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ABSTRACT

MicroRNAs (miRNAs) are ∼19–22 nucleotides (nt)
long regulatory RNAs that regulate gene expres-
sion by recognizing and binding to complemen-
tary sequences on mRNAs. The key step in re-
vealing the function of a miRNA, is the identifica-
tion of miRNA target genes. Recent biochemical ad-
vances including PAR-CLIP and HITS-CLIP allow for
improved miRNA target predictions and are widely
used to validate miRNA targets. Here, we present
miRTar2GO, which is a model, trained on the com-
mon rules of miRNA–target interactions, Argonaute
(Ago) CLIP-Seq data and experimentally validated
miRNA target interactions. miRTar2GO is designed
to predict miRNA target sites using more relaxed
miRNA–target binding characteristics. More impor-
tantly, miRTar2GO allows for the prediction of cell-
type specific miRNA targets. We have evaluated
miRTar2GO against other widely used miRNA tar-
get prediction algorithms and demonstrated that
miRTar2GO produced significantly higher F1 and G
scores. Target predictions, binding specifications,
results of the pathway analysis and gene ontology
enrichment of miRNA targets are freely available at
http://www.mirtar2go.org.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs
(ncRNA) with lengths ranging between 19 and 22
nucleotides. They play an important role as post-

transcriptional regulators of gene expression (1). The
most recent estimates suggest that approximately 60% of
the mRNA repertoire are under the post-transcriptional
control of miRNAs (2), and they play fundamental roles
in the regulation of most biological processes including
diseases such as cancer. In animals, mature miRNAs are
incorporated into one member of the Argonaute (Ago)
protein family of the RNA induced silencing complex
(RISC) (3–7). RISC typically targets the 3′ untranslated
region (3′UTR) of the targeted messenger RNA (tmRNA)
(8) leading to the inhibition of the translation of the corre-
sponding mRNAs via various mechanisms (9–11). Binding
site interactions of the miRNA–tmRNA depend on se-
quence complementarity; most importantly, on the short
sequence homology between the miRNAs seed sequence
(the second to seventh nucleotides of the miRNAs) and
the targeted mRNA (12). Based on seed complementarity
between miRNAs and tmRNAs, several computational
methods have been developed to predict miRNA targets
(12–18).

Base-pairing between the miRNA and its target is the
most commonly used feature in miRNA target prediction
tools (19,20). The majority of the prediction algorithms re-
quire, but are not necessarily limited to, the seed match be-
tween the miRNA and the tmRNA. Most miRNA target
prediction tools use the extended seed match (complemen-
tary between the second and the eighth to ninth nts of the
miRNAs and the corresponding tmRNAs) criterion. How-
ever, it has been shown that the majority of functional target
sites are governed by less specific seed matches with a length
of only six nucleotides (21). It was also demonstrated that
narrowing the length of the seed match to six nucleotides
increases the number of correct predictions for miRNA tar-
gets. However, this has also increased the number of in-
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correctly identified targets as such short motifs occur fre-
quently in the transcriptome and could produce high false
positive ratio (FPR) (22,23). Additional factors such as tar-
get site accessibility (14) and evolutionary conservation of
the binding site (24) have also been incorporated into pre-
diction tools to reduce the high FPRs. However, these fac-
tors are context dependent and their contribution to define
a functional miRNA binding site varies between species,
tissues/cell types, developmental stages, and can also be
modulated by physiological stress (25).

Cross-linking immunoprecipitation (CLIP) using Ago2
specific antibodies has been used to experimentally identify
the Ago2 bound transcriptome, including transcripts pos-
sibly targeted by miRNAs (26,27). Here, we present miR-
Tar2GO, which integrates information from Ago2 CLIP-
Seq and experimentally verified miRNA–tmRNA interac-
tions. MiRTar2GO uses a rule based learning approach to
predict cell type specific miRNA targets. The core algo-
rithm uses Ago2 CLIP-Seq data to identify short (6 nt)
perfect seed matches between the 3′ UTRs of mRNAs and
miRNA seed regions and assigns a score to each miRNA–
mRNA pair using two steps: first, it calculates the hy-
bridization energy between the miRNA and its candidate
binding sites. Second, it compares each predicted target
site to the characteristics of all validated target sites de-
rived from luciferase assays, expression profiling and cross-
linking ligation and sequencing of hybrids (28) (CLASH)
experiments of the given miRNA in order to rank the pre-
dictions. miRTar2GO further improves these prediction us-
ing Ago2 footprints shared between different cell types to
identify common and cell specific miRNA–tmRNA inter-
actions. The free online portal of miRTar2GO also pro-
vides information from external databases including func-
tional annotation from KEGG (29) and hiPathDB (http:
//hipathdb.kobic.re.kr) (30). The current version of miR-
Tar2GO allows the user to filter miRNA targets based on a
probability score and also explore the target genes by per-
forming functional enrichments of biological ontologies.

