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Abstract

Background: The combination of computer vision devices such as multispectral cameras coupled with artificial intelligence has pro-
vided a major leap forward in image-based analysis of biological processes. Supervised artificial intelligence algorithms require large
ground truth image datasets for model training, which allows to validate or refute research hypotheses and to carry out comparisons
between models. However, public datasets of images are scarce and ground truth images are surprisingly few considering the numbers
required for training algorithms.

Results: We created a dataset of 1,283 multidimensional arrays, using berries from five different grape varieties. Each array has 37
images of wavelengths between 488.38 and 952.76 nm obtained from single berries. Coupled to each multispectral image, we added
a dataset with measurements including, weight, anthocyanin content, and Brix index for each independent grape. Thus, the images
have paired measures, creating a ground truth dataset. We tested the dataset with 2 neural network algorithms: multilayer perceptron
(MLP) and 3-dimensional convolutional neural network (3D-CNN). A perfect (100% accuracy) classification model was fit with either
the MLP or 3D-CNN algorithms.

Conclusions: This is the first public dataset of grape ground truth multispectral images. Associated with each multispectral image,
there are measures of the weight, anthocyanins, and Brix index. The dataset should be useful to develop deep learning algorithms for
classification, dimensionality reduction, regression, and prediction analysis.
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Context
Traditionally, hyper- or multispectral images (MSIs) have been ac-
quired from satellites or aircraft for the tasks of classification and
detection of ground elements [1], vegetation quantification and
evolution [2], measurement of ice at the poles [3], or the detec-
tion and monitoring of humanmade discharges [4]. The evolution
of hyperspectral capture devices based on the decomposition of
light in systems with filters on the imaging sensors has intro-
duced notable improvements in spectral sensing. These include
a drastically reduced size of the device. The complex calibration
process associated with image capturing using linear devices has
been eliminated. The number of images per second has been in-
creased. Finally, it is possible to capture up to 25 bands in different
spectral ranges in a single shot. These new features allow spectral
imaging to expand to new areas of use that were unthinkable a
few years ago, such as disease [5] or water stress detection [6] in
crops from on-board drones or autonomous robots, food inspec-
tion [7], material classification [8], cancer diagnosis [9], or plant
phenotyping [10], among others. A difference between hyperspec-
tral and multispectral sensing technology is the extent of the re-
flectance spectrum captured. In hyperspectral sensing, a contigu-
ous and continuous spectrum is acquired, while in multispectral

sensing, only specifically targeted reflectance wavelengths are. In
this work, we use the latter technology.

Advances in techniques based on deep learning (DL), inherited
from artificial neural networks that mimic the neural behavior
of the brain, have managed to outperform humans in automatic
pattern recognition systems [11]. Among the different DL tech-
niques, special mention should be given to the convolutional neu-
ral networks (CNNs) for their flexibility and scalability when solv-
ing problems in the field of computer vision. These networks have
obtained excellent results in the detection, classification, and seg-
mentation of images. Furthermore, CNNs can be used to solve re-
gression problems simply by modifying the activation functions
of the last layers [12].

Supervised learning algorithms must be trained with ground
truth images, that is, images that have been associated with a
qualitative or quantitative measurement, also called labels. Ob-
taining predictive models using multi- or hyperspectral images
usually involves 2 stages. First, the images are converted to feature
vectors. This process typically involves the use of image seman-
tic segmentation and feature selection or extraction algorithms.
The image segmentation can be carried out by filtering the pixels
with a reflectance threshold value for one of the channels. This
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produces a binary image where object and background pixels are
identified [13–15]. The process can be done manually using image
analysis software such as ENVI [16]. Some feature selection al-
gorithms that are used include competitive adaptive reweighted
sampling [13, 15, 17, 18], the successive projection algorithm [13,
15, 17], the genetic algorithm [17], or random frog [14]. The well-
known principal component analysis (PCA) and deep neural net-
works like autoencoders and CNNs can also be used for feature
extraction [13]. It is also possible to simply calculate the mean re-
flectance of object pixels for every channel in the image and use
it as features.

Supervised learning algorithms are then used to fit predictive
models, such as partial least squares regression, least squares–
support vector machines (LS-SVMs), or multilayer perceptron
(MLP). Some application examples of these algorithms include the
prediction of anthocyanin levels in goji berries (Lycium ruthenicum)
[13], the pectin content of mulberry [19], the sugar content of wine
grape berries [20] and Dangshan pears (Pyrus sp.) [17], the pigment
levels of spinach leaves [14], the soluble solids content of apple
peels [18], and the water and capsaicinoid content of chili peppers
[15].

