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ABSTRACT

Promoters are consensus DNA sequences located
near the transcription start sites and they play
an important role in transcription initiation. Due
to their importance in biological processes, the
identification of promoters is significantly impor-
tant for characterizing the expression of the genes.
Numerous computational methods have been pro-
posed to predict promoters. However, it is difficult
for these methods to achieve satisfactory perfor-
mance in multiple species. In this study, we pro-
pose a novel weighted average ensemble learning
model, termed iPro-WAEL, for identifying promot-
ers in multiple species, including Human, Mouse,
E.coli, Arabidopsis, B.amyloliquefaciens, B.subtilis
and R.capsulatus. Extensive benchmarking exper-
iments illustrate that iPro-WAEL has optimal per-
formance and is superior to the current methods
in promoter prediction. The experimental results
also demonstrate a satisfactory prediction ability
of iPro-WAEL on cross-cell lines, promoters an-
notated by other methods and distinguishing be-
tween promoters and enhancers. Moreover, we iden-
tify the most important transcription factor bind-
ing site (TFBS) motif in promoter regions to facili-
tate the study of identifying important motifs in the
promoter regions. The source code of iPro-WAEL
is freely available at https://github.com/HaoWuLab-
Bioinformatics/iPro-WAEL.

INTRODUCTION

The transcription process mainly involves initiation, elon-
gation and termination, in which initiation is the most com-
plicated (1). Promoters located proximal to the transcrip-
tion start sites (TSS) are non-coding DNA regions, which
are essential for initiating the transcription of a particular
gene by cooperating with RNA polymerase (RNAP) (2,3)
and are critical for gene expression in different species. In

prokaryotes, promoters are involved in many biological pro-
cesses, such as the transcription of most genes (4), heat-
shock response, nitrogen fixation (5), the expression of flag-
ella (6) and so forth. In eukaryotes, the initiator region or
the downstream promoter element of promoters controls
the exact position where transcription starts (7). Addition-
ally, promoters often cooperate with their distal regulatory
elements via chromatin loops and tend to be involved in
developmental diseases, tumorigenesis and spatiotemporal
gene expression (8–10). Therefore, the identification of pro-
moters is crucial to investigating the regulation of gene ex-
pression.

Accordingly, an experimental technique called genome-
wide mapping of histone modifications has been used to
identify promoters (11). However, the experimental meth-
ods are costly and time-consuming. To address this issue,
several computational methods have been proposed in the
last few years to predict promoters. Some of these meth-
ods, such as vw Z-curve (12), iPro54-PseKNC (13), iPro70-
PseZNC (14), iPromoter-2L (15), iPSW(2L)-PseKNC (16)
and Promotech (17), rely on traditional machine learning-
based models; other methods utilize deep learning models
to identify promoters, such as CNNProm (18) and DeePro-
moter (19).

Despite advances in computational methods for predict-
ing promoters, several shortcomings in these methods re-
main to be addressed. Firstly, the feature encoding schemes
in their studies and the architecture of their models is rela-
tively simple, resulting in unsatisfactory performance in pre-
dicting promoters. Secondly, most of their models have vali-
dated the performance of predicting promoters on only one
or few species. Therefore, it is not clear whether these meth-
ods can be implemented for the identification of promoters
in multiple species. Although CNNProm (18) and DeePro-
moter (19) reported their performance on a few datasets, it
is time-consuming to retune the parameters of the models
for each species. Finally, the model interpretation is criti-
cal for exploring transcription factor binding site (TFBS)
motifs in the sequences involved in promoters, but unfortu-
nately, previous studies have not touched upon this aspect.

Therefore, we propose a comprehensive and robust
framework, named iPro-WAEL (a Weighted Average

*To whom correspondence should be addressed. Tel: +86 18254105536; Fax: +86 053188391686; Email: haowu@sdu.edu.cn

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0001-8696-4983
http://orcid.org/0000-0003-4605-8577
http://orcid.org/0000-0003-2340-9258


Nucleic Acids Research, 2022, Vol. 50, No. 18 10279

Ensemble Learning-based model for identifying promot-
ers), to identify promoters in multiple species by integrat-
ing an RF model and a CNN model. Based on 13 datasets
of seven species, we compare it with the performance of
eight promoter prediction models on without retuning pa-
rameters. Besides, we explore the TFBS motifs that have a
significant impact on human promoter regions. Our main
contributions are as follows: (i) We generate four new
human datasets using stricter criteria. (ii) We propose a
novel and robust weighted average ensemble learning-based
model (iPro-WAEL) to identify the promoters in multiple
species. (iii) We demonstrate the optimal performance of
iPro-WAEL on multiple species and it is superior to state-
of-the-art predictors. (iv) We identify the most important
TFBS motifs in promoter regions which are consistent with
the previous studies and identify many potentially impor-
tant but previous underexplored motifs. The overall frame-
work of this study is shown in Figure 1.