To evaluate our prediction model, we have compared the
result of miRTar2GO to several other widely used miRNA
target prediction algorithms. We demonstrated that miR-
Tar2GO possess higher sensitivity than the enlisted miRNA
target predictions by re-analyzing pSILAC (31). Addition-
ally, using the interaction result of 3′LIFE (32) as well as the
large scale experimental CLIP data (33) we have shown the
highly predictive strength of miRTar2GO.

MATERIALS AND METHODS

Data preparation and the process of target recognition

MicroRNA target prediction is largely dependent on seed
matching. A single miRNA can bind and inhibit hundreds
of targets in one cell type and might target only a few
number of transcripts in another cell type––e.g. cell spe-
cific targeting (34). miRTar2GO aims to address cell spe-
cific miRNA target prediction. To collect Ago2–mRNA in-
teractions in different cell lines, we downloaded six publicly
available Ago2 CLIP-Seq datasets from StarBase version 2
(35,36). This includes 273 934 Ago2 footprints from six hu-
man cell lines: HeLa (37) (169 346 CLIPed sites), lymphoma

cell line (BC-1) (38) (43 997 CLIPed sites), lymphoblas-
toid cell line (39) (24 608 CLIPed sites), Human Embry-
onic Stem Cells (40) (9169 CLIPed sites), HEK 293 cell line
(41) (24 041 CLIPed sites), and human lymphoblastic cell
line (42) (2773 CLIPed sites). PAR-CLIP and HITS-CLIP
have only small accuracy differences in identifying binding
sites of Ago2 (43). These collected CLIPed sites were then
aligned to genome reference consortium GRCh37. Intronic
sequences (∼14%) as well as those exons which mapped to
the 5′ UTR (∼5% of all exons) or coding regions (∼48%
of all exons) of mRNAs were discarded. All chromosome
conservation score files were downloaded from the UCSC
genome browser website, which are based on PhastCons’s
(44) multiple alignment of 100 vertebrates to the human
genome (hg19). Information on the conservation of miR-
NAs was obtained from TargetScan (45). All non-RefSeq
accession IDs were mapped to RefSeq transcripts by apply-
ing mapping tables provided by either Ensembl or UCSC.
The miRNA sequences were downloaded from miRBase
release 20 (46), and mRNA sequences were downloaded
from UCSC ftp website at http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/.

MicroRNA–target mRNA allocation

Enrichment analysis of all possible 7-mers within the Ago2
cross-link-centered regions (CCRs) identified by PAR-
CLIP suggests that the most significantly enriched 7-mers
correspond to the reverse complementary strand of the seed
region of abundant miRNAs (26). These enriched motifs
are frequently positioned one to two nts downstream of
the predominant cross-linked site within the CCRs where
a window size of 41 nt centered on the predominant cross-
linked position includes the bona fide miRNA binding sites.
The specificity of the long seed matches (length 7 and
8) has been previously shown in CLIP based studies of
miRNA targetome (21). Since the majority of the func-
tional target sites are formed by 6 nt long seed matches
(21), we focused on seed matches with a similar criterion.
We aligned the 6-mer seed regions of all human miRNAs to
the Ago2 CLIPed sites on the 3′ UTR of mRNAs to iden-
tify all potential binding sites for each miRNA with a per-
fect 6-mer seed match. No mismatch or gap was allowed
in the seed match alignment as only a small fraction of the
miRNA target sites contain bulge or loops in the seed re-
gion (<6.6% in HEK293 based on PAR-CLIP data (26) and
<15% in mouse brain HITS-CLIP data (47)). Similarly, a
recent study demonstrates that miRNA–tmRNA interac-
tions, which are governed by non-canonical seed matches,
do not mediate repression and thus are not functional (48).
Although, G:U wobbles were allowed as it is shown that the
seed region of many heteroduplexes comprises G:U base-
pairings (49,50). Applying these filtering criteria resulted in
the set of miRNA–tmRNAs pairs in which the miRNA of
each pair has a perfect seed region match in the Ago2 inter-
acting region of the 3′ UTR of the associated mRNA.