Examples of classification problems related to fruits solved
with machine learning algorithms and MSI as input data include
the evaluation of injuries in mangoes, with LS-SVM combined
with PCA extracted features [21]; the discrimination between nat-
urally and artificially ripened bananas using SVM and the prob-
abilistic collaborative representation classifier [22]; the detection
and classification of citrus green mold using linear discriminant
analysis [23]; or the discrimination of olive fruits based on their
firmness with an MLP [24].

As mentioned above, some algorithms can be used to fit both
classification and regression models, such as SVM or MLP. The
CNN family of algorithms deserves special attention because they
are capable of simultaneously extracting features and fitting a
classification or regression model. Thus, when such algorithms
are used, there is no need to segment or manually convert the
input MSI to feature vectors.

Despite the current importance of image analysis, there are
very few ground truth datasets publicly available containing mul-
tispectral images. A well-documented dataset corresponding to
Arabidopsis rosette [25] is found in one source [26]. However,
ground truth datasets where the concentration of a chemical or
metabolite is coupled to images are nonaccessible, to the best of
our knowledge. The multispectral dataset presented in this arti-
cle is the first that includes multispectral images in the visible
and infrared spectrum combined with weight, anthocyanins, and
Brix index measurements. The dataset has been designed to be
easily used in multispectral image classification with DL meth-
ods, dimensionality reduction algorithms based on multispectral
images.

Methods
Dataset creation
We collected 150 bunches of 5 seedless table grape varieties, Au-
tumRoyal, Crimson, Itum4, Itum5, and Itum9, to create the dataset.
All grapes were collected from the same vineyard, located in the
municipality of Alhama de Murcia, in the province of Murcia, in
southeast Spain. Grapes were harvested when fully ripe for mar-
keting and export, and samples from the field were used for the
study. This was roughly 3 to 4 weeks after veraison.

Samples were taken from each bunch in 3 characteristic areas
of the bunch, categorized as A—top, B—middle, and C—bottom.
The grape berries of every class follow a uniform distribution re-
garding the area of the bunches they were taken from. Different
bunches were used during the sampling to account for the pos-
sibility of interbunch variance. We took a total of 1,283 samples:
199 of AutumRoyal, 401 of Crimson, 84 of Itum4, 504 of Itum5, and
95 of Itum9. Grape berries were cleaned, measured, weighed, and
labeled before being introduced into the multispectral chamber
to obtain the images. Finally, the labeled berries were sent to the
laboratory for anthocyanins and Brix index measurements. The
workflow for the creation of the dataset is shown in Fig. 1.

Multispectral image acquisition
The multispectral acquisition process was carried out in a multi-
spectral chamber specifically developed for this purpose, which is
illustrated in Fig. 2. The chamber is composed of:

1) A configurable aluminum structure of size 1,000 × 1,000 ×
500 mm3. The design of the structure allows easy position-
ing and placement of different elements, such as reflective
panels, cameras, and the illumination system, to prepare
different types of experiments.

2) A multispectral illumination system. The illumination has
been designed with a cluster of LEDs to cover a broad spec-
trum of wavelengths from 450 to 970 nm (see Fig. 2D). The
power supply to the illumination system is controlled by an
analogue electronic controller using a software application.

3) A multispectral acquisition system. The multispectral acquisi-
tion system consists of two different snapshot mosaic mul-
tispectral cameras from the manufacturer

Photonfocus (Switzerland). The first one (model: MV1-D2048 ×
1088-HS03-96-G2) was used for the acquisition of 12 bands in the
visible range of 488 to 625 nm, and the second camera (model:
MV1-D2048 × 1088-HS02-96-G2) performed the acquisition of 25
bands in the red-infrared range of 676 to 952 nm (see Fig. 2B).

4) A software application system. This has been developed using
the LabVIEW programming language. It controls the power
supplied to the illumination and multispectral acquisition
systems (see Fig. 2C and D).

