine (C-X-C motif) ligand
EPC Endothelial progenitor cells
eNOS Endothelial NO synthetase
Fgf fibroblast growth factor
GM-CSF granulocyte-macrophage colony-stimulating factor
11-HETE 11-hydroxyeicosatetraenoic acid
Hif Hypoxia-inducible factor
HUVEC Human umbilical vein endothelial cell
IL Interleukin
K-Ras Kirsten rat sarcoma viral oncogene homolog
MAPK Mitogen-activated protein kinase
miR micro RNA
MSC mammary stem cell
NC not communicated
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NO Nitric oxide
NOX NADPH oxidase
PD Progressive disease
PDGF platelet-derived growth factor
PDGFR platelet-derived growth factor receptor
PGC-1α peroxisome-proliferator-activated receptor-gamma coactivator-1alpha
PGE(2) prostaglandin E2
PGI2 Prostacyclin
PKC Protein kinase C
PPAR Peroxisome proliferator-activated receptor
PPRE PPAR responsive elements
PR partial response
Ptn pleiotrophin
RNA Ribonucleic acid
SD Stable disease
SOCS3 suppressor of cytokine signaling 3
TSP-1 Thrombospondin-1
TF Tissue factor
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
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