Categorization of the predictions

We calculated minimum free energy (MFE) of hybridization
to identify favorable miRNA-Ago2 CLIPed sites. MFE has
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Figure 1. Pipeline of miRTar2GO. In the data processing step, the genomic coordinates of the Ago2 CLIP-Seq reads in different cell lines are mapped to
the mRNAs to identify 3′UTRs which are enriched in Ago2 interaction sites. In the miRNA–mRNA allocation step, the 6mer seed region of all known
miRNAs are aligned to the reverse complementary sequence of Ago2 CLIPed sites in the 3′ UTRs. At the prediction categorization step, the whole miRNA
sequence of each miRNA–tmRNA pair is folded upon its allocated Ago2 CLIPed sequence to calculate hybridization energy. At this step, interactions
with a MFE >−15 kcal/mol are discarded. At the result population step, four different sets of results are generated. The interactions in the unseen set
with a MFE <−20 kcal/mol are the result of miRTar2GO sensitive. Interaction scores are calculated for all pairs of the unseen sets introducing the highly
sensitive miRTar2GO result. The interactions of the unseen set that have hybridization energy <−20 kcal/mol and less than the maximum MFE value
associated to the miRNA are shown as miRTar2GO highly specific results. The interactions of the unseen set that have hybridization energy of less than the
maximum energy associated with their corresponding miRNA are defined as miRTar2GO specific results. The result of this step is a set of miRNA target
candidates, where the miRNA seed region of each candidate has a perfect complementary to the associated mRNA. The miRNA–tmRNA interactions
that are not experimentally verified are selected to generate the unseen set. The miRNA–tmRNA interactions that are experimentally verified are used to
calculate hybridization energy values for each miRNA including the minimum and the maximum of MFEs.

previously been shown to be an effective predictor of func-
tional miRNA target sites (51). Since we were dealing with a
large number of candidate interactions (N = ∼4.2 millions),
we selected the RNAcofold (52) program since it provides
fast hybridization simulation of the miRNA-Ago2 CLIPed
sequences in a large scale. For each miRNA–mRNA pair a
sequence with a length of 40 nts on the CLIPed region start-
ing from the first nucleotide before the seed match was ex-
tracted, and the thermodynamic properties of the miRNA–
target RNA duplex was calculated with RNAcofold pro-
gram. We used the length of 40 nts, because our analy-
sis of the experimentally validated miRNA–target interac-
tions showed that the majority of binding sites are shorter
than 41 nts. The mean free energy for experimentally veri-
fied miRNA–target interactions with a perfect 6-mer seed
match was −15 kcal/mol. A value of ∼−14 kcal/mol was
also reported by a study using miRTarBase predicted inter-
actions (53). Hence, all candidate interactions with a MFE
value greater than −15 kcal/mol were discarded and the re-
maining interactions were considered for scoring and model
building for miRTar2GO.

To generate the training set, we prepared a set of experi-
mentally verified miRNA–target interactions using all inter-
actions from the miRTarBase release 4.5 (54). miRTarBase
contains miRNA target sites that have been previously ex-
perimentally validated using reporter assays, western blots,
microarrays or CLASH experiments. A total number of 37
473 interactions for 577 distinct human miRNAs were iden-
tified. We mapped these verified interactions to the Ago2

CLIPed sites whose MFE were <−15 kcal/mol. A total
number of 28 546 non-overlapping Ago2 CLIPed contain-
ing short (6-mer) canonical seed matches were identified in
the investigated cell lines. These miRNA–target interactions
were later used in the scoring schema of miRTar2GO. The
rest of the miRNA–Ago2 CLIPed candidates (N = ∼4 mil-
lions), which were not found in the verified interactions of
miRTarBase, were considered as candidate interactions.

