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Abstract 

Background:  The Open Targets (OT) Platform integrates a wide range of data sources 
on target-disease associations to facilitate identification of potential therapeutic drug 
targets to treat human diseases. However, due to the complexity that targets are 
usually functionally pleiotropic and efficacious for multiple indications, challenges in 
identifying novel target to indication associations remain. Specifically, persistent need 
exists for new methods for integration of novel target-disease association evidence 
and biological knowledge bases via advanced computational methods. These offer 
promise for increasing power for identification of the most promising target-disease 
pairs for therapeutic development. Here we introduce a novel approach by integrating 
additional target-disease features with machine learning models to further uncover 
druggable disease to target indications.

Results:  We derived novel target-disease associations as supplemental features to OT 
platform-based associations using three data sources: (1) target tissue specificity from 
GTEx expression profiles; (2) target semantic similarities based on gene ontology; and 
(3) functional interactions among targets by embedding them from protein–protein 
interaction (PPI) networks. Machine learning models were applied to evaluate feature 
importance and performance benchmarks for predicting targets with known drug indi-
cations. The evaluation results show the newly integrated features demonstrate higher 
importance than current features in OT. In addition, these also show superior perfor-
mance over association benchmarks and may support discovery of novel therapeutic 
indications for highly pursued targets.

Conclusion:  Our newly generated features can be used to represent additional 
underlying biological relatedness among targets and diseases to further empower 
improved performance for predicting novel indications for drug targets through 
advanced machine learning models. The proposed methodology enables a powerful 
new approach for systematic evaluation of drug targets with novel indications.

Keywords:  Open targets, Drug discovery, Machine learning, XGBoost, Target indication 
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Background
The Open Targets (OT) platform (https://​www.​targe​tvali​dation.​org/) originated in 
2014 as the Center for Therapeutic Target Validation (CTTV). The platform is a pub-
lic–private research partnership aimed at integration of multiple target-disease linkage 
evidences and supporting the development of exploratory methods to facilitate drug 
target selection and validation [1]. A broad range of target-disease association features 
are aggregated in OT from public domain information sources, specifically genetic asso-
ciation, somatic mutation, pathway biology, transcriptomics, text mining, animal model, 
and known drug status. Summarized association features in Open Targets are reported 
for target-disease pairs as computed association scores for these relationships [2]. As the 
accumulation of data continues, the Open Targets platform has consolidated evidence 
for over 11 million potential target-disease pairs in the latest 21.04 release (https://​blog.​
opent​argets.​org/​next-​gen-​platf​orm-​relea​sed/). The consolidated target-disease asso-
ciation pairs have the potential to be usefully explored via data mining and algorithmic 
methods. OT currently serves as an important resource for academic and pharmaceuti-
cal industry scientists for generating hypotheses on new target-disease relationships as 
well as for drug repurposing and target indication expansion, among other activities [3].

There exist a number of studies that have already reported the use of OT data for 
such applications. For instance, Freudenberg et  al. introduced a systematic approach 
for utilizing Open Targets platform data to prioritize potential new disease indications, 
specifically for G-protein coupled receptors and their ligands. Targeting of GPR35 for 
inflammatory bowel disease and CXCR4 for viral infection were illustrated as interesting 
hypotheses derived from this approach [4]. In another study by Khaladkar et al. [5], the 
authors proposed a workflow which computes target-disease score thresholds to mine 
Open Targets platform data for repositioning opportunity identification, in which viti-
ligo was identified as a potential indication for target melanocortin 1 receptor (MC1R). 
Shaher et al. performed a comprehensive review on OT data to prioritize and identify 
the novel targets associated with diabetic cardiomyopathy. Several targets have been 
identified by narrowing down the OT evidence with exclusion criteria [6]. The discover-
ies from these methods were mostly based on setting certain filtering criteria. Mean-
while there were also pioneer studies that have shown the potential power of data-driven 
approaches using machine learning models on OT data for drug-target identification 
tasks, where the models can learn patterns of disease to target associations without prior 
biological dependency information. Ferrero et  al. [7] constructed four machine learn-
ing models to predict whether a gene is a drug target or non-target using five OT data 
types (genetic association, somatic mutation, pathway biology, RNA-expression, animal 
model) as input features. Their work assessed feature importance for target identification 
and showed that gene-disease linkage evidence was sufficient to predict novel therapeu-
tic targets effectively, confirming that those types of evidence were essential. However, 
machine learning approaches in their work were mainly focused on predicting whether 
a gene is a drug target or non-target, while the task of predicting drug targets and their 
novel indications has not yet been fully explored.

