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Several theories of cognitive compensation have been suggested to explain sustained
cognitive abilities in healthy brain aging and early neurodegenerative processes. The
growing number of studies investigating various aspects of task-based compensation in
these conditions is contrasted by the shortage of data about resting-state compensatory
mechanisms. Using our proposed criterion-based framework for compensation, we
investigated 45 participants in three groups: (i) patients with mild cognitive impairment
(MCI) and positive biomarkers indicative of Alzheimer’s disease (AD); (ii) cognitively
normal young adults; (iii) cognitively normal older adults. To increase reliability, three
sessions of resting-state functional magnetic resonance imaging for each participant
were performed on different days (135 scans in total). To elucidate the dimensions
and dynamics of resting-state compensatory mechanisms, we used graph theory
analysis along with volumetric analysis. Graph theory analysis was applied based on
the Brainnetome atlas, which provides a connectivity-based parcellation framework.
Comprehensive neuropsychological examinations including the Rey Auditory Verbal
Learning Test (RAVLT) and the Trail Making Test (TMT) were performed, to relate graph
measures of compensatory nodes to cognition. To avoid false-positive findings, results
were corrected for multiple comparisons. First, we observed an increase of degree
centrality in cognition related brain regions of the middle frontal gyrus, precentral gyrus
and superior parietal lobe despite local atrophy in MCI and healthy aging, indicating a
resting-state connectivity increase with positive biomarkers. When relating the degree
centrality measures to cognitive performance, we observed that greater connectivity led
to better RAVLT and TMT scores in MCI and, hence, might constitute a compensatory
mechanism. The detection and improved understanding of the compensatory dynamics
in healthy aging and prodromal AD is mandatory for implementing and tailoring
preventive interventions aiming at preserved overall cognitive functioning and delayed
clinical onset of dementia.
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INTRODUCTION

Opposing effects of aging on brain functions have been reported:
elderly individuals show decreased activity in some brain regions
but increased activity in others (Cabeza and Dennis, 2012).
These findings were challenging to the traditional assumption
that aging is only linked with a simple pattern of cognitive and
neural decline, supported by a body of research demonstrating
an overall reduction of structural and functional brain integrity
in Alzheimer’s Disease (AD).

A few studies investigated how the brain of AD patients
reorganizes itself, which was interpreted as effects of brain
plasticity (delEtoile and Adeli, 2017). Contrary to the initial
belief, these and other studies have shown that “neuroplasticity”
is not solely confined to children (Dennis et al., 2013) but is
also observable in the healthy aging brain (Fuchs and Flügge,
2014) and even under the circumstances of neurodegeneration
(Enciu et al., 2011), including Alzheimer’s Disease (delEtoile and
Adeli, 2017). The latter findings gave rise to the concept of
“neuronal compensation.”

Despite its popularity, the concept of compensation remains
somewhat ambiguous, as the underlying neural mechanisms to
date are still poorly understood. At least in part, this elusiveness
is due to the complexity of defining the characteristics of
compensation and the challenge to assess these characteristics
in vivo (Gregory et al., 2017). To this end, various theoretical
models of compensation in healthy aging and in the presence of
neurodegeneration (Gregory et al., 2017) have been suggested.
Most current theories of compensation were developed in task-
based contexts, while compensatory processes in resting-state
networks in healthy brain aging and early neurodegeneration
have only rarely been addressed. However, resting-state studies
offer several advantages over task-based ones, as they place low
demands on the experimental design, compliance, instructions to
be followed by participants, and training demands.

Cabeza et al. suggested that some essential criteria ought to
be fulfilled for an observed increase in connectivity to reflect
compensation (Cabeza et al., 2018). For example, increased
connectivity should directly or indirectly be related to a neural
resource deficiency or the supply demand gap (Lövdén et al.,
2010; Cabeza and Dennis, 2012). The latter could be due to
brain atrophy, reduced cerebral perfusion, or neurotransmitter
deficiency (Cabeza et al., 2018). In the context of resting-
state network connectivity, we propose four criteria to indicate
compensatory mechanisms. First, the brain region must show
a significant increase in functional connectivity. Second, the
increase in functional connectivity must be accompanied by
a decline of brain integrity in that region, e.g., volume
reduction (Cabeza and Dennis, 2012). Third, the region must
be specifically related to cognitive processing, to rule out non-
selective neural recruitment (Cabeza, 2002; Logan et al., 2002).
Finally, the connectivity increase of that region must be positively
correlated with cognitive performance, thereby differentiating
compensation from unspecific and maladaptive recruitment, in
which greater connectivity is not associated with better cognitive
performance (Cabeza and Dennis, 2012) or even with worse
performance (Bakker et al., 2012).