MATERIALS AND METHODS

Data collection and processing

To develop an effective and robust model, it is necessary
to establish the dataset using a strict criterion. Whalen
et al. (20) identified human promoters using ENCODE Seg-
way (21) and ChromHMM (22) annotations for GM12878,
K562, HeLa-S3 and HUVEC cell lines. We obtain the se-
quences using BEDTools (23). Among these promoters, the
length of most promoters is <3000-nt. Therefore, we re-
move promoters >3000-nt in length and remove the redun-
dant sequences with a similarity of more than 80% in each
cell line using the CD-HIT program (24). Finally, we treat
them as positive samples of the benchmark dataset.

Different from previous studies in which negative samples
are obtained from random genomic coordinates of non-
promoter regions (15–18), this study uses the sequences with
the highest similarity to the positive samples from the non-
promoter regions as negative samples. Specifically, for a
positive sample, assuming its length is L, the following steps
are adopted to generate negative samples: (i) Utilize a win-
dow of length L to slide 1000 times upstream and down-
stream of the positive sequence with a stride of 1-nt, and
each time a sequence whose length equals to the length of
the positive sample is obtained. (ii) If the sliding range cov-
ers the genomic coordinates of other positive samples, this
sample will be removed from the positive dataset to avoid
the generated negative samples overlapping with other pos-
itive samples, otherwise, it is difficult to define the true cate-
gory of the generated samples. (iii) If the sliding range does
not cover the genome coordinates of other positive samples,
the similarity between these 2000 sequence segments and
the positive sequence is calculated, and the sequence seg-
ment with the highest similarity is treated as the negative
sample. This ensures that the generated negative samples
and positive samples have a certain similarity so that the
trained model is more robust. (iv) Remove sequences con-
taining ‘N’ in positive samples and negative samples (’N’
means that the base at this position is uncertain. Remov-
ing positive samples containing ‘N’ also removes the cor-
responding negative samples, and removing negative sam-
ples containing ‘N’ also removes the corresponding positive

samples). Finally, to objectively evaluate the performance
of the model, we use 20% of the sequences in each cell line
as the independent test set. To ensure the reliability of the
data, a positive sample and its corresponding negative sam-
ple are divided into a training set or test set simultaneously.
The details of the human datasets are shown in Figure 2.

Feature encoding schemes

In this study, we employ six sequence encoding schemes
to encode sequences, including reverse complement k-mer
(RCKmer), mismatch k-mer (Mismatch), the composition
of k-spaced nucleic acid pairs (CKSNAP), trinucleotide
physicochemical properties (TPCP), pseudo trinucleotide
composition (PseTNC) and Word2vec. Multiple feature en-
coding schemes comprehensively extract sequence informa-
tion, and fusing features can effectively improve the repre-
sentation ability of features. These encoding schemes are
elaborated in the following sections.

Reverse complement k-mer. The RCKmer is a variant of
k-mer, in which the k-mer is not strand-specific, so reverse
complements are collapsed into a single feature (25,26). For
instance, ‘AGGT’ is the reverse complement with ‘ACCT’;
‘TAG’ is the reverse complement with ‘CTA’, and ‘TCAGA’
is the reverse complement with ‘TCTGA’. In this study, we
set k = 5 and thus the dimension of the RCKmer-based fea-
ture is 512.

Mismatch k-mer. The Mismatch is also a variant of k-mer,
in which an error is allowed (26). For instance, when we cal-
culate the occurrence number of ‘GCA’, we place ‘GCA’,
‘ACA’, ‘CCA’, ‘TCA’, ‘GAA’, ‘GGA’, ‘GTA’, ‘GCC’, ‘GCG’
and ‘GCT’. The sum of the occurrence number of these
3-tuples is treated as the occurrence number of ‘GCA’. In
this study, we set k = 5, and thus the dimension of the
Mismatch-based feature is 1024.

Composition of k-spaced nucleic acid pairs. The CKSNAP
is used to calculate the frequency of all possible nucleotide
pairs separated by any k space or less (26,27). For instance,
in the sequence of ‘ANNNTNNC’, ‘AT’ is a 3-space nu-
cleotide pair and ‘TC’ is a 2-space nucleotide pair. The
CKSNAP-based feature is defined as follows:

f CK SNAP
k =

{
N0(AA)
L − 1

,
N0(AC)
L − 1

, . . . ,
Nk(TT)

L − k − 1

}
(1)

where Nk(TT) represents the occurrence number of k-space
nucleotide pair ‘TT’ and L is the length of the sequence.
In this study, we set k = 5 and thus the dimension of the
CKSNAP-based feature is 96.