Novel target-disease indication searches present unique and challenging problems for 
computational scientists. Despite the vast number of target-disease association pair-
ings already integrated on the Open Target platform, many drug targets are functionally 

https://www.targetvalidation.org/
https://blog.opentargets.org/next-gen-platform-released/
https://blog.opentargets.org/next-gen-platform-released/


Page 3 of 19Han et al. BMC Bioinformatics          (2022) 23:232 	

pleiotropic and thus might be good targets for multiple indications or might have asso-
ciations diseases which are not compatible with compounds under study. This creates 
challenges when using Open Targets to generate strong target-indication hypotheses due 
to the limited number of features on these pairs available to distinguish among them. 
For example, while genetic association evidence among target-disease pairs reflects the 
current state of scientific knowledge of their relatedness, the platform does not include 
aggregated evidence on target tissue-specific biological relatedness. Lacking this infor-
mation, searches overlook the fact that genes co-expressed in the same tissues may share 
higher-level processes that functionally connect them [8], and tissue-specific co-expres-
sion patterns could even contain alternative targets for a disease. Another limitation of 
OT is the lack of interconnectivities among targets, which would be expected to reflect 
relevant and disease-implicated biological processes. Targets which participate together 
in disease-relevant pathways may not share a disease term if only one of these targets 
has been studied relative to the disease of interest, however, these relationships would 
become more discoverable if biological interconnectedness could be further linked in an 
information network model (Fig. 1a). Such target interconnectivities have been consid-
ered as potentially capturing evidence of some not-yet-known relationships [9]. Addi-
tionally, the semantic similarity between Gene Ontology (GO) terms is an essential step 
in bioinformatics research to study gene functional similarities [10]. This functional sim-
ilarity is very informative for drug repurposing as genes with high functional similari-
ties have a greater probability of being implicated in a same phenotype or disease [11]. 
However, integration of such data sources is not yet available through the Open Target 
platform.

To date, these limitations have restricted OT target-disease discovery performance 
and motivate us to develop and evaluate a novel approach, which starts with the inte-
gration OT association information with additional target-disease biological relatedness 
features which are then evaluated for prediction of target-disease therapeutic status by 
machine learning model training and prediction. We hypothesized that the integration 
of newly generated features would further strengthen the representation of underlying 
biological relatedness among targets and diseases, and that inclusion of these novel fea-
tures could boost power and accuracy for the identification and prioritization of target-
indications pairs for drug discovery.

Here, we present the key steps in our approach. First, we generated new target-disease 
association features as a product of a known target-indication matrix and target-target 
similarity matrices derived from our orthogonal information resources. Our proposed 
method represents a novel drug discovery-specific adaptation of collaborative filter-
ing [12] in recommender systems, where the user-item matrix is inferred as the prod-
uct of item-factor and user-factor matrices, with factors learned from experimental 
data(Fig. 1b). In our study, we explicitly encoded a set of new target-disease relatedness 
matrices, each of which was computed as the product of a matrix on OT target-disease 
score with target-target information matrix newly derived from one of the external data 
sources (Fig. 1c, see Materials and Methods for details). Data sources used to generate 
the target-target similarity matrices were from the Genotype-Tissue Expression (GTEx) 
[13]; Gene Ontologies on Molecular Function (MF), Cellular Component (CC) and Bio-
logical Process (BP) annotations [14, 15]; Functional interactions among targets which 
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were represented by embedding them into a protein–protein interaction (PPI) network 
from STRING database (version11) [16] using the Node2Vec algorithm [17].

We then evaluated how these newly generated features might perform for representing 
underlying biological relatedness among targets and diseases. We trained three machine 
learning models and evaluated their performance using OT association evidence and 
newly generated biological relatedness features for the task of predicting whether a given 
target-disease pair might have a known drug indication, particularly testing whether 
a subset of targets hidden during feature generation and training could be correctly 
predicted from their encoded biological relatedness. Such test cases correspond to 

Fig. 1  Overview of Open Targets data and generation of newly computed features. Open Targets association 
evidence network edge weights are annotated for evidence from multiple sources (a). Novel target-disease 
association features generated from target-target similarity and target-disease matrices compared with 
factors used in calculation of a user-item matrix (b). Target-disease arrays are generated for each information 
source and association evidence for known drug status (c)
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prediction of novel druggable target-disease relationships. Lastly, we selected the best 
performing machine learning model and predicted novel indications for a set of drugga-
ble genomes which currently have no approved indications, and we validated the quality 
of these predictions by comparing them to text mining results. A case study examining 
results for the highly pursued targets IL-12B and IL-23R was also conducted and reveals 
potential new indications uncovered by this approach.

Results
Overview and processing of Open Targets data

We downloaded association evidence information for all target-disease direct associa-
tion pairs from the Open Targets Platform via API. Disease terms to be included were 
filtered to remove non-specific terms and we removed disease terms whose therapeutic 
areas belonged to measurement, phenotype, biological process, and/or cell proliferation 
disorders. The filtered data set then included 1,378,786 direct target-disease associations 
for 24,064 unique targets after this processing. Among these, there were 990 targets with 
at least one indication in clinical trials. OT associations for these target-indication pairs 
were used to build a working dataset for model evaluation, which consisted of 229,228 
target-disease pairs. Another 23,074 targets and their indication associations were used 
as a prediction dataset for novel indication prediction. The working dataset was further 
split into training set and testing sets of 70% and 30% for model evaluation: the training 
set contained 159,249 target-disease pairs for 693 unique targets and the testing set con-
tained 69,979 target-disease pairs for 297 unique targets.