Defining cell type specific miRNA expression and functional
explorations of the predicted targets in miRTar2GO

Tissue specific miRNA expression values of the cell lines
included in this study were collected from microRNA.org
(55) and miRmine (http://guanlab.ccmb.med.umich.edu/
mirmine/). For each tissue, the expression value of each
miRNA is defined as the mean of the given miRNA ex-
pression values measured in the different experiments. All
miRNA expression values were normalized using z-score
transformation. It is worth mentioning that the miRNA
expression values are not used in the target identification
process or the scoring schema of miRTar2GO. For the pre-
dicted targets of each miRNA, the GO analysis was per-
formed using GOstats (56) package in R version 3.2.0.
The pathway information for predicted genes generated by
four publicly available sources NCI-Nature PID (57), Re-
actome (58) version 32, BioCarta and KEGG (29) were
obtained from hiPathDB (30) and mapped to the miR-
Tar2GO’s search engine. The conservation score of each
CLIPed site was defined as the total conservation score of
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all the nucleotides of the site divided by the length of the
site.

Statistical analysis

For testing statistical significance difference of miR-
Tar2GO’s performance on 3`LIFE data, Barnard’s uncon-
ditional test was used in R version 3.2.0. The z-score trans-
formation of miRNA expression values was performed in
SPSS software package.

RESULT AND DISCUSSION

Classifications of the predictions of miRTar2GO

The prediction model of miRTar2GO is shown in Figure
1. miRTar2GO ranks the candidate interactions based on
MFE of hybridization as a primary parameter. The cur-
rent version of miRTar2GO offers four sets of predictions:
highly specific, specific, sensitive and highly sensitive based
on the prediction parameters as defined below.

miRTar2GO highly sensitive and miRTar2GO sensitive

The goal of designing miRTar2GO was to identify as many
miRNA targets as possible while keeping the false positive
ratio at minimum. The miRTar2GO highly sensitive repre-
sents the core prediction result of miRTar2GO: those pre-
dictions with a MFE value of <−15 kcal/mol (for details
see Materials and Methods). The miRTar2GO highly sen-
sitive scores the predictions based on the binding error of
each predicted miRNA–target, relative to all experimentally
validated interactions of the given miRNA as follows:

Ek =
⎧⎨
⎩

1 Xk ≥ max(X)
1 + Xk − max(X)

max(X)− min(X) min(X) < Xk < max(X)
0 Xk ≤ min(X)

where k is the predicted miRNA–tmRNA, Xk is the hy-
bridization energy between the miRNA and the candidate
miRNA binding site, X represents the set of all hybridiza-
tions energy values between the given miRNA and its ex-
perimentally validated target sites, and max(X) and min(X)
are the biggest and the smallest hybridization values in X for
the given miRNA. The average error of the total predicted
interactions for each miRNA is also calculated as follows:

Errork = 2

√∑n
i=1 (Ek − 1)2

n

The miRTar2GO sensitive classification takes into account
the MFE between the miRNA and the targeted 3′ UTR.
The hybridization energy value between a miRNA sequence
and a given 3′ UTR has a negative correlation with the
length of the binding site and is dependent on the length of
the 3′ UTR (59). We previously determined that the length
of the candidate binding sites was 40 nt. Therefore, we con-
clude that the MFE of the given miRNA sequence and the
40 nt strand of Ago2 CLIPed sequence is ideal, e.g. when
compared to the MFE obtained from the full strand 3′ UTR
and miRNA. miRTar2GO sensitive only reports those can-
didates which have a MFE value of <−20 kcal/mol (for de-
tails see Materials and Methods).

Figure 2. The number of downregulated and non downregulated tran-
scripts in a pSILAC experiment generated by overexpressing miRNAs.
Let-7b, miR-155, miR-30a, miR-16 and miR-1 were overexpressed in
HeLa cells and the changes in protein levels were quantified by pSILAC.
Each blue bar represents the number of transcripts which are downregu-
lated with a log2-fold change <−0.1 as the corresponding miRNA is intro-
duced in the cell. Each red bar represents the number of non downregulated
transcripts in each experiment.

miRTar2GO specific and miRTar2GO highly specific

To predict more specific targets for each miRNA, we further
filtered miRNA–tmRNA interactions with MFE greater
than the smallest MFE between the given miRNA and its
all experimentally verified targets. This stringency resulted
in the set of ∼370 K predicted miRNA–tmRNA interac-
tions which is represented in the miRTar2GO specific. miR-
Tar2GO highly specific limits the result of miRTar2GO spe-
cific by applying the previously used filtering criterion of
‘<−20 kcal/mol’ thus discarding those matches which do
not pass the RNAhybrid (13,60) algorithm’s recommended
energy cut-off as well resulting in a set of highly specific po-
tential targets for the given miRNAs.