The combined multispectral system acquires 37 raw images (1
byte per pixel) for each grape sample in the spectral range of 430
to 953 nm. We used all the channels, despite increased noise in
the reflectance of the 2 end wavelengths, to gather the largest
amount of information. The grape samples were captured next to
a reference mark with a size of 1 cm2 for easy transformation of
pixel values to real measurements (see Fig. 3). As images were not
taken from a zenith perspective, the square appeared as a rhom-
boid in the images, thus aiding in the automatic measurement.
The multispectral raw image (Ir) is calibrated using 2 reference
images captured in two different exposure times (t1,2) according
to equation 1. The dark reference image (Id) is obtained using a
black surface placed at the position of the object to be acquired.
The white reference image (Iw) is obtained using a white surface
placed at the same position and with the same configuration of
the illumination system used for the acquisition.

Ic = Ir(t1) − Id (t1)
Iw(t2) − Id (t2)

(1)

The exposure times (t1, t2) were selected to avoid saturated pix-
els in the calibrated image (Ic). Particularly for this dataset, the
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Figure 1: Schematic workflow of the creation of the dataset. Grape bunches from all varieties were harvested after veraison at different months and
sent to the laboratory. Individual grapes were selected, cleaned, and labeled prior to data acquisition. Then, the MSIs were captured in the chamber.
Afterward, the raw reflectance data were transformed in ready-to-use 3-dimensional arrays, and in parallel, we measured the anthocyanin content
and Brix index.

Figure 2: Multispectral chamber: (A) illumination system composed of LEDs of different wavelength; (B) multispectral cameras for visible and infrared
acquisition; (C) configuration system panel of software application for the camera setting and to define the parameters of the experiment; and (D) LED
illumination system channels’ wavelengths and maximum power in Watts. The 760 to 970 channel is the near infrared channel and comprises LEDs of
760, 800, 820, 840, 880, 910, 940, and 970 nm.

exposures time was set empirically as t1 = 15 ms and t2 = 10 ms.

Image processing
An example of how the raw MSIs look like is presented in Fig. 3.
The noticeable lack of uniformity in the intensity of the images

due to the reflectance mainly of the black and red berries was
found to be problematic. To segment the grapes and remove un-
wanted objects from the images, an algorithm based on computer
vision techniques has been developed to automatically obtain the
segmented image of each grape.
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Figure 3: Sample of calibrated images in visible and infrared spectrum.
The left column contains the reflectance arrays at 542.17 nm and the
right column at 767.48 nm. One random instance of each grape class is
shown.

The algorithm consists of the following steps:

1. Extraction of binary patterns from the different types of
grapes. This was done selecting 100 images of each variety
easy to segment and with a high contrast.

2. Scaling of the binary pattern. From each binary pattern, a set of
variations scaling between 0.2 and 20 with step 1.0 is gener-
ated, and this is applied to the edge image with the Canny
function: {EP0,…,EPt}.

3. MSI preprocessing. To obtain a uniform edge image close to the
scaled pattern {EP0,…,EPt}, the following image-processing
pipeline was applied over every channel of each MSI:

a. Look-at-table with alpha = 2.5
b. Gaussian Filter with window 11 × 11
c. Adaptative thresholding based on mean with: Size × block-

Size = (17.2)
d. Morphological CLOSE function with window 3 × 3
e. Erase areas less than 500 pixels to avoid small objects
f. Canny function edge detector

The result is a set of smooth edges images {SE0,…,SEn} with oc-
clusions per each multispectral image.

4. Matching. A matching function is used to find the grape in the
MSI. This is done using multiple instances of the matching
function (cv2.matchTemplate(SEi, EPj, cv2.TM_CCOEFF))
that are invoked between the set of binary patterns
{EP0,…,EPt} and the smooth edge images set per each mul-
tispectral {SE0,…,SEn}. The matching function supplies a
coefficient (TM_CCOEFF) for the correlation between each
pair of images {SEi, EPj}.

5. Region of interest. The maximum value of the TM_CCOEFF
will determine the area where the grape is found. The re-
gion of interest, [y:y+h,x:x+w], will be cropped of the all

A B

Figure 4: Result of the multispectral image segmentation algorithm for
a Crimson grape. (A) Final segmented image. (B) Binary pattern extracted.

bands of a specific multispectral image, where (y, x) is the
upper left corner of the rectangle with greater TM_CCOEFF,
h is the pattern height, and w is the pattern width.

An example of a segmented multispectral image obtained with
this algorithm is shown in Fig. 4 (only one reflectance channel
shown).

6. Save segmented images and go to step 1.

This algorithm had to be developed because a simple threshold
segmentation with the raw images as input would not work with
the darker berries, namely, those of AutumRoyal class.