We incorporated graph theory analysis in our novel
criterion-oriented framework to investigate the resting-state
compensation in healthy brain aging and prodromal AD. We
hypothesized that during both healthy aging and MCI with
biomarkers indicative of Alzheimer’s disease, brain regions
show compensatory mechanisms, characterized by a significant
increase of degree centrality, despite atrophy. Moreover, we
assumed that degree centrality increases in these regions would
be positively correlated with cognitive performance, indicating
effective compensation.

MATERIALS AND METHODS

Participants
The current study was part of the RIMCAD-study (Retroactive
Interference during Memory Consolidation in Aging and
Dementia) conducted by the Memory Clinic Köln Jülich.
The Ethics Committee of the Faculty of Medicine of Cologne
University had approved the RIMCAD-study. Out of the
RIMCAD study’s larger pool of participants, three experimental
groups were defined for the present study: (i) Fifteen young
healthy controls (young HC), (ii) fifteen senior healthy controls
(senior HC), and fifteen MCI patients (see Table 1). As MCI
encompasses a heterogeneous population (Petersen et al.,
2001), we solely recruited prodromal AD participants per the
IWG-2 criteria and Dubois et al. (2014, 2016), with at least
one positive AD biomarker. Biomarkers suggestive of AD
included an abnormal amyloid deposition (either assessed by
positron-emission-tomography or by an abnormal concentration
of cerebrospinal fluid (CSF) β-amyloid 42), or an abnormal
concentration of phospho-tau or a total tau/β-amyloid 42 ratio
greater than 0.52 in CSF samples (Duits et al., 2015). All of the
MCI patients were amnestic and 40% of them showed additional
deficits in executive functions. Informed written consent had
been obtained by all participants and upon completion of the
study, they received financial compensation. All participants
were right-handed, which was assessed using the Edinburgh
Handedness Inventory (Oldfield, 1971) and had a normal or
corrected-to-normal vision. As for the exclusion criteria, the
participants were screened for neurological and psychiatric
disorders, including a history of traumatic brain injury, epilepsy,
Parkinson’s Disease, Multiple Sclerosis, depression, mania, or
schizophrenia. Besides, past and present drug or alcohol abuse,
as well as respiratory, cardiovascular, and gastro-intestinal,
or kidney-related diseases were exclusion criteria. Moreover,
contraindications to undergoing MRI, such as claustrophobia,

TABLE 1 | Demographic data of MCI, senior HC, and young groups.

Young HC Senior HC MCI

sample size (n) 15 15 15

Sex (%male) 60 60 60

Age 24.4 ± 2.85 67.26 ± 8.11 71.13 ± 5.76

Education (years) 15.53 ± 4.44 14.6 ± 3.62 12.46 ± 3.65

MMSE N/A 29.53 ± 0.61 25.14 ± 3.18

Frontiers in Aging Neuroscience | www.frontiersin.org 2 October 2020 | Volume 12 | Article 576627

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-576627 October 19, 2020 Time: 17:4 # 3

Behfar et al. Graph Theory Reveals Resting-State Compensation

non-removable piercings, a pacemaker, or magnetic implants,
were checked beforehand. Notably, we ascertained our sample
size by performing a post-hoc analysis using G∗Power 3.1 (Faul
et al., 2007) and IBM SPSS, version 23.0.

MRI Data Acquisition and Preprocessing
All participants in the study underwent MRI imaging at
the Research Centre Jülich. Structural MRI and resting-state
functional MRI were collected at a 3T MAGNETOM Trio
scanner (Siemens, Erlangen, Germany). T1-weighted structural
images were obtained using a rapid gradient echo sequence
with the following parameters: repetition time (TR) = 2250 ms,
echo time (TE) = 3.03 ms, flip angle (FA) = 9◦, field of view
(FOV) = 256 × 256 mm 2, voxel size = 1 mm isotropic, 176
gapless interleaved sagittal slices. During the resting-stage image
acquisition, which took 7 min, patients were instructed to stay
awake with open eyes and not to think of anything particular.
For the functional images echo planar imaging (EPI) with the
following parameters was used: TR = 3000 ms, TE = 30 ms,
FA = 90◦, FOV = 200 × 200, voxel size = 2.5 × 2.5 × 2.8,
interleaved oblique slices parallel to the infra-supratentorial line
with a gap of 0.28 mm.