Prediction efficiency and evaluation of miRTar2GO

Evaluation of miRTar2GO using pulsed Stable Isotope La-
beling with Amino Acids in Culture (pSILAC) based miRNA
target identification. Proteome analysis allows experimen-
tal identification of miRNA targets in a large scale (61,62)
by measuring the changes in protein levels upon introduc-
tion of specific miRNAs. We used data from previously
published proteomics experiments to evaluate and compare
miRTar2GO to other miRNA target prediction tools (31).
We have considered a mRNA the target of a miRNA if the
protein corresponding to the mRNA is downregulated with
a log2 fold change of greater than -0.1 when the miRNA is
transfected to the cells. This work provides a background
dataset, which introduces a total number of 23 379 sam-
ples (including mRNAs corresponding to down and non
downregulated proteins) in the expression level of proteins
followed by the transfection of five miRNAs individually.
The mRNAs corresponding to the proteins obtained from
these experiments are labeled either as downregulated or
not downregulated. This includes 6191 downregulated tran-
scripts as well as 17 188 not downregulated transcripts (Fig-
ure 2). Among the 23 379 measured changes in protein ex-
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pression (74% non downregulated and 26% downregulated)
reported by pSILAC in HeLa cell, miRTar2GO highly sen-
sitive was able to correctly classify 15 115 of them (accuracy
of 0.64, TPR = 0.32, TNR = 0.76). The breakdown of these
numbers is available in Table 1.

Evaluation of miRTar2GO using TarBase v7. Since the pri-
mary goal of designing miRTar2GO was to identify less
specific miRNA–tmRNA interactions, we set to extend
the evaluation to a larger set of experimentally validated
miRNA targets. Recently, the latest version of TarBase (63)
was released (33) introducing the largest currently avail-
able dataset for miRNA–mRNA interactions with more
than half a million entries. After processing the dataset and
limiting the miRNA–tmRNA interactions to those miR-
NAs which have a prediction result in miRTar2GO highly
sensitive (366 miRNAs), we further evaluated the TPR
of miRTar2GO sensitive based on the validated interac-
tions of four types of experiments including HITS-CLIP,
PAR-CLIP, microarray and Biotin microarray (64) iden-
tifying approximately 190k, 78k, 14k and 6k verified in-
teractions respectively. MiRTar2GO sensitive was able to
identify ∼70k, ∼32k, 3k and ∼2500 interactions of HITS-
CLIP, PAR-CLIP, microarray and Biotin microarray cor-
rectly providing an overall TPR of 0.47 for all interactions
provided in TarBase v7.

Comparison of the performance of miRTar2GO with other
miRNA target prediction tools

We collected the prediction results for miRNAs used in the
pSILAC experiments (miR-1, miR-155, miR-16, miR-30a
and let-7b) from eleven miRNA target prediction tools:
TargetScan (45), TargetScanS (12), PITA (14), ComiR (65),
DIANA-microT (66,67), mirTarget2 (68,69), MR-microT
(70,71), PicTar (15), RNA22 (72), TargetMiner (73) and
TargetSpy (16). We evaluated the prediction ability of the
selected miRNA prediction tools using those metrics which
best reflect the TPR. Hence, we selected the precision and
recall metrics and evaluated the predictive strength of these
predictions and compared them to the miRTar2GO highly
sensitive output using the dataset derived from the pSILAC
experiment. The precisions and recall were calculated:

Precision = TP
TP + FP

Recall = TP
TP + FN

where for each tool: true positives refer to those mRNAs,
which associate with significant decrease of protein level
(log2-fold change <−0.1) when a miRNA is overexpressed,
and are correctly predicted as miRNA targets by the predic-
tion tool. False positives refer to those mRNAs which do
not coupled with significant protein level changes upon the
overexpression of a miRNA in the pSILAC experiment, but
are incorrectly predicted as miRNA targets by the predic-
tion tool. False negatives are those mRNAs which are corre-
sponded to proteins, whose level were significantly changed
followed by the overexpression of a miRNA in the pSILAC
experiment but are not recognized as miRNA targets by