Anthocyanins and Brix index measures
Anthocyanins were quantified as described previously [27]. To-
tal anthocyanins were extracted with 5 ml of an acidic methanol
(0.1%) solution, CH3OH:HCl:H2O (70:0.1:29.9 v/v/v). Samples were
incubated at 4◦C in darkness for 24 hours. Then, anthocyanins
were measured using 2 different absorbances (530 and 657 nm)
with a spectrophotometer (ion UV 1600, US, UV-2401-PC UV-
VIS Spectrophotometer, Shimadzu Corporation, Kyoto, Japan). The
amount of anthocyanin was obtained by using equation 2:

Qtotal anthocyanin = (A530 − 0.25 × A657) /FW (2)

where A530 and A657 are the absorbances obtained with the spec-
trophotometer with a wavelength of 530 nm and 657 nm, respec-
tively. FW is the fresh weight of the sample.

We measured Brix index with a digital refractometer (ATAGO
PAL-1,Tokio, Japan) using the grape juice extracted from each
berry [28].

Data Validation and Quality Control
Dataset structure
The data, which are stored in gigadb.org, consists of a total of 1,283
multidimensional arrays in TIF format, compressed in a single zip
file. There are 5 different grape varieties in the dataset. The images
of AutumRoyal, Crimson, and Itum5 classes have been obtained in
several batches on different days. In the case of Crimson and Itum5,
images were acquired in different months. This is important be-
cause grape attributes are not uniform all over the year and in fact
vary depending on the month. Table 1 shows the composition of
the dataset, that is, the number of instances of each grape class
as well as over how many days the images were obtained and in
which month(s). The AutumRoyal is a black grape, Crimson is green
to lightly red, Itum4 and Itum5 are green, and Itum9 is dark red. The
size of this dataset is comparable to the one in Ramos et al. [29],
who used 1,260 MSI of grapes of 2 varieties to adjust a classifier
capable of predicting the ripeness of grape berries.
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Table 1: Structure of the dataset

Grape type
Number of

images
Acquisition

batches Month(s)

AutumRoyal 199 2 November
Crimson 401 4 September, October,

November,
December

Itum4 84 1 September
Itum5 504 5 October, November,

December
Itum9 95 1 Sept.

For each grape variety present in the dataset, the following information is presented: the number of instances, over how many days they were acquired, and in
which month(s).

Each one of the arrays in the dataset corresponds to an MSI,
with the following dimensions, in pixels: 140 (height) × 200 (width)
× 37 (number of channels/depth). The first 12 channels cor-
respond to reflectance in the visible range of the electromag-
netic spectrum and the last 25 ones to near infrared (NIR) re-
flectance. The specific wavelength of every channel is shown in
Table 2.

In addition to the images, a ground truth for specific variables in
the format of a tab separated text file (.txt) is stored in the repos-
itory. For every grape in the dataset, the value of the following
variables is present in this file: the Brix index, weight expressed in
grams, the amount of anthocyanins expressed in milligrams per
kilo of fresh weight, the type of grape, and finally an identification
of the measured batch. As an overview of this file, the first 5 rows
are shown in Table 3.

Dataset visualization
The first analysis was a dimensionality reduction with the PCA al-
gorithm to gain insight of the internal structure of the dataset. To
do that, the dataset was compressed from a collection of multi-
spectral images to a 2-dimensional table. This was done by thresh-
old segmentation of the multispectral images and then calculat-
ing the mean reflectance across all object pixels for every channel
and image. The resulting table has as many rows as there are im-
ages in the dataset and as many columns as reflectance channels.
For the image segmentation, the channel 22 (802.25 nm) and the
threshold value 25 were used. These parameters were both empir-
ically selected. Once the dataset had been compressed, the PCA
algorithm was applied to it.

The first two principal components (PCs) explain up to 84% of
the total variance of the dataset. More specifically, the first PC was
mostly a product of the NIR reflectance channels, and the second
PC was formed by the visible range channels. The first PC itself
accounts for 54% of the total variance and, as shown in Fig. 5,
can separate most of the instances. This suggests that most of the
reflectance of the grape berries is formed by NIR radiation and
thus it is within this range of the spectrum where the different
varieties can be best discriminated.