Five available OT target-disease association features (genetic associations, somatic 
mutations, affected pathway, RNA expression and animal models) were used to predict 
known drug indication status for each target-disease pair by their association scores. For 
this prediction task, we used OT association scores for known drug status to define a 
binary label, with target-disease pairs with at least one drug in clinical trials receiving the 
label 1 and target-disease pairs with no known drugs in trial labelled 0 (Fig. 2).

Five new features were generated using the collaborative filtering-based approach. 
To compute these features, target-target similarity matrices were first generated from 
target co-expression similarity on tissues, semantic similarity from gene ontologies 
(Molecular Function (MF), Cellular Component (CC) and Biological Process (BP)), 
and node embedding similarity derived from protein–protein interaction networks. 
Then for each target, single new features by data source were computed from each 
target’s most similar 1000 genes and their known association scores of drug status in 
OT (Fig.  1c). To avoid contaminating our predictive feature with test case informa-
tion, using cross-validation, before feature encoding, we masked known associations 
of drug status for validation test dataset target-indication pairs. This step was taken 
when calculating new features in order to avoid introducing ground truth before pre-
diction. Training and test data sets then had 10 features, five of which were Open 
Targets Association scores (Genetic Association, RNA Expression, Affected Pathway, 
Animal Model, Somatic Mutation) and five newly computed features. The newly com-
puted features were generated as the product of an array of target-target similarities 
for the 1000 most similar targets from each orthogonal data resource (GTex Tissue 
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Specificity, GO-Biological Process, GO-Molecular Function, GO-Cellular Compo-
nent, and StringDB Node Embedding) and the matrix of Open Targets target-disease 
Known Drug Association scores for these 1000 most similar targets. This calculation 
yielded a set of target-disease association scores for each data resource which is used 
as input for the target-disease indication status prediction task. The schematic input 
table with all features is shown in Fig. 2. All features arere continuous. Missing values 
were filled with 0, as missingness is interpretable as no evidence for interaction found 
between the target and indication. Data with 0 values in all features were removed for 
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Fig. 2  Workflow schematic for feature generation and therapeutic status prediction evaluation
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prediction tasks. Table 1 summarizes the number of samples in training, validation, 
and test datasets after removal of all-zero data rows.

Prediction performance evaluation by machine learning models

We selected three machine learning models (logistic regression, random forest (RF) [18] 
and XGBoost [19] and performed fivefold cross validation with train-test split to tune the 
hyperparameters and evaluate performance of their classifications. From fivefold cross 
validation results, we found that XGBoost had the best performance with AUPR = 0.73 
in the validation set, outperforming RF and logistic regression, as shown in Table 2. The 
model also performed well consistently with the testing set, with AUPR = 0.69, outper-
formed RF (AUPR = 0.65) and logistic regression (AUPR = 0.63) (Fig. 3a). Additionally, 
we observed XGBoost and RF got higher sensitivity and lower specificity compared to 
logistic regression. With the best cut-off derived from the maximum F1-score, which 
is 0.78, XGBoost model achieved a recall rate 0.75, precision 0.52 and F1 score 0.61 
(Fig. 3b–d). However, with a common cut-off in traditional binary classifier, which is 0.5, 
the recall increased significantly to 0.88 while precision decreased to 0.40 (Fig. 3e, f ). In 

Table 1  Number of data instances used for training and validation after removal of all-zero value 
rows

Held-out testing data comprised of 46,290 instances (7382 positive: 38,907 negative)

Set Fold1 Fold2 Fold3 Fold4 Fold5

Train

Positive 15,137 14,382 15,120 14,435 14,918

Negative 70,945 67,020 70,210 73,575 71,941

Total 86,082 81,402 85,330 88,010 86,859

Validation

Positive 3369 4085 3404 4098 3561

Negative 18,132 20,313 18,424 15,344 16,194

Total 21,501 24,398 21,828 19,442 19,755

Table 2  Known drug status prediction (± standard deviation across 5 folds)

Method LogReg RF XGB

Train set

OT association evidence

 AUROC 0.7603 (± 0.0088) 0.8685 (± 0.0075) 0.8784 (± 0.0051)

 AUPR 0.0685 (± 0.0025) 0.2074 (± 0.0093) 0.2072 (± 0.0103)

Computed features + OT association evidence

 AUROC 0.8867 (± 0.0027) 0.9262 (± 0.0019) 0.9406 (± 0.0018)

 AUPR 0.6442 (± 0.0069) 0.7500 (± 0.0070) 0.7969 (± 0.0065)