the prediction tool. Each of the miRNA prediction meth-
ods varies in the number of the predictions based on the
cut-off values to draw a line between miRNA targeted and
non-targeted RNAs (Figure 4). Selecting a higher cut-off
value in any predictive model results in a prediction with
a higher number of true negatives. On the other hand, this
may also generate less true positives. For instance, among
the reviewed methods, MR-microT produces the highest
number of true negatives with correctly predicting 17 116
transcripts as non-targets in the pSILAC dataset, while it
recognizes only 186 putative miRNA targets from the actual
6191 downregulated proteins correctly (Figure 5A). On the
contrary, selecting a low cut-off value results in a predictor
with a higher number of true positives (Figure 4) may de-
crease the number of true negatives. For instance, among
the reviewed methods, miRTar2GO has the highest number
of true positives with a value of 1933, while its true negative
ratio is relatively low compared to other tools (true negative
ratio = 76.69%). Thus, precision and recall alone are not
sufficient to compare the performance of these prediction
methods (74). Based on precision and recall of each method,
we obtained F1 score and G score for each tool, which are
harmonic and geometric average of precision and recall, re-
spectively (Figure 5B and C) and were calculated using the
following equations:

F1 = 2 ∗ precision ∗ recall
precision + recall

G =
√

precision ∗ recall

Based on the estimated accuracy calls, miRTar2GO has
the highest values for both F1 score and G score among the
prediction tools used in this comparison.

miRTar2GO offers quantitative values for rating different
aspects of the predicted interactions. For each prediction, it
provides an interaction rate and two site rates. The interac-
tion rate is based on the seed match location on the Ago2
cross-linked site. Most seed matches are frequently posi-
tioned 1–2 nt downstream of the predominant cross-linking
site within the CCRs. This places the cross-linking site near
the centre of the Ago2-miRNA–target ternary complex,
which contributes directly to miRNA binding. To that end,
for each seed match, the relative position of seed match on
the Ago2 CLIPed site is considered. A seed match is given
a higher rate if it is closer to the centre of the Ago2 CLIPed
site. The first site rate is simply based on the cross-species
conservation score of the Ago2 CLIPed region. The second
site rate introduced by miRTar2GO is based on the degree
of occurrence of the Ago2 CLIPed site among different cell
lines. For each Ago2 CLIPed site, the number of cell lines
that have an Ago2 interaction in the same genomic coordi-
nate is obtained. These two scores could be helpful to make
the result of prediction more context specific.

Cell line specific miRNA target prediction by miRTar2GO

The Ago2 interactome could vary from one cell type to an-
other. Since the predictions generated by miRTar2GO are
based on Ago2 CLIP data, therefore it computes different
set of targets for each miRNA in different cells (Table 2).
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Table 1. Number of miRTar2GO predictions for the five miRNAs investigated in the pSILAC experiment in different cell lines

miRNA Downregulated True positives Non downregulated True negatives

miR-1 1126 333 3375 2552
miR-16 1389 404 3318 2699
miR-30a 1038 188 3524 3179
miR-155 1449 398 3426 2919
Let-7b 1189 610 3545 1833

Table 2. Total number of binding sites predicted to be functional by miRTar2GO for the five miRNAs used in the pSILAC experiment in different cell
lines

miRNA HeLa BC1 EF3D hESC 293s Human Lymphoblastic

miR-1 4845 2821 1754 664 921 497
miR-16 4028 1506 734 199 1349 488
miR-30a 2595 857 398 106 773 328
miR-155 3466 1496 1366 212 705 418
Let-7b 9912 5076 3506 1256 2663 1136
Total 24 846 11 756 7758 2437 6411 2867

The difference in the number of predictions for the same miRNA in different cell lines is directly linked to the varying number of Ago2 CLIPed sites in
different cell lines.