Fig. 5 illustrates substantial intragroup variance for Autum-
Royal, Crimson, and Itum5 grape types, while it is less pronounced
in Itum9 and Itum4. As mentioned earlier, the most likely explana-
tion for this phenomenon is that the images of some classes were
captured over more than 1 day and in different months. This is
particularly remarkable for Itum5 and Crimson because they were
measured over 3 and 4 months, respectively. By contrast, Itum9
and Itum4 were measured in only 1 month, and they cluster much
closer together.

We also assessed the differences between every grape class
via their reflectance spectrogram comparison (Fig. 6). In accor-
dance with Fig. 5, most of the reflectance was found to be in the
NIR range, and this was also the region with the most intergroup
variance. We selected grapes randomly using the Python library
Numpy random sampling method. By plotting the spectrogram
of each class, we could also see the heterogeneity of AutumRoyal,
Crimson and Itum5 (Fig. 6).

The spectra obtained from grape berries differ significantly
from the better-known leaf spectra. This is due mostly to the dif-
ferences in chlorophyll content of the tissues. Indeed, the reported
concentration of chlorophyll in grape berries at harvest is 1,000-
fold lower than leaves of spinach, lettuce, or pakchoi [30, 31].

Finally, the distribution of the continuous variables present in
the ground truth table file was analyzed, namely, anthocyanin
content in mg/kg fresh weight and Brix index degrees (Fig. 7).
According to the Shapiro–Wilk tests, anthocyanins were not nor-
mally distributed in the varieties analyzed. Itum5, Itum4, and Crim-
son had leptokurtic distributions while AutumRoyal and Itum9 had
platykurtic distributions. The anthocyanin ranges also differed
between each grape class. Both Itum4 and Itum5 had a very short
range, centered on zero [0–0.98] and [0.0073–2.96], respectively,
while it was much broader in the cases of AutumRoyal [0.63–95.23]
and Itum9 [2.78–95.60]. Finally, Crimson ranged between 1.45e-4
and 2.45 mg/kg fresh weight. These differences were due to the
different pigmentation levels of the grapes. Itum4 and Itum5 are
both green grapes and thus lack anthocyanin pigments in the skin
of the berries. In contrast, Crimson is lightly red colored and there-
fore possesses some pigmentation, while AutumRoyal and Itum9
are black or dark red and have the highest level of anthocyanins
in their skin.

The Brix index distributions were less skewed than antho-
cyanins (Fig. 7). Crimson and Itum4 were normally distributed, ac-
cording to the result of Shapiro–Wilk tests. Their ranges were also
more similar than was the case with the anthocyanin content:
[12.8–22] for Itum4, [12.6–30.8] for Itum5, [15.9–26.6] for Itum9, 25.3-
braquet for Crimson. Interestingly, AutumRoyal and, to a lesser ex-
tent, Itum9 showed a bimodal distribution. As these grapes were
measured over a single month each, this may indicate differing
levels of ripening in the trusses analyzed (Fig. 7).

Potential usage of dataset
Dataset utility in machine learning pipelines
To assess the usefulness of this ground truth data set in ma-
chine learning pipelines, we tried unsupervised and supervised
pipelines, fitting classification models. We used a K-means clus-



6 | GigaScience, 2022, Vol. 11, No. 1

Table 2: Multispectra image wavelengths

Channel Wavelength (nm) Channel Wavelength (nm) Channel Wavelength (nm)

1 488.38 14 689.83 27 866.68
2 488.58 15 714.87 28 876.49
3 503.59 16 729.06 29 885.18
4 516.60 17 741.80 30 894.26
5 530.62 18 755.44 31 908.58
6 542.17 19 767.48 32 916.63
7 567.96 20 781.25 33 925.36
8 579.29 21 792.57 34 931.99
9 592.89 22 802.25 35 938.48
10 602.88 23 823.75 36 946.14
11 616.59 24 835.10 37 952.76
12 625.71 25 845.81
13 676.25 26 856.52

Table 3: Overview of the ground truth table file with the first 5 rows presented

ArrayName Brix.Index Grams Anthocyanins.mg.Kg.FW Type Measure

Crimson_37bands_1.TIF 21.7 0.028 4.070 Crimson Crimson September
Itum9_37bands_1.TIF 18.5 0.100 33.239 Itum9 Itum9 September
Itum5_37bands_1.TIF 20.7 0.066 0.370 Itum5 Itum5 October
AutumRoyal_37bands_1.TIF 11.7 0.077 14.892 AutumRoyal AutumRoyal 1