Trinucleotide physicochemical properties. The TPCP en-
coding has been successfully applied to DNA N4-
Methylcytosine site prediction (28), which is defined as fol-
lows:

f T PCP = {u1 × fAAA, . . . , u1 × fTTT, . . . , ui × fTTT} (2)

where ui is the ith physicochemical property of the trin-
ucleotide and fNNN denotes the normalized frequency of
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Figure 1. The overall flowchart of iPro-WAEL.

Figure 2. The statistical summary of the benchmark dataset. The ratio of
positive and negative samples in all datasets is 1:1.

trinucleotide NNN. In this study, we utilize 12 physicochem-
ical properties (Supplementary Table S1), and thus the di-
mension of the TPCP-based feature is 768.

Pseudo trinucleotide composition. The PseTNC considers
both the local sequence-order information and long-range

sequence-order effects (26,29), which are defined as follows:

f PseTNC = {
d1, d2, . . . , d43 , d43+1, . . . , d43+λ

}
(3)

du =

⎧⎪⎨
⎪⎩

fu∑43

i=1 fi +ω
∑λ

j=1 θ j

, 1 ≤ u ≤ 43

ωθu−43∑43

i=1 fi +ω
∑λ

j=1 θ j

, 43 < u ≤ 43 + λ
(4)

where � represents the number of the total counted ranks of
the correlations along the sequence, fu represents the nor-
malized frequency of trinucleotide, � is the weighted factor
and �j is calculated as follows:

θ j = 1
L − j − 1

L− j−1∑
j=1

1
μ

μ∑
k=1

[Pk(Ri Ri+1) − Pk(Ri+ j Ri+ j+1)]2

(5)

where L represents the length of the sequence, Pk(RiRi+1) is
the value of kth physicochemical indices of RiRi+1 at po-
sition i, and μ is the number of physicochemical indices.
In this study, we set λ = 2 and utilize six physicochemical
indices to predict promoters, including angular parameters
(twist, tilt and roll) and translational parameters (shift, slide
and rise). Therefore, the dimension of the PseTNC-based
feature is 66.

Word2vec. Word embedding techniques have achieved a
great success in natural language processing (NLP) appli-
cations. Recently, word embedding techniques have been
widely used in the bioinformatics community to tackle
the limitation that the kmer-based features of different se-
quences may be very similar despite their orders being re-
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versed (30–32). In this study, we divide the sequence into
‘word’ to keep the order information of sequence. Specifi-
cally, a DNA sequence described as follows:

DNA = N1, N2, N3, . . . , NL (6)

where N1 denotes the nucleotide at the first position and
L is the length of the sequence. We take k consecutive nu-
cleotides as a ‘word’. Thus, the ith ‘word’ in the sequence is
described as:

N1 N2 N3 . . . Ni+k−1(1 ≤ i ≤ L − k + 1, 1 ≤ k ≤ L) (7)

After the above process, the DNA sequence is divided
into sentences containing multiple words. Then we utilize
the DNA sequences in the promoter dataset to form the cor-
pus (each DNA sequence is the sentence in the corpus) and
the 4k types of k-mer segments to form vocabulary (each
k-mer segment is a word in the vocabulary). To guarantee
complete independence of the independent test set, we only
utilize sequences in the training set to form the corpus and
vocabulary. We train the language model by using the con-
tinuous skip-gram (Skip-gram) model in word2vec and ob-
tain the feature vector for each ‘word’. Then we concate-
nate the feature vectors of all ‘word’ in the sequence and
treat them as the features of the sequence. Suppose each
‘word’ is embedded as a feature vector of dimension D, the
feature dimension of each sequence is D × (L – k + 1).
Therefore, if the feature dimensions obtained by sequences
of different lengths in our dataset are not equal, the features
cannot be trained in a deep learning model. To solve this
problem, we transform the features of each sequence into
equal dimensions using an adaptive pooling layer. In this
study, each word has a length of 5 and is embedded as an
8-dimension feature vector. However, the sequence lengths
in human datasets are unequal, which makes it impossible
to train in deep learning models. Thus we additionally use
adaptive pooling operations to further perform feature ex-
traction. Given that 1000 is a centered number relative to the
number of words in human promoter sequences, we set the
output dimension of the adaptive pooling layer to 1000 × 8
(‘1000’ indicates 1000 words and ‘8’ indicates that the fea-
ture dimension of each word is 8). Therefore, the dimension
of the Word2vec-based feature is 8000.

iPro-WAEL architecture

iPro-WAEL is a weighted average ensemble learning model
that integrates a random forests (RF) model and a CNN
model, in which the RF model and CNN model use differ-
ent features. The framework of iPro-WAEL is shown in Fig-
ure 3, and the RF model, the CNN model and the weighted
average algorithm are depicted in the following section.