Table 3. Number of correctly identified downregulated transcripts by miRNAs used in the pSILAC experiment carried out in HeLa cells which have
overlapping Ago2 CLIPed binding sites in the presented cell lines

miR-1 miR-16 miR-30a miR-155 Let-7b Total

293s 59 (0.22) 120 (0.46) 65 (0.4) 73 (0.24) 98 (0.27) 415 (0.31)
BC1 155 (0.60) 113 (0.43) 62 (0.82) 131 (0.44) 193 (0.53) 654 (0.56)
EF3D 97 (0.37) 61 (0.23) 23 (0.14) 126 (0.42) 101 (0.27) 408 (0.28)
Lymphoblastic 29 (0.11) 46 (0.17) 19 (0.11) 43 (0.14) 32 (0.08) 169 (0.12)
hESC 28 (0.10) 20 (0.07) 13 (0.08) 6 (0.02) 47 (0.12) 114 (0.07)

The first number in each column represents the frequency of the binding sites which are correctly identified by miRTar2GO in HeLa cell and have an
overlapping binding site in the CLIP data of the corresponding cell type. Each number in parenthesis shows the percentage of the correctly identified
downregulated target by miRTar2GO in HeLa cell which has an overlapping binding site in the associated cell line. The first number of the last column
represents the total number of downregulated transcripts in HeLa cells which are identified by miRTar2GO and have an overlapping Ago2–mRNA footprint
in the associated cell line. The second number in the last column represents the percentage of correctly identified downregulated target by miRTar2GO in
HeLa cells.

Depending on the interaction of Ago2 and the 3′ UTR in
each cell line, miRTar2GO determines if the prediction is
common to all cell lines or specific to only one or a few.
For five miRNAs investigated in this study, HeLa cells have
the highest number of predictions, followed by BC1, EF3D,
293s, Human Lymphoblastic and finally hESC. Not only
does each cell have a different number of potentially func-
tional miRNA binding sites, but also the degree of over-
lap for predicted binding sites for each miRNA varies from
one cell line to another (75) (Supplementary Figure S1A–
E). Table 3 shows the frequency and percentage of miR-
Tar2GO identified downregulated transcripts identified in
the pSILAC experiment in five different cell lines, compared
to HeLa cells. BC1 cells have the highest degree of overlap
with HeLa cells with a value of 56%. On the other hand,
the overlap ratio for lymphoblastic cells and hESC cells are
relatively low, only 0.12 and 0.07, respectively. We further
evaluated the degree of overlap between number of correctly
identified downregulated transcripts in pSILAC by miR-
Tar2GO for each miRNA in different cell types (Supple-
mentary Figure S2A–E). For each miRNA, there are sets of
target sites which are cell type specific. For example, there
are 88 let-7b targets, which have predicted binding sites in
only, BC1 and HeLa cells. These results may strengthen the
notion of context dependency of miRNA targeting.

Pathway analysis based evaluation

Recently, Wolter and colleagues (32) carried out a large
scale dual-luciferase reporter assay to verify miRNA tar-
gets called 3′LIFE. In this experiment they identified two
different sets of let-7c targets. The first set included 19
genes, which have a miRNA repression index (RI) value
of less than the mean standard error of the assay (RI <
15%). This index is defined as the average of the normal-
ized miRNA repression values and is used to rank the 3′
UTRs of the dual luciferase experiments. The second set
includes 37 high-confidence targets with an RI value lower
than 0.80 and a P-value lower than 0.05. We compared these
findings to the prediction of miRTar2GO for let-7c, and
we have found that 63% of the genes of the first set and
46% of the genes of the second set are accurately identified
by miRTar2GO respectively. Wolter et al. (32) showed that
3′LIFE identified top targets for let-7c such as ID1, HSF1,
CRK, DNMT1, ARID3A, EZH2, RhoB and RhoC func-
tion within the RAS signaling pathway. Among these genes,
only ARID3A and EZH2 were bioinformatically predicted
before. In contrast, miRTar2GO was able to identify half of
these genes (ARID3A, CRK, EZH2 and RHOB). More-
over, miRTar2GO further predicts that 27% of RAS sig-
naling pathway genes are targeted by let-7c including po-
tentially novel targeted genes (Figure 3). miRTar2GO also
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Figure 3. let-7c is predicted to target the RAS signaling pathway and miR-98. The figure shows the modified diagram of the RAS signaling pathway
generated by hiPathDB. * indicates experimentally validated let-7c targets in RAS signaling pathway used in training of miRTar2GO. The Green colored
boxes indicate let-7c targets in RAS signaling pathway predicted by miRTar2GO. miR-98, a member of the let-7 miRNA family, is added to the figure.

predicts that let-7c binds to pri-miR-98 with a probability of
0.99 (a miRNA in the let-7 family). It has been shown that
let-7 in worm and human cells are the part of a positive feed-
back loop in which the Ago2 associated mature let-7 rec-
ognizes complementary sequences on its own pri-miRNA
that don’t correspond to the miRNA hairpin sequence and
stimulate pri-miRNA processing (76). The predicted let-7c
target site on miR-98 also matches region of miR-98 that is
outside of the hairpin sequence. To our knowledge no tar-
get prediction approach has considered such miRNA-pri-
miRNA interaction before.