November
Itum9_37bands_2.TIF 18.7 0.0882 37.757 Itum9 Itum9 September

Figure 5: Principal components analysis scatter and variable plot (biplot) of the dataset. The class of the instances is represented by the shape of the
points and the month when the image was acquired by the color. The variables are represented as black lines with their names next to them. The
reflectance of each channel is presented in Table 2.
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Figure 6: Reflectance spectrograms of every grape class. For each class, the mean spectrogram across all instances is presented as well as the
individual spectrogram of 50 randomly selected instances.

tering algorithm for the unsupervised pipeline and multilayer
perceptrons (MLP) and convolutional neural networks with 3-
dimensional kernels (3D-CNN) for the classification models. The
goal of the classifiers is to predict the class of the grapes.

Two neural network algorithms were used to fit classification
models: MLP and 3D-CNN. MLP requires the data in 2-dimensional
table form, the same one that was used as input for the PCA algo-
rithm.

The second one can use the 3-dimensional arrays of the dataset
directly as input but requires the usage of data augmentation
techniques, such as those provided in the Python 3 library Albu-
mentations [32].

The MLP used consisted of a simple stacking of 4 dense layers
with 32, 24, 16, and 8 nodes each, plus a final output layer with
5 nodes. Between each dense layer, a batch normalization layer
and the ReLU activation function were inserted. After the output
dense layer, we used the softmax activation function. This net-
work is quick to train, but the input dataset must be preprocessed
beforehand, via spatial and spectral compression.

The 3D-CNN architecture employs two 3-dimensional con-
volutional blocks with convolutional layers that use dilated 3-
dimensional kernels [33]. It also uses mean and average 3-
dimensional pooling layers between these blocks and a total of
2 dense layers. This network not only requires a great number of
images to be trained (hence the need of data augmentation tech-
niques) but is also slow. It needs to store in memory tensors of
considerable size, which is computationally heavy. The network
architecture is summarized in Fig. 9.

To train both networks, the data were split between 3 separate
subsets called train, validation, and test, each one having respec-
tively the 50%, 25%, and 25% of the total instances. The split was
not done randomly; instead, the class distribution was preserved
in all subsets, so that in each one, there was the same proportion
of grapes. The train subset is used to fit the model, the validation
is used for testing it while it is being fit, and the test subset is used
after the fit has been completed to get a final performance value.

By splitting the data like this, the leakage of information between
subsets is avoided. In the case of the model fitted with the 3D-
CNN algorithm, data augmentation was applied to both train and
validation subsets but not to the test subset. The data augmen-
tation consisted of affine transformations, vertical and horizon-
tal flippings, and lightly altering the pixel values via contrast and
brightness changes. The transformations applied were carefully
selected to avoid distorting the reflectance information contained
in the images. The flipping of images and affine transformation
do not change the pixel reflectance values contained in the pix-
els. The contrast and brightness do change the pixel values, but
its range was limited to minimize any possible hindrance in the
learning process of the classifiers. The precise values of the trans-
formation ranges are identical to those described in the literature
[33].

In both cases, a perfect (100%) classification accuracy was
reached, which validates the quality of this dataset to fit classi-
fication models with complex and simple network architectures.
The success of these algorithms is likely due to the fact that they
are able to find and exploit nonlinear relationships between the
independent variables (i.e., the reflectance spectra).

Indeed, we have also fit a classifier using a simpler algorithm,
namely, SVM with linear kernel, and we obtained a modest 0.679
accuracy as the best result. This indicates the need for higher
complexity learning algorithms to fit models capable of general-
izing with these data.

The visible and infrared arrays of the MSI were not identical
with regard to the spatial positions of the object pixels, as they
were captured with 2 separate cameras. This was not an obstacle
for the fitting of classification models.