Random forest. Random forest (RF) is a combination of
tree predictors, which is widely used in the bioinformat-
ics community and shows excellent performance using tra-
ditional sequence-based features for prediction (15,17,33).
Therefore, in iPro-WAEL, the RF model is trained using
sequence-based features, including RCKmer, Mismatch,
CKSNAP, TPCP and PseTNC.

Convolutional neural network-based model. CNN has been
widely used in sequence-based prediction by combining
word embedding techniques (34–37). The convolutional
layer performs convolution calculation using the convolu-
tion kernel to extract different features of the input, and
more complex features can be extracted by stacking mul-
tiple layers. Besides, the convolutional layer is usually fol-
lowed by a pooling layer to reduce the number of param-
eters in the network. In iPro-WAEL, the CNN model is
trained using the Word2vec-based features and starts with
three combinations of a convolutional layer and a max-
pooling layer. We utilize ‘relu’ as the activation function
in each CNN layer to enhance the nonlinear characteris-
tics of the neural network. Then we add a dropout layer
to avoid over-fitting, followed by two dense layers, which
contain 64 nodes and 1 node, respectively, and utilize ‘relu’
and ‘sigmoid’ as activation functions, respectively. Finally,
if the predicted value exceeds 0.5, the predicted result will
be a positive example; otherwise, it will be a negative exam-
ple. Besides, to obtain the model with better generalization,
we divide 1/7 of the training set into the validation set and
introduce an ‘early stopping’ mechanism, which is used to
stop training early to avoid overfitting when the loss value
of the model in the validation set does not decrease for five
consecutive epochs.

Weighted averaging algorithm. The weighted averaging
method obtains the combined output by averaging the out-
puts of individual models with different weights implying
different importance (38). Compared to the simple averag-
ing method, it can give more weight to the model with good
performance. Specifically, the final output of iPro-WAEL is
calculated as follows:

H(x) =
2∑

i=1

wi hi (x) (8)

where wi is the weight of the ith model, hi(x) is the output of
the ith model and the weights are assumed to be constrained
by

wi ≥ 0 and
2∑

i=1

wi = 1 (9)

To obtain the most suitable weights and complete inde-
pendence of the independent test sets, we further divide the
original training set into the training set and the dataset
used for obtaining weights (weighted set) according to the
ratio of 7:1. Therefore, the ratio of the training set, weighted
set and test set is 7:1:2 in the RF model, and the ratio of the
training set, weighted set, validation set and test set is 6:1:1:2
in the CNN model. Then we obtain the optimal weights
by minimizing the loss values in the weighted set. Specifi-
cally, the loss value in the weighted set is calculated by the
cross-entropy loss of the predicted values and the true la-
bels, which is defined as follows:

Lloss(y, p) = −(y log p + (1 − y) log(1 − p)) (10)

where y represents the true labels, and p represents the pre-
dicted values. To minimize the loss value, we utilize Sequen-
tial Least Squares Programming (SLSQP) algorithm from
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Figure 3. The architectures of iPro-WAEL. The RF model contains 300 trees and the CNN model contains three convolutional layers, three max pooling
layers and two dense layers. The details of the parameters are introduced later.

the ‘scipy’ library, which uses the quasi–Newton method
with a BFGS update of the B–matrix and an L1–test func-
tion in the step–length algorithm. Finally, the weights ob-
tained with the minimum loss value are the optimal weights.

RESULTS

Performance evaluation of different features used for RF
model

We consider more than 50 sequence features provided by
IlearnPlus (26), BioSeq-Analysis2.0 (39) and BioSeq-BLM
(40), but many of these feature extraction methods are not
applicable for the unequal-length sequences. Therefore, we
extract the applicable 29 sequence-based features of the
training set in the GM12878 cell line and perform ten-fold
cross-validation to evaluate the performance of these fea-
tures using Area Under the Curve (AUC), Accuracy and
Matthews Correlation Coefficient (MCC) (Supplementary
Method). The results are shown in Supplementary Table S2.
It is worth mentioning that the original one-hot encoding,
DBE, TF-IDF and LDA-TFIDF cannot be used for encod-
ing unequal-length sequences, but the fixed-length option
provided by BioSeq-BLM makes it possible. Unexpectedly,
however, although the good performance was achieved with
fixed-length in the previous study (34), the performance of
features with fixed-length in this study is poor. The first rea-
son is that the lengths of the sequences in this study vary
greatly (from tens of bp to 3000 bp), resulting in incalcula-
ble information loss caused by truncation and padding. An-
other reason is that the negative samples in this study have a
certain similarity with the positive samples, and if the length
is fixed, the similarity between the positive samples and the
negative samples will be further enlarged, resulting in poor
performance.