Validation set

OT association evidence

 AUROC 0.7625 (± 0.0357) 0.8143 (± 0.0314) 0.8076 (± 0.0335)

 AUPR 0.0707 (± 0.0102) 0.0872 (± 0.0118) 0.0888 (± 0.0177)

Computed features + OT association evidence

 AUROC 0.8864 (± 0.0076) 0.9103 (± 0.0140) 0.9137 (± 0.0142)

 AUPR 0.6452 (± 0.0226) 0.7092 (± 0.0459) 0.7264 (± 0.0457)
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a positive-unlabeled problem, the unlabeled data consists of both potential positive and 
negative data instances, but these all are considered as negative labels in training. Thus, 
it is not surprising to see a high false positive rate in prediction. According to bench-
marking, we selected XGBoost for further predicting novel indications.

As a benchmark, we then evaluated the prediction accuracy using only the 5 asso-
ciation scores taken directly from Open Targets as well. The AUPR of XGBoost and 

Fig. 3  Known drug prediction performance in Testing set by XGBoost, Random Forest and Logistic 
Regression. Precision-Recall curve (a), Receiver operating characteristic curve (b), F1 score (c), Sensitivity (d), 
Precision (e) and Specificity (f)
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Random Forest model in train set is around 0.2, and 0.1 in testing set (Table  2). That 
suggested training a prediction model with 5 association scores was underfitting. By tak-
ing newly computed features into consideration, prediction performance is significantly 
increased.

We also then explored the relationship between the continuous prediction score and 
drug status. From the testing set, every target-disease pair was compared with the high-
est stage of clinical trials achieved before for that target-indication pairing. With the 
target-disease pairs that have high prediction score, which is larger than 0.78, we found 
more than 70% approved indications, more than 65% indications in phase III and over 
50% indications in phase I/II were identified successfully (Additional file 1: Figure 1).

To further investigate the prediction performance in a particular disease type, in test-
ing set, we evaluated the AUPR for each disease respectively. Additionally, by grouping 
diseases into therapeutic areas, we understood in which therapeutic areas the predic-
tive model performed well (Additional file 2: Figure 2). The predictive model had great 
performance in most therapeutic areas, especially in nutritional or metabolomic disease, 
diseases of the visual system, and nervous system disease. With more exploration on 
the data, we found the difference of accuracy was affected by the proportion of positive 
labels (known indications). Diseases with higher accuracy (AUPR > 0.6) have more than 
30% known indications on average, while diseases with AUPR < 0.5 only have around 
10% known indications (Additional file 5: Table 1), which is as expected since those unla-
beled indications still have the opportunities to be selected in the future. In the same 
way, we also investigated the prediction performance in each target, where we reached 
a similar conclusion that the targets with better performance (AUPR > 0.6) have around 
40% known indications on average and target with AUPR < 0.5 only have 6% known indi-
cations (Additional file 6: Table 2).

Newly generated features demonstrate higher feature importance

To compare relative importance of OT association evidence versus our newly created 
biological similarity features, feature importance was evaluated by permutation in 
the highest-performing XGBoost model. For each variable, we calculated the average 
decrease of AUPR by randomly shuffling variables. A feature is more important when the 
performance decreases more. When examining the feature importance scores obtained 
from model training, we identified network embedding information as the most impor-
tant predictor for the task of identifying target-disease pair indication status (Fig. 4b). 
Interestingly, all computed features were assigned greater importance than association 
scores in this evaluation, indicating that our newly generated features contribute mean-
ingful and relevant information for this task. In the interpretation of these results, how 
the known drug status is used for feature generation may be considered further.

A visualization of how computed features which embed function- and tissue-level tar-
get biological networks outperform association evidence for therapeutic status predic-
tion is shown in Fig. 4a. The Y-axis in the figure is log-scaled. Using a prediction score 
of 0.5 as a cut-off, more than 90% of approved drugs, and more than 80% of drugs in 
phase I/II/III were spotted by including computed features in the model. These results 
further suggest that while association evidence alone is limited in its use for revealing 
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therapeutic status, newly computed features integrating target-target similarity empower 
the prediction of these target-disease associations.

Using XGBoost to predict novel indications on druggable genomes

Given the strong performance of machine learning models in our evaluation, we used 
XGBoost and predicted novel indications for a set of druggable genomes. The full list for 
the druggable genome was obtained from the study of Finan et al. [20], which consists 
of 4,463 genes. We compared the list with all the OT targets with approved drug sta-
tus and found there are 2,858 druggable genes that currently do not have any approved 