Data were preprocessed using the default preprocessing
pipeline of the CONN toolbox (Whitfield-Gabrieli and Nieto-
Castanon, 2012). The first four images of 155 volumes were
removed to allow the signal to reach equilibrium. Functional
images were realigned to the first acquired volume in the session.
Subsequently, echo planar images (EPIs) were co-registered to
the high-resolution T1 structural image, and normalized to the
Montreal Neurological Institute (MNI) stereotactic space and
resampled at 2 × 2 × 2 mm3 voxel size. The normalized
images were spatially smoothed with an 8-mm full-width at half
maximum (FWHM) isotropic Gaussian kernel. Head movement
parameters were checked individually and excluded at a relative
displacement criterion of ± 3 mm. After preprocessing the MRI
data, 246 ROI were extracted using the Brainnetome Atlas (Fan
et al., 2016) and imported into the CONN toolbox.

To address motion-related artifacts (Conwell et al., 2018), we
incorporated frame-wise displacement (FD) calculated proposed
by Jenkinson et al. (2002) as a covariate of no interest in our
models. The method by Jenkinson et al. is preferable over other
methods of FD calculation due to its consideration of voxel-wise
differences in its derivation (Yan et al., 2013).

Graph Theory Analysis
Graph theory is a standard framework for the mathematical
representation of networks. A network can be represented as a
graph by G (N, K), with N, indicating the number of nodes and K
as the number of edges in the graph G. The degree centrality (DC)
is a simple measurement of connectivity between a single node
and all other nodes in a network, representing the importance of
a node in a network. The degree of node i is the number of edges
connected to it and is calculated as ki = 6jεGaij (aij is the ith row
and jth column element of adjacency matrix A) (Wang, 2010).
In graph theory and network analysis, indicators of centrality
identify the major nodes within a graph and a hub is a node with
a number of edges that exceeds the average (see Figure 1).

FIGURE 1 | Network and the concept of degree centrality; the brain network
of the Brainnetome atlas’ ROIs; finding the optimal cost. (A) In the illustrated
network, the red nodes have the highest degree centrality, and the color
spectrum from red to blue represents the gradual reduction of degree
centrality. (B) Red circles represent the nodes in a brain network, composed
of 246 nodes. In this network, each node is one of the 246 ROIs of the
Brainnetome Atlas. (C) Plot of global cost efficiency vs. Cost averaged across
all subjects in young HC, senior and MCI groups.

In order to apply graph theory analysis to fMRI scans, BOLD
(blood oxygen level dependent) time series of brain activity were
used, and the 246 imported Brainnetome Atlas ROIs served as the
nodes of the network.

We incorporated Brainnetome Atlas (Fan et al., 2016) on
CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012)
to generate connectivity matrices, by averaging the time series
of the BOLD (blood oxygenation level dependent) signals of all
voxels in each ROI and calculating the Pearson’s correlation of
these average signals between ROIs.

The proportion of the remained robust connections to the
total number of connections is defined as Cost, ranging from 0
to 1. On one hand, setting very large values to Cost results in
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keeping weaker edges and noisy connections and on the other
hand, assigning very small values to Cost removes too many
edges, which consequently generates a disconnected graph. By
adjusting the Cost as a threshold in a network of n nodes (N),
one can optimize the global cost efficiency (GCE) of the network
(Bassett et al., 2009; Bullmore and Sporns, 2009; Khazaee et al.,
2016), which is calculated as:

GCE = GE− Cost (1)

GE =
1
n

∑
i∈N

Ei =
1
n

∑
i∈N

∑
j∈N,j 6=i d−1

ij

n− 1
(2)

Where GE and Ei are, respectively, the global efficiency and the
efficiency of node i. And, dij is the shortest path length between
nodes i and j.

Furthermore, the weighted connectivity matrices can
be transformed into binary ones by applying an optimal
threshold on connectivity matrices (Bassett et al., 2009;
Dimitriadis et al., 2010).

The CONN toolbox allows the computation of both global
and nodal graph measures on binary and weighted networks.
At the single-subject level, we performed a ROI-to-ROI analysis
incorporating all ROIs of the Brainnetome Atlas (Fan et al.,
2016). We explored the optimal Cost value which maximizes
the GCE. Different Cost values ranging from 0.05 to 0.5 by a
step of 0.01 were examined. The optimal values of Cost were
0.18 ± 0.01 across all subjects; a maximum GCE of 0.37 was
achieved (Figure 1). Then, the generated weighted connectivity
matrices were transformed into binary matrices using a Cost of
0.18, as the mean of the optimal range on positive correlations.