Among other 25 methods that can directly extract fea-
tures of unequal-length sequences, many features have com-
petitive performance in predicting promoters, especially
Mismatch, RCKmer, CKSNAP, TPCP and PseTNC, show-
ing that they are informative in predicting promoters. To
further demonstrate the feature representation ability to

fuse these five features, we visualize the distribution of the
samples encoded by fused features in four cell lines using t-
distributed Stochastic Neighbor Embedding (t-SNE) (41).
We find that the positive samples and negative samples in
the four cell lines are distributed in two clusters (Figure 4),
proving that the fused features have excellent performance
in distinguishing promoters and non-promoters. Therefore,
we fuse and normalize these five features and use them as
the input of the RF model.

Parameter optimization

To obtain the best-performing model, we evaluate the per-
formance of the RF model and CNN model with different
parameters, including the number of trees, the learning rate,
the number of kernels and the size of kernels. We determine
optimal parameters using the grid search algorithm on the
dataset of the GM12878 cell line. To ensure that the perfor-
mance of the model is only affected by changes in parame-
ters, we set a fixed random seed for the RF model and the
CNN model. The performance of the RF model and CNN
model with different parameters are shown in Supplemen-
tary Tables S3 and S4, respectively. It can be seen that the
performance of models is affected by the parameters. The
RF model with a tree number of 300 performs best, and the
CNN model with a learning rate of 0.001, a kernel num-
ber of 32 and a kernel size of 11 performs best. Therefore,
we utilize these parameters to construct the RF model and
CNN model.

Ten-fold cross-validation on the training datasets

Previous studies have shown that random division of the
test set may lead to a large difference in performance be-
tween the training and test sets (42,43). To comprehensively
evaluate the performance of iPro-WAEL, we perform ten-
fold cross-validation on the training set of four cell lines.
The results are shown in Supplementary Table S5. It can
be seen that iPro-WAEL achieves extremely high perfor-
mance in predicting human promoters. It is worth mention-
ing that although the parameters are determined by param-
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Figure 4. The feature representation map using t-SNE. (A–D) represent the results of feature visualization on GM12878, HeLa-S3, HUVEC and K562,
respectively. Navy dots represent non-promoters and red dots represent promoters.

eter optimization on the GM12878 cell line, the model with
the same parameters also has excellent performance on the
other three cell lines. These results indicate that iPro-WAEL
has splendid performance and robustness in predicting pro-
moters.

Performance evaluation on the independent test set and com-
parison with the state-of-the-art predictors

To comprehensively evaluate the performance of the mod-
els, we evaluate and compare the performance of iPro-
WAEL with other eight computational methods, including
iPro70-PseZNC, vw Z-curve, iPro54-PseKNC, iPromoter-
2L, CNNProm, Promotech, DeePromoter and iPSW(2L)-
PseKNC. We apply them to seven species (13 datasets), in-
cluding humans (four cell lines), four prokaryotes (E. coli,
B. amyloliquefaciens, B. subtilis and R. capsulatus). Accord-
ing to the evaluation method in the previous study (3),
E. coli contains E. coli-general and E. coli-sigma70 and
two eukaryotes (Mouse and Arabidopsis, each eukaryote
contains a TATA dataset and a non-TATA dataset). Given

that some of these datasets are imbalanced, we randomly
subsample from the class with more data to construct a
balanced dataset. The details of other species datasets are
shown in Supplementary Table S6. All datasets are divided
into the training set and test set according to the ratio of the
human promoter dataset, and all methods utilize the same
training set to train these models and evaluate their perfor-
mance on the same test set. Due to the limitations of some
methods, these methods cannot be applied to some datasets
(Supplementary Table S7), and the reasons are shown in
Supplementary Information. Also of note, to demonstrate
and compare the generalization of the models, all methods
including iPro-WAEL keep the parameters unchanged on
the datasets of different species.