A B

C

D

Fig. 4  Newly computed features improve prediction accuracy. Prediction scores correspond to Testing set 
target-disease clinical trial stage (a). Feature importance scores indicate the feature types we generated 
strongly predict known drug therapeutic status (b). Target-disease arrays computed using target-target 
similarity reveal druggable target-disease pairs (c). Significant overlap between predicted indications and 
literature findings by text mining (d)
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indications. Similarly, there is also a critical need to explore indication expansion for 
approved targets for many other therapeutics to benefit patients with diseases which are 
not approved indications. Incorporating biological evidence via our encoding method 
with curated association evidence in OT offers us an opportunity for leveraging our 
approach to identify novel drug-target-indications groupings that revealed by these new 
features and machine learning methods. Since there is no gold standard to evaluate such 
novel predictions for indication expansion or drug repurposing potential, we utilized 
the scientific literature as an external source of validation by retrieving suggested drug 
targets from published articles and checking what proportion of these were predicted 
with our model. Specifically, we searched for literature hits of a gene or protein being 
mentioned as a (potential) therapeutic target in titles and abstracts on MEDLINE. We 
found a large number of text mining instances corresponding to 6,696 unique diseases 
that co-occurred with the 2,858 druggable genomes. There were 1,247 in common dis-
eases between the predicted set and text mining hits, representing a highly significant 
proportion as assessed by hypergeometric test (p = 6.33e-113) (Fig. 4d; Additional file 7: 
Table 3). Though our prediction is based on the druggable genome, it is worth mention 
that the method is equally applicable to non-druggable classified genes, since this drug-
gability is likely to change over the years as emerging technologies such as PROTAC 
[21], RNAi [22], and CRISPR/Cas9 [23] to maximize their potential in drug discovery.

A case study on novel target indication expansion

We further conducted a case study on highly pursued drug targets interleukin 12B (IL-
12B) and interleukin 23 receptor (IL-23R) to evaluate the performance of our predictive 
method.

IL-12B is a common subunit of interleukin 12 (IL-12) and Interleukin 23 (IL-23) [24]. 
There are various drugs developed to targeting IL-12B to modulate IL-12 (Th1)/IL-
23(Th17) pathways for treating autoinflammatory diseases in recent years [25, 26], such 
as Ustekinumab. Ustekinumab was approved for the treatment of moderate-to-severe 
Psoriasis (2009), Psoriatic arthritis (2013), moderate-to-severe Crohn’s disease (2016) 
and Ulcerative colitis (2019)( https://​www.​drugs.​com/​histo​ry/​stela​ra.​html); further 
studies would elucidate its potential role as first-line therapy for other autoinflammatory 
diseases. There is strong interest within biopharma to expand the therapeutic base for 
Ustekinumab and other similar drugs.

We applied the XGBoost model on IL-12B target to prioritize its indications including 
our additional computed predictive features. When we investigated the ranked top 50 
indications (Table 3), we have found that Ustekinumab’s approved indications, or indica-
tions which are under clinical trials for IL-12B intervention were highly ranked in the list 
(Fig. 4c; Additional file 8: Table 4). Overall, looking at the approved/in-clinical-trial indi-
cations in the ranking list, the AUROC is 0.90. Among the top ranked indications, Ulcer-
ative Colitis, which is one of the approved indications for Ustekinumab, was ranked 14th 
in the predicted list. Other approved indications for Ustekinumab were also with high 
rankings among all the predicted indications: Psoriatic arthritis (23rd), Crohn’s disease 
(26th), and Psoriasis (31st). We further noticed that for several other top-ranked indi-
cations, such as systemic lupus erythematosus (20th), ankylosing spondylitis (21st), the 
drug was investigated in multiple phase 3 clinical trials, while rheumatoid arthritis (3rd) 

https://www.drugs.com/history/stelara.html
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and multiple sclerosis (12th) were linked with several clinical trials in phase 1 or phase 2, 
according to Informa pharmaceutical pipeline database (https://​citel​ine.​infor​ma.​com/).

We also performed the predication of novel indications for interleukin 23 recep-
tor (IL-23R) (Fig. 4c; Additional file 9: Table 5), which interacts with IL23. Although 
there are currently no approved indications for drugs targeting IL-23R, the potential 
indications were expected to be similar as Ustekinumab. In our IL-23R top ranked 
list, we observed that Ustekinumab’s approved indications were among the top pre-
dicted indications on this drug target, including Crohn’s disease (10th) and Psoriasis 
(27th), indicating their high potential for IL-23R. Other novel indications revealed by 
this method may also be worth further investigations. The full list of our predicted 
indications for IL-12B and IL-23R can be found in the labelled supplementary files. 