Design and implemented algorithm layout of the miRTar2GO
web service

The design and implementation of miRTar2GO have been
completed using MySQL as a back end database and PHP
as a front end for visual interactions. The front view of
the miRTar2GO allows the user to select the miRNA tar-
get predictions based on four criteria: highly specific, spe-
cific, sensitive and highly sensitive modes. The default scor-
ing mechanism of the miRTar2GO highly sensitive is based
on the similarity of the thermodynamic feature of the pre-
diction and the training set. The default scoring feature for
the other three computational modes is the hybridization
energy of miRNA sequence and the predicted site. Based
on the user selected mode, users will be re-directed to the
respective pages, which allows to search for the target pre-
dictions based on type of miRNAs, type of target gene,
miRNA specific sequence, chromosomal coordinates and
type of cell lines. This will result in displaying cell specific

Figure 4. Comparison of different miRNA target prediction tools. The to-
tal number of transcripts predicted as miRNA target by popular miRNA
target prediction tools from the downregulated transcripts identified by
pSILAC followed by the overexpression of five miRNAs in HeLa cells.

miRNA targets. We emphasize that miRTar2GO does not
introduce experimentally verified interactions in the result
set as these interactions are used in the training set. Ad-
ditional functionalities have been implemented to filter the
results either by using hybridization energy, CCR conser-
vation score, gene name, seed match distance to the CCR
center, and the number of cell types in which the particular
miRNA targeting are predicted. After submission, the re-
sults page displays curated information about the miRNA’s
predicted targets that are filtered accordingly to criteria se-
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Figure 5. Evaluation of miRTar2GO. (A) The number of correctly identified miRNA targets by different target prediction tools using the pSILAC experi-
ments (blue bars). The Red bars represent the correctly identified non tmRNAs. (B) Comparison of F1 scores of different miRNA target prediction methods
using the pSILAC data set. The x-axis represents the precision and the y-axis represents the recall. Each spectrum in the figure represents one sub-range
of the averaged value for the precision and the recall. (C) Comparison of G scores of different miRNA prediction tools using the pSILAC dataset.

lected by the user. In addition, the page also displays the
corresponding biological pathways and the KEGG based
assigned KO of the predicted targets. All the predicted tar-
gets are hyperlinked with corresponding hiPathDB links to
allow visualization of the pathways with the embedded pre-
dicted miRNAs. Furthermore, upon user’s request, the GO
enrichment of the functional ontologies assigned to the pre-
dicted targets against the background ontologies is calcu-
lated in the background using GOstat (56) and the result is
sent to the user’s specified email address. The analysis of the
miRNA binding sites in the user provided CLIP-Seq data is
also available upon request.

CONCLUSIONS

By combining short seed match criterion, thermodynamic
characteristics of the experimentally validated miRNA–
target interactions and Ago2 CLIP-Seq data, we have de-
veloped a new computational method that predicts canon-
ical binding sites of miRNAs in a cell type specific man-
ner. We have shown that our method (miRTar2GO highly
sensitive) is able to identify more experimentally validated
miRNA–target interactions compared to other miRNA tar-
get prediction tools, as it does not impose a high ther-
modynamic restriction. miRTar2GO is not dependent on
long seed matches or on conservation score. The ranking
system of miRTar2GO computes energy characteristics of
each miRNA and its experimentally validated targets to

rank the predictions of each miRNA based on a training
set. Due to these advantages, miRTar2GO is able to pre-
dict miRNA–target interactions that were not determined
by other miRNA target prediction tools. miRTar2GO pro-
vides four different prediction modes specifically designed
to adjust the sensitivity. The designed adjustment levels are
based on thermodynamic features of the verified interac-
tions, which is novel in its nature. These variations in sen-
sitivity are designed to decrease the false-positive rate and
increase the true-negative rate.
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Supplementary Data are available at NAR Online.
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