We evaluate the performance of nine models on 13
datasets and calculate the average performance of the mod-
els on the species with multiple types of datasets. The results
are shown in Figure 5 and the detailed results are shown in
Supplementary Tables S8–S14. It can be seen that the ex-
cellent performance of some models in one species is not
transferable. For instance, as far as ACC is concerned, Z-
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A B C

Figure 5. The performance evaluation of iPro-WAEL and other predictors on the seven species. (A–C) represent the AUC, ACC and MCC of the models,
respectively. Discontinuous lines represent that the method cannot be applied to these datasets. Note that the performance of Human, Arabidopsis and
Mouse are the average results of multiple datasets.

curve slightly underperforms (about 1%) our model on the
human dataset, but its performance on the mouse dataset is
extremely different from our model, about 10% lower than
that of our model. These results indicate that some methods
are limited in their ability to identify promoters in multiple
species. Fortunately, the iPro-WAEL proposed in this study
has satisfactory performance on multiple species. The line
representing iPro-WAEL in Figure 5 is always in the highest
position, showing the effectiveness of iPro-WAEL on mul-
tiple species. Specifically, iPro-WAEL achieves optimal per-
formance on six of seven species and is <0.1% lower than
the best model on the remaining one (Arabidopsis). Addi-
tionally, although the second best performing model varies
to a large extent on different datasets, ipro-WAEL outper-
forms these methods by a comparable or significant advan-
tage.

To intuitively compare the performance of iPro-WAEL
and the methods proposed by previous studies, we compare
iPro-WAEL and these methods individually based on the
maximum intersection of the dataset to which these models
could be applied. For instance, only Human, Arabidopsis
and Mouse are applicable to both DeePromoter and iPro-
WAEL. Therefore, we compare the average performance of
the two models on these three species. For another example,
all species are applicable to iPromoter-2L, CNNProm, Pro-
motech, iPSW(2L)-PseKNC, Z-curve and iPro-WAEL, so
we compare the average performance of these models on all
species. Based on this, we divide all datasets into three sub-
sets according to their applicable conditions and compare
iPro-WAEL and the methods proposed in previous studies.

It can be seen from Supplementary Table S15 that the per-
formance of iPro-WAEL is significantly better than other
methods. As far as ACC is concerned, iPro-WAEL obtains
1.7–18.6% higher than the second best performing model
on the three subsets. However, it cannot be ignored that
DeePromoter, which has the smallest difference from iPro-
WAEL in performance, has very strict conditions of use.
Due to its model architecture, DeePromoter has a very high
limit on sequence length. Therefore, DeePromoter is diffi-
cult to be applied to prokaryotic promoter detection (the
length of datasets in most prokaryotic is 81 bp or less, but
DeePromoter can only predict sequences over 140 bp), and
thus they also only report the performance on eukaryotic in
their paper. Among other promoter predictors that can ap-
ply to both prokaryotes and eukaryotes, iPromoter-2L and
iPro-WAEL have the smallest gap. But even so, iPro-WAEL
still obtains 2.3% higher than iPromoter-2L. Overall, these
results demonstrate that iPro-WAEL is an effective tool in
predicting promoters and can be widely used to predict pro-
moters in different species with satisfactory performance.

Cross cell lines validation

To explore the potential relationship between promoters in
different cell lines, we further employ iPro-WAEL in the
cross-cell lines and compare its performance with Z-curve,
which is the best-performing method on Human datasets
in the previous studies. We train the model on the training
set of one cell line and predict the test set of the other three
cell lines. The results are shown in Supplementary Tables
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S16 and S17. It can be seen that the performance of iPro-
WAEL on cross-cell lines validation outperforms the best-
performing method (Z-curve) in previous studies and is not
significantly different from that on the same cell line. It is
noted that the data used to obtain the weights is from the
training set, which ensures the independence of the test set
when conducting cross-cell lines validation. These results
indicate that iPro-WAEL is effective and robust for effec-
tively predicting promoters in different cell lines and indi-
cate potential similarity in sequence structure between pro-
moters in different cell lines.

Identification of promoters and enhancers

Recently, some studies have shown that sequence architec-
tures of enhancers and promoters are remarkably similar
(44–48). Therefore, it is natural to ask whether iPro-WAEL
can distinguish between promoters and enhancers. Whalen
et al. (20) identified enhancers using the same method as
promoters, most of which are less than 1000-nt in length.
Therefore, we obtain the sequence using BEDTools (23) and
remove enhancers over 1000-nt in length. Then we remove
the redundant sequences with >80% similarity in each cell
line using the CD-hit program (24). Given that the num-
ber of enhancers is much larger than that of promoters, we
randomly subsample from the enhancer sequences to obtain
the same number of sequences as the promoter sequences to
construct a balanced dataset. The enhancer sequences are
used as negative samples, and the promoter sequences are
used as positive samples. The details are shown in Supple-
mentary Table S18. Similarly, we use 20% of the sequences
in each cell line as the independent test set. We keep the pa-
rameters of iPro-WAEL unchanged and the results of iden-
tifying promoters and enhancers are shown in Supplemen-
tary Table S19. It can be seen that iPro-WAEL achieves
exceptionally high performance in distinguishing between
promoters and enhancers, even though sequence architec-
tures of enhancers and promoters are remarkably similar.
These results demonstrate the superior robustness of iPro-
WAEL and some sequence-level differences in the sequence
architectures of enhancers and promoters.