Table 3  Top predicted indications for Ustekinumab

Ranking Disease Disease_ID Prediction_score

1 Immune system disease EFO_0000540 0.95580226

2 Asthma EFO_0000270 0.94961476

3 Rheumatoid arthritis EFO_0000685 0.9285401

4 Uveitis EFO_1001231 0.8917595

5 Alopecia areata EFO_0004192 0.8835659

6 Alzheimer’s disease EFO_0000249 0.8625836

7 Schizophrenia EFO_0000692 0.862216

8 Atopic eczema EFO_0000274 0.84960294

9 Takayasu arteritis EFO_1001857 0.8476705

10 Temporal arteritis EFO_1001209 0.8364161

11 Obesity EFO_0001073 0.8306895

12 Multiple sclerosis EFO_0003885 0.82465583

13 Osteoarthritis EFO_0002506 0.8140218

14 Ulcerative colitis EFO_0000729 0.8110609

15 Relapsing–remitting multiple sclerosis EFO_0003929 0.7750288

16 Behcet’s syndrome EFO_0003780 0.75113726

17 Diabetes mellitus EFO_0000400 0.74368954

18 Juvenile idiopathic arthritis EFO_0002609 0.7401242

19 Non-alcoholic steatohepatitis EFO_1001249 0.7374891

20 Systemic lupus erythematosus EFO_0002690 0.73320544

21 Ankylosing spondylitis EFO_0003898 0.7330974

22 Graft versus host disease MONDO_0013730 0.72582567

23 Psoriatic arthritis EFO_0003778 0.71739846

24 Alcohol dependence EFO_0003829 0.71080697

25 Dermatitis MONDO_0002406 0.7098975

26 Crohn’s disease EFO_0000384 0.6959177

27 HIV-1 infection EFO_0000180 0.6868525

28 Periodontitis EFO_0000649 0.6834563

29 Tuberculosis Orphanet_3389 0.67681295

30 Post-traumatic stress disorder EFO_0001358 0.6721301

31 Psoriasis EFO_0000676 0.67159593

32 Viral disease EFO_0000763 0.67042077

33 Cystic fibrosis Orphanet_586 0.6682126

34 Abdominal Aortic Aneurysm EFO_0004214 0.653386

35 Psoriasis vulgaris EFO_1001494 0.63942015

https://citeline.informa.com/
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The results of these cases study queries provide additional validation of the utility and 
power of our approach.

Discussion
In this study, we present the development and application of a systematic indication 
prioritization approach which generates new target-disease features to supplement OT 
association evidence and evaluate the performance of these features for therapeutic sta-
tus prediction in different machine learning models. Our current study demonstrates the 
benefit of combining OT association evidence network data with independent sources 
of biological knowledge base information in order to examine target-disease predictions 
with increased confidence in their validity. To our knowledge, our work provides the 
first proof-of-concept results for the complementarity of OT features with new in-silico 
target-disease data from tissue similarity, interconnectivity and semantic similarity. Our 
results confirm that our approach can play a key role in uncovering real insights in tar-
get-disease discovery work, expanding on the base OT network of targets and their dis-
ease associations. Combining promising disease association profiles, drug targets could 
be tested in new therapeutic areas where compelling evidence exists. In our analysis, we 
found that a threshold of 0.78 gives the highest F1-score, with recall 0.65 and precision 
0.60. This suggests that a prediction score of 0.78 from XGBoost could be used as a strin-
gent cut-off when evaluating potential new target-indication hypotheses, and that is also 
used in our prediction of novel indications. Meanwhile, since in the positive-unlabeled 
problem, recall should be weighted more than precision, we investigated with F1.5-score, 
as well. We found that a threshold of 0.62 gives the highest F1.5-score (Additional file 3: 
Fig.  3), with recall 0.81 and precision 0.47. Therefore, a prediction score of 0.62 from 
prediction model could be used as a moderate confidence cut-off. Cohen’s Kappa and 
Matthew’s correlations coefficient (MCC) with the two different thresholds in testing set 
by XGBoost and MCC were also calculated (Additional file 4: Figure 4A) and Cohen’s 
Kappa with different thresholds in testing set plotted for the three predictive models 
(Additional file 4: Figure 4B).

On the interpretation of the results of this analysis, how the known drug status is used 
for feature generation may be considered further. Test case target-disease pairs were 
assigned known drug associations of 0 prior to embedding to cancel this information 
during training. Under these circumstances, good model performance for recovery of 
true indication status is achieved either if OT target-disease association scores are them-
selves predictive of indication status or when target-target biological relatedness features 
correctly represent links between the target-disease pairs with hidden labels and other(s) 
target-disease pairings which are correctly labelled and have a known drug.

There are also aspects on our method which could be further improved. First, our 
method leveraged 10 features for the machine learning model training and prediction, 
5 from OT and 5 from newly generated features. Therefore, it is important to note that 
the target-indication discovery by our approach can only be as accurate as the current 
features can represent the underlying biological process for each disease. To further 
improve the prediction of target-disease associations, other reliable features may need 
to be taken into consideration. For example, CRISPR-KO data in recent OT updates 
[2] could be further added in our approach. An advantage of the approach is that its 
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formulation provides a straightforward framework for further data source integration. 
Additional target-target similarity matrices from other data sources may be readily 
adapted for new feature generation, such as gene co-expression in cell types, and protein 
structure similarities. Second, our method took target-target similarities into account 
and generated new features representing target-disease association. While we found 
diseases in Open Targets form a hierarchical structure, it would also be worthwhile in 
future work to explore the disease hierarchy for further improving prediction in the 
future. Disease-disease similarities could be investigated from disease biology and inter-
actions and adapted to generate new features. Third, compared to the single machine 
learning model selected in our approach, ensembles of diverse machine learning models 
can generally outperform any individual model [27], e.g. using weighted average of the 
predictions from the different models, and future work might be undertaken to evalu-
ate ensemble methods. In a recent Novartis-MIT data science and artificial intelligence 
challenge on predicting drug approvals, the winner was an ensemble consisting of two 
XGBoost models and one Bayesian logistic regression (BLR) model [28]. These results 
inform us with ways to design workflows to further improve method performance in our 
future studies.