Following ROI-to-ROI analyses at the subject level, we
conducted analyses at the group level. Graph theory analyses on
the three groups of young HC, senior HC, and MCI subjects were
performed, and the adjacency matrices and network measures of
each ROI were exported. Between-group differences on degree
centrality were determined using two-tailed t-tests with a p < 0.05
(FDR-corrected) in two separate contrasts including (1) young
HC vs. senior HC and MCI, (2) senior HC vs. MCI. For the
first contrast, sex and education were applied as covariates of
no interest, for the second contrast age was included in addition
to sex and education. After group level comparisons, the DC
measure of the ROIs with significantly higher DC was extracted
for further correlation analysis with neuropsychological tests.

Brainnetome Atlas
The Brainnetome Atlas (Fan et al., 2016) includes 246 ROIs (210
cortical and 36 subcortical subregions) (see Figure 1), which are
assigned to brain functions based on meta-analyses of tasked-
based functional imaging techniques (Fan et al., 2016). Most
human brain atlases lack fine-grained parcellations and fail to
provide all aspects of functional connectivity. Using non-invasive
multimodal imaging techniques, the Brainnetome Atlas was
designed to provide a connectivity-based parcellation framework,
which identifies the subdivisions of the human brain, revealing
new dimensions of connectivity architecture. In particular, the
atlas combines brain connectivity with cytoarchitecture and

other microscale information. The delineated structures in the
Brainnetome Atlas are mapped to mental processes by referring
to the BrainMap database (Laird et al., 2009; Balsters et al.,
2014; Fox et al., 2014), to provide an initial estimate of the
mental processes sustained by each cortical and subcortical
region of the Brainnetome Atlas (Fan et al., 2016). The functional
characteristics of each subarea in the Brainnetome Atlas are
based on the behavioral domains and paradigm class meta data
labels of the BrainMap database1, employing forward and reverse
inferences (Eickhoff et al., 2011; Cieslik et al., 2013; Clos et al.,
2013; Fox et al., 2014; Fan et al., 2016).

Volumetric Analysis
To locate the regions fulfilling criteria for compensation,
as defined in the introduction, and to distinguish ROIs
with significant atrophy, a volumetric analysis was performed
using the computational anatomy toolbox (CAT12, Version
12.1)2, an extension of statistical parametric mapping (SPM12;
Wellcome Centre for Human Neuroimaging)3 implemented in
MATLAB R2015b (The MathWorks, Natick, United States).
After segmentation of all T1 images into gray matter (GM),
white matter (WM), and cerebrospinal fluid, all images were
normalized to the MNI space using DARTEL with six iterations
and the integrated DARTEL template in MNI space (Mechelli
et al., 2005; Ashburner, 2009) using the registration step, local
GM and WM volumes were preserved by modulating their
Jacobian determinants. Subsequently, the normalized GM were
smoothed by Gaussian filter (FWHM = 8 × 8 × 8 mm), from
which the GM volumes of the ROIs with a significant increase
of DC as generated in the group contrast were extracted for the
statistical analysis.

Neuropsychological Tests
Out of a larger pool of neuropsychological tests within the
RIMCAD-study (for a comprehensive description see Conwell
et al., 2018), we selected the Verbal Learning and Memory
Test (VLMT), a German version of the Rey Auditory Verbal
Learning Test (RAVLT) (Lux et al., 1999) as a test of memory
performance (Zhao et al., 2015), and The Trail Making Test
(TMT) (Rodewald et al., 2012) as an indicator of cognitive
flexibility (Kinsella et al., 2007).

We aimed to refine and uniform the test results by generating
a total VLMT value by averaging the standardized z-scores of the
VLMT trials I–V (total learning), VI (recall after interference),
and VII (delayed recall), and a delta TMT value by subtracting
the TMT-B from the TMT-A values.