Prediction ability on the promoters annotated in another
method

Identification of promoters annotated with different meth-
ods may vary. Therefore, we further verify whether iPro-
WAEL can predict promoters annotated by another
method. Whalen et al. (20) identified promoters us-
ing Roadmap Epigenomics ChromHMM annotations for
IMR90 and NHEK cell lines. We utilize the same method
(see Method) to obtain negative sequences for these two cell
lines and utilize 20% of the sequences in each cell line as
the independent test set. Finally, the number of training sets
for IMR90 and NHEK cell lines is 8192 and 8170, respec-
tively, and the number of test sets for IMR90 and NHEK
cell lines is 2048 and 2044 respectively. Similarly, we keep
the parameters of iPro-WAEL unchanged. Then we evalu-
ate the performance of iPro-WAEL on these two cell lines. It
can be seen from Supplementary Table S20 that the perfor-
mance of iPro-WAEL in predicting promoters annotated by

different methods slightly decreased but is still satisfactory,
which demonstrates that iPro-WAEL can capture potential
features of promoters annotated by different methods and
is of high capacity of generalization.

Estimate of important TFBS motifs in human promoter re-
gions

Transcription factors play an important role in gene tran-
scription through direct binding to their motifs in the
genome and are involved in a large number of human dis-
eases (49,50). To identify the important TFBS motifs that
tend to bind in promoter regions, we propose a method to
calculate the importance scores of the TFBS motifs. Specifi-
cally, given that the RCKmer and Mismatch used in the RF
model can effectively reflect the importance of motifs, we in-
tegrate three methods to calculate the importance scores of
the subsequence segment by interpreting these two features,
including permutation-based importance, Gini importance
and SHAP value. To integrate the three methods, we nor-
malize and sum the importance scores of these two features
obtained by each method. Then we perform a summation of
importance scores representing the same subsequence seg-
ments, which is calculated as follows:

scoresegment = scoreMismatch
segment + scoreRCKmer

segment (11)

where scoresegment represents the importance score of the
segment, scoreMismatch

segment represents the importance score of
the Mismatch-based feature corresponding to the ‘segment’
and scoreRCKmer

segment represents the importance score of the
RCKmer-based feature corresponding to the ‘segment’. For
instance, the importance score of segment ‘AAAAA’ is cal-
culated by the sum of the importance scores of the segment
‘AAAAA’ in the Mismatch-based feature and RCKmer-
based feature. It is noted that reverse complements are
collapsed into a single feature. Therefore, the RCKmer-
based feature importance of a segment corresponds to the
RCKmer-based feature importance of its reverse comple-
mentary segment. For example, the RCKmer-based impor-
tance score of ‘TTTTT’ corresponds to the RCKmer-based
importance score of ‘AAAAA’.

Given that the segments are relatively short and thus may
match multiple motifs at the same time, for each segment,
we obtain the three motifs with the highest matching score
with the motif position weight matrices (PWMs) from the
HOCOMOCO Human v11 database (51) and assign them
the same importance score. If multiple subsequences match
the same motif, the importance scores of these subsequences
are summed as the importance score of the motif. Then we
categorize the motifs into different importance levels based
on quantiles spaced at 20% of the importance score. We dis-
play the most important motifs (top 20%) in Figure 6. It can
be seen from Figure 6 that the distribution of motifs’ impor-
tance score in different cell lines is remarkably consistent,
which can explain the reason for the high performance of
iPro-WAEL on cross-cell lines validation and applicability
of iPro-WAEL in predicting the promoters annotated in an-
other method.