It should also be noted that as with any computational approach, false positive and 
false negative results are unavoidable and should be expected, especially when address-
ing positive-unlabeled problems. The unlabeled data consists of both potential positive 
and negative data, so it’s not surprising that false positives were observed when testing 
prediction performance.

Each target-disease pair merely represents a hypothesis that serves as a starting point 
for drug discovery scientists looking to begin a new research program. These hypotheses 
still require careful evaluation, prioritization, and experimental validation.

Conclusions
In summary, by utilizing the target-disease evidence from Open Targets platform with 
the integration of novel generated features, we have been able to generate various indi-
cation pair combinations, which form the basis for development hypotheses for poten-
tial drug discovery programs, and this approach can be generalized in a straightforward 
fashion to include other drug target classes and information resources. These methods 
also offer great potential for helping other investigators to develop better ways to uti-
lize the fast-growing data in the Open Targets platform to reposition drugs for unmet 
medical needs, and the work we describe here could help identify possible new uses of 
existing drugs to be investigated further. Prospective clinical trials would be required to 
provide the necessary evidence to have such new uses approved by regulatory agencies.

Methods
Open Targets data processing

The target-disease association data was collected from Open Targets Platform, which 
was released in April 2021. It provides several types of score to represent the associa-
tion between a gene and a disease based on evidence from 19 data sources, including 
genetic associations, somatic mutations, drugs, affected pathway, RNA expression, text 
mining and animal models. All the association scores range from 0 to 1. For each type 



Page 15 of 19Han et al. BMC Bioinformatics          (2022) 23:232 	

of association score, it collects the evidence from one or multiple data sources. For 
example, genetic association is generated based on the clinical significance assessment 
from the European Variation Archive (https://​www.​ebi.​ac.​uk/​eva/), GWAS Catalog [29], 
Gene2Phenotype [30],  PheWAS catalogue [31] etc. And the drug association is calcu-
lated according to the evidence from ChEMBL [32]. Diseases in the Open Targets Plat-
form are labeled based on Experimental Factor Ontology (EFO) [33], and classified into 
different therapeutic areas according to the relationships in EFO hierarchy. There are 
both direct and indirect associations in the database, we only kept direct associations to 
avoid artificially duplicated information.

We selected five association scores as feature spaces to predict novel target-indication 
pairs, including genetic associations, somatic mutations, affected pathway, RNA expres-
sion and animal models. The drug score in Open Targets Platform was used as labels in 
the prediction, which was collected from ChEMBL and generated based on clinical tri-
als. A gene was labeled as drug target of a certain disease when the drug score is larger 
than 0. To focus on the non-oncology disorder, we further removed the diseases whose 
therapeutic areas belong to measurement, phenotype, biological process, and cell prolif-
eration disorder.

Generation of new features

In order to derive the target-target similarity matrix based on tissue specificity, the 
RNA-seq data were downloaded from GTEx v8 [34] where the samples were obtained 
from 54 tissues in 30 tissue groups. We removed lowly expressed genes and only kept 
the genes with at least non-zero count in one tissue. Limma package [35] was used to 
estimate tissue specificity by comparing samples in one tissue with samples in all other 
tissues from different tissue groups, we built the linear model by taking age and gender 
as covariates. Then we estimated gene similarity by computing cosine similarity on the 
tissue specificity matrix.

To obtain semantic similarity matrix among gene pairs, we estimated gene similari-
ties through gene ontology (GO). Gene ontology comprises of three ontologies: biologi-
cal process, molecular function, and cellular component. We used GOSemSim package 
[36] to compute the sematic similarity of genes based on the annotation statistics of 
their common ancestor terms. Specifically the Wang method [37] was employed to esti-
mate GO sematic similarity, which utilized the topology of GO graph structure. It esti-
mated the semantics of one gene from the aggregated contributions of all terms in the 
sub graph, which includes the gene and all of its ancestor terms in GO graph. We used 
this graph-based approach to estimate semantic similarity of genes, and generated three 
matrices from the gene ontologies respectively.