Correlation Analysis Between
Compensatory ROIs and
Neuropsychological Tests
Per correlation analysis, we examined if a higher connectivity
was correlated with a better performance, as postulated in the

1www.brainmap.org/taxonomy
2http://dbm.neuro.uni-jena.de/cat/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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fourth criterion in the introduction. To assess the correlation, we
first exported all the graph measures following the graph theory
analysis embedded in the group level result section of the CONN
toolbox. After that, we specifically extracted the DC measures
of all the significant ROIs in the senior HC and MCI subjects.
Next, we tested the correlation between DC of compensatory
ROIs and the neuropsychological test results in senior HC and
MCI subjects using a linear regression function with least square
fit, implemented in MATLAB R2015b (The MathWorks, Natick,
United States), and corrected for multiple comparisons. For
visualization purposes, R (R Core Team, 2013) along with ggplot2
package (Wickham, 2016) has been used.

Seed-to-ROI Analysis
We also performed Seed-to-ROI analyses using the
compensatory ROIs as seeds and all 246 ROIs in the
Brainnetome Atlas as target ROIs. Seed-to-ROI correlation
matrices were defined as the Fisher-transformed bivariate
correlation coefficients between two ROIs BOLD signals4.

r
(
i, j
)
=

∑
t Ri(t)Rj(t)√∑

t Ri(t)2 ∑
t Rj(t)2

Z
(
i, j
)
= tanh−1r

(
i, j
)

Ri(t) = BOLD signals within ith ROI, centered to zero mean.
r(i,j) = correlation coefficients between ith and jth ROIs.
Z(i,j) = Fisher-transformed correlation coefficient.

Seed-to-ROI correlation analyses were conducted at the
single-subject level of the CONN toolbox as bivariate correlations
without weighting.

RESULTS

We assessed the imaging and neuropsychological data of all
participants (N = 45) in three groups of young HC, senior HC
and MCI. All three groups did not differ significantly in education
level and sex. There was no significant difference in age among
the senior HC and MCI groups (p > 0.05). In each step of
the following analyses the normal distribution of the data was
approved by the Shapiro-Wilk test in R.

Graph Theory Analysis and the ROIs With
a Significant Increase of DC
We observed an increase of DC in the senior HC and MCI group
vs. young HC in three ROIs: the right superior parietal lobule,
rostral area 7 (Brainnetome label: SPL_R_5_1), the right and
left precentral gyri caudal dorsolateral area 6 (Brainnetome label:
PrG_R_6_2 and PrG_L_6_2) (Figures 2A,C, 3A, increases of DC
depicted in circles of blue shades, decreases in red shades; see also
Table 2). Furthermore, the comparison between the senior HC
and the MCI group revealed an increase of DC in the right middle
frontal gyrus, lateral areal 10 (Brainnetome label: MFG_R_7_7)
(Figures 2B,C, 3A and Table 2).

4https://web.conn-toolbox.org/measures/roi-to-roi

Importantly, the post-hoc estimation of our sample size using
G∗Power 3.1 and IBM SPSS for α = 0.05 and the effect size = 0.39,
which was calculated by MANOVA [F(4,40) = 6.5, p = 0.0001,
partial η2 = 0.39] from the results of the graph theory analysis,
showed a power (1-ß) of 0.80.

Volumetric Analysis of the
Compensatory ROIs
As defined in our criteria of compensatory mechanisms, the
respective ROIs must show a concurrent increase of DC with a
decrease of gray matter volume. Having corrected for the total
intracranial volume, volumetric analysis revealed a significant
decrease in gray matter volume of the compensatory ROIs. As
presented in Figure 3, all four compensatory ROIs (Table 2)
exhibited significant volume reduction in the senior HC and MCI
group in comparison to the young HC (p < 0.05, FDR-corrected).
Although further gradual volume reductions were detected in the
MCI group compared to the senior HC in all four compensatory
ROIs, this was only significant in the right middle frontal gyrus
(p < 0.05, FDR-corrected).

Correlation Analysis Between DC, Total
VLMT, and Delta TMT Values
As shown in Table 3 and Figure 4, the DC of the right
precentral gyrus, caudal dorsolateral area 6 (Brainnetome label:
PrG_R_6_2), the right superior parietal lobe, rostral area 7
(Brainnetome label: SPL_R_5_1), and the right middle frontal
gyrus, lateral area 10 (Brainnetome label: MFG_R_7_7) was
significantly correlated with the total VLMT values in MCI
group (p < 0.05, corrected for multiple comparisons). Likewise,
the DC of the right and the left precentral gyri, caudal
dorsolateral area 6 (Brainnetome label: PrG_R_6_2, PrG_L_6_2),
and the right superior parietal lobe, rostral area 7 (Brainnetome
label: SPL_R_5_1) was significantly correlated with the delta
TMT values in MCI group (p < 0.05, corrected for multiple
comparisons). As