Besides, we find that many estimated important motifs
are highly consistent with the previous studies. Among
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Figure 6. The most important TFBS motifs identified by iPro-WAEL.

the most important motifs identified by iPro-WAEL, both
the CTCF motif and CTCFL motif play a significant role
in mediating chromatin loops (52,53); YY1 contributes
to enhancer-promoter structural interactions and forms
dimers to promote promoter-involved DNA interactions
(54,55); ZNF143 is directly involved in chromatin looping
(20) and provides sequence specificity to cohesin-associated
chromatin loops at promoters (56), where ZNF143 di-
rectly binds to promoters and facilitates chromatin inter-

actions that link promoters to distal regulatory elements
(57); CUX1 is significantly enriched at promoters and con-
tributes to predicting promoter-enhancer interactions (20);
SP1 regulates chromatin looping between enhancer and dis-
tal promoter, and restores DNA looping and transcrip-
tional activity by inserting at the promoter (58,59); REST is
a transcriptional repressor with high predictive importance,
as pointed out in TargetFinder (20); TFAP2C is a pioneer
factor and is identified by TargetFinder as the most pre-
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dictive feature for predicting enhancer-promoter interac-
tions (20). In addition, some next most important (top20%-
top40%) motifs are consistent with some critical but un-
derestimated motifs in promoter-involved interactions, as
pointed out in TargetFinder (20), including SRF, MAX,
TBP, CEBPB and RUNX. These results indicate that the
formation of promoters is a complicated procedure and
tends to be affected by a variety of factors.

DISCUSSION AND CONCLUSION

Identification of promoters can be achieved by some an-
notation methods such as genome-wide mapping of hi-
stone modifications (11), ENCODE Segway (21) and
ChromHMM (22), which are time-consuming. In addition,
it remains unclear what the potentially important TFBS
motifs exist in human promoters. In this study, we propose a
comprehensive and robust framework, named iPro-WAEL,
to answer this question. We integrate two different mod-
els in iPro-WAEL, including the RF model, which utilizes
traditional sequence-based features, and the CNN model,
which utilizes word embedding techniques to extract the se-
quence features. From the analysis of a series of examina-
tions on multiple datasets, it is concluded that iPro-WAEL
has optimal performance and robustness, and it is superior
to the existing methods. Besides, some previous methods
have limitations in applying certain datasets. Fortunately,
the iPro-WAEL proposed in this study does not suffer from
this limitation. It is worth mentioning that iPromoter-2L
noticed this problem, thus their webserver splits the se-
quence into multiple 81-nt segments when predicting se-
quences with length over 81-nt, but still cannot make pre-
dictions when the sequence length is less than 81-nt. Over-
all, iPro-WAEL is a competitive and robust model for pre-
dicting promoters in multiple species and can be widely ap-
plied to datasets with different sequence lengths.

In addition, we estimate potentially important TFBS mo-
tifs in promoter regions using the computational method
we designed. We identify many critical sequence motifs
for predicting promoters, including ZNF143, YY1, CTCF,
CUX1, SP1, REST, TFAP2C, SRF, MAX, TBP, CEBPB
and RUNX, which are consistent with the previous study.
However, to the best of our knowledge, several potentially
important motifs identified by iPro-WAEL have received lit-
tle or no attention. Therefore, these motifs may be involved
in the formation of promoters and gene regulation through
underappreciated or potentially new biological interactions
with certain proteins, and may be the key to analyzing the
difference and association of promoters in different cell lines
of humans.

There are also some areas in which our method can be im-
proved. For instance, we identify the importance of motifs
by the importance of features reflecting the frequency of 5-
mer segments, but indeed, the Word2vec-based features also
reflect the infor-mation of the 5-mer segment because its
window size is 5. However, we cannot interpret Word2vec-
based features due to the difficulty of interpreting the em-
bedding space intuitively. Therefore, we do not integrate
word2vec information when calculating the 5-mer segment
importance scores. Indeed, the field of NLP also faces this
dilemma, although word embedding techniques are widely

used in the NLP field. Although the RF model has better
performance and higher weights than the CNN model on
human cells, which indicates that interpreting the features
used by the RF model may have higher confidence, our ex-
perimental results also show that integrating the RF model
and CNN model can further improve the performance in
predicting promoters. Therefore, if the importance scores of
the Word2vec-based features can be calculated reasonably,
the reliability of the method for analyzing the importance
of motifs may be further improved when being combined
with the importance scores of the features used in this study.
Additionally, we have demonstrated a satisfactory perfor-
mance when using iPro-WAEL trained on one cell line to
predict promoters in another cell line, indicating that pro-
moters from different cell lines may be similar at the motif
level and related in some way. However, the performance
of using models trained on prokaryotes to predict the pro-
moters of eukaryotes is unsatisfactory, indicating that pro-
moters of different species may be associated with different
motifs. Overall, it will be interesting to explore the differ-
ences and associations between promoters of different cell
lines and different species by analyzing the importance of
motifs, which will provide a novel way to analyze cell speci-
ficity and species specificity.
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