Protein to protein interaction network was downloaded from STRING database [16] 
to calculate node embedding similarity matrix for gene pairs. The STRING database is 
one of the most comprehensive protein to protein interaction network with predicted 
and known interactions. Each edge is given a weight to identify the degree of confidence. 
In order to generate a reliable, high-trust level network reference for our approach, we 
kept interactions with confidence score greater than 0.5 defined by STRING. There are 
many analysis approaches could be used to estimate node similarity in a network, such 
as random walk [38], network propagation [39], etc. In our approach, we used node2vec 

https://www.ebi.ac.uk/eva/
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[17], a deep learning model which performs random walks through the network by start-
ing at a random node and following a series of steps to random neighbors. Each of these 
random walks forms a sentence that can be fed to word2vec [40] to generate the embed-
ding for each node. Compared to other algorithms, node2vec detects homophily and 
structural similarities using depth and breadth-first search, generate node embeddings 
that can be expanded to predictive models for deeper investigation. The gene similarities 
then can be systematically computed with each node embeddings by cosine similarity.

New features for each gene were then generated based on a prior known target-dis-
ease matrix (from OT target-disease known drug status) and gene similarity matrix. 
For example, to calculate new features for gene A, the top 1000 most similar genes were 
selected for gene A based on each type of gene similarity matrix, and used for generating 
new features later. The associations of these 1000 genes to disease could be derived from 
prior known target-disease indication matrix, then new features of gene A with diseases 
was weighted average associations from top 1000 most similar genes, where weights 
were from gene similarity matrix (Fig. 1c). By this approach, each target receives a new 
disease-association score for each added data source which is computed to yield associa-
tion scores with all k ϵ K disease terms for each Targetj through the following equation:

Machine learning model training and evaluation

The genes which have at least one indication in clinical trials and their associations were 
selected to generate a working dataset for training and evaluating machine learning 
models. Other genes that don’t get approved in any indication before were collected as 
prediction dataset, which would be used to discover novel indications with well-trained 
model.

The working dataset was further split into training set and testing set, which contains 
70% and 30% genes and their corresponding associations respectively. With the train-
ing set, we performed fivefold cross validation to tune hyperparameters and evaluate 
performance of three classifiers, including logistic regression, random forest [18] and 
XGBoost [19]. We used grid search to tune maximum depth of a tree, minimum sum of 
instance weight in a child, subsample ratio of the training instances, the subsample ratio 
of columns when constructing a tree, weight of L2 regularization term, and learning 
rate in XGBoost. After tuning, the hyperparameters used in XGBoost were min_child_
weight = 10, colsample_bytree = 0.6, subsample = 0.6, max_depth = 8, reg_lambda = 10, 
eta = 0.1, while all the other hyperparameters were used with default values. We tuned 
the number of trees, the maximum depth of a tree, the number of samples to train each 
tree, and the number of features to train each tree in Random Forest. After tuning, the 
hyperparameters used in Random forest were n_estimators = 500, max_depth = 8, max_
samples = 0.6, max_features = 0.6 and all the other hyperparameters were used with 
default values.

Disease Associations
(

Targetj ,Diseasek
)

=

∑1000
i=1 Similarity

(

Targetj ,Targeti
)

∗ OT Known Drug Associaton
(

Targeti,Diseasek
)
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i=1
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Since our dataset is extremely imbalanced, unlabeled data is 8 times as many as posi-
tive data. We computed a class weight to adjust loss function when training models for 
solving the issue of imbalance. Meanwhile, when addressing positive-unlabeled problem, 
overfitting is a common issue with traditional classifiers, since the unlabeled data is con-
sidered as negative, but it could consist of both positive and negative data in fact. We can 
prevent overfitting by using bagging when building models, which is randomly resam-
pling from the original dataset with replacement and making prediction with majority 
votes. While XGBoost and random forest have bagging built-in, we only applied bagging 
with 100 iterations in logistic regression, the final prediction was derived from average 
score from 100 iterations.

In the cross validation, we took area under precision-recall curve (AUPR) as evalu-
ation metrics. According to the evaluation scores in benchmarking, XGBoost was 
selected with a better prediction performance, and was further applied to testing set for 
evaluation. XGBoost consistently showed better performances in both cross validation 
and testing set, so it was used to predict novel indications with prediction dataset and 
further validated by text mining.

Text mining

The text mining tool based on natural language processing and linguistic analytics I2E 
from Linguamatics were utilized to evaluate the predictions from XGBoost model. An 
I2E query on “Genes_known_as_targets” was built to extracts target and indication hits 
from titles and abstracts stored in the MEDLINE database. We defined “Genes” as drug-
gable genes which currently have no approved indications. This query looks for these 
genes which are explicitly mentioned in the literature as potential targets of a disease, 
where “Gene” stands for the druggable genes and “Target” is a concept describing a ther-
apeutic target. MeSH terms were used for diseases in the text mining hits so that we 
can use corresponding MeSH IDs to map across Open Target EFO terms. Results were 
retrieved and processed in an excel table. A hypergeometric test was performed to assess 
the significance of the overlap between predictions and text mining hits using the total 
number of druggable genes as the universe size.
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