The result of the K-means clustering (with K = 8 empirically
selected) showed that grapes were not cleanly separated. Interest-
ingly, the month in which the images were acquired does indeed
introduce significant differences between grapes of the same type.
This was evidenced by the fact that the instances of most classes
were distributed across different clusters and that several clusters
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Figure 7: Density plots of the distribution of the variables anthocyanin content (A) and Brix index (B) for each individual class.

contain instances of different classes. In particular, AutumRoyal
was split into 2 different clusters. Crimson was distributed across
mainly 4 clusters, but only one of these clusters was composed
entirely of Crimson instances. Itum4 instances were all located in
one cluster, together with AutumRoyal instances. Itum5, like Crim-
son was split across 4 clusters, but only one of them was composed
entirely of instances of this class. Finally, for Itum9, only 1 cluster
contained all the instances, together with Itum5. Except for Autum-
Royal, the number of clusters containing all instances of a given
grape class coincided with the number of months over which the
images of that class were acquired. The results were visualized
over the same PCA scatterplot already shown in Fig. 5 and pre-
sented in Fig. 8. These clustering results indicate that a supervised
learning algorithm may find problems fitting a classification algo-
rithm, because instances labeled equally can have quite different
reflectance spectra depending on the month when the image was
captured. In contrast, neural networks achieve 100% accuracy.

An unexpected result of our analysis was the capacity to iden-
tify differences between berries based on time of harvest or posi-
tion in the truss. This explains the significant intragroup variance

in some grape classes. Those were not an obstacle for the neu-
ral networks used as classification algorithms. Furthermore, our
dataset reflects the reality encountered when using agricultural
products (i.e., a large variance due to a combination of environ-
mental, ontogenic, and genetic factors).

In addition to classification and clustering, we have also tried
to fit regression models capable of predicting either the antho-
cyanin content or the Brix index. However, we were unsuccessful
in our attempts. We believe that the structure of the data pre-
vents the algorithms to extract meaningful relations between the
reflectance and the values of the continuous variables presented
(anthocyanin content and Brix index). The distributions of antho-
cyanin content are too different between grape classes. More than
three-quarters of all grapes measured had little to undetectable
anthocyanin levels (Itum5, Itum4, and Crimson), while the remain-
ing classes had very high levels (AutumRoyal and Itum9). Hence, the
algorithms were challenged to fit a model capable of generalizing.
Restricting the problem to only one or a few classes was of no use
because the number of instances turned out to be too low for the
learning algorithms.
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Figure 8: PCA scatterplot with color coding for the clusters calculated with the K-means algorithm. The shape of the points represents the grape class.

A B

Figure 9: Schematic representation of the neural networks employed to fit classification models. The term unit that appears in the multilayer
perceptron (A) and 3-dimensional convolutional neural network (B) refers to the number of neurons of a dense layer. In (B), the following abbreviations
are used: KS equals kernel size of a convolutional layer; DR equals dilation rate of the kernels of a convolutional layer, and PS equals pool size of a
pooling layer.
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The Brix index posed a different problem to fit regression mod-
els. In this case, the distribution of this variable is very similar for
every grape class of the dataset. This causes the algorithms to fit
a model that systematically predicts the global mean of this vari-
able. They are not capable of linking the information contained in
the spectra to the Brix index.

We have tried 2 additional algorithms, namely, partial least
squares regression and SVM, alongside the neural networks pre-
sented in the study adapted for regression problems, and none of
them were able to successfully fit a regression model. The highest
determination coefficient (R2) was 0.53 for anthocyanin and 0.24
for the Brix index (data not shown).

We have obtained 1,238 multispectral images from grape
berries, comprising 37 channels, thus creating a multidimensional
array of 45,806 images. Coupled to each grape, there are additional
data, such as weight, anthocyanin content, and Brix index. To the
best of our knowledge, this is the first dataset of ground truth
multispectral images of fruits to be made publicly available. We
propose it as a benchmark for the plant phenotyping community
that uses multispectral images to test different classification al-
gorithms on it.

Availabiliy of source code and requirements
Project name: 3DeepM

Project home page: https://github.com/AlbertoGilaNavarro/3D
eepM [33]

Operating system: Platform independent
Programming languages: Python
Other requirements: Python version 3.6.8 or higher, Tensorflow

version 2.4.1 or higher, Numpy version 1.19.5 or higher, Pandas ver-
sion 1.1.5 or higher, Matplotlib version 3.3.4 or higher, Albumenta-
tions version 0.5.2 or higher, ComputerVision2 (cv2) version 4.5.1
or higher, Skimage version 0.17.2 or higher, Imutils version 0.5.4
or higher

License: GNU General Public License version 3
In our home page, the functions for the segmentation process

of grape berries and the architectures of the neural networks used
in the technical validation, together with the usage example of
model training and validation scripts, are publicly available.

Data availability
All data further supporting this work, including snapshots of our
code, are openly available in the GigaScience repository, GigaDB
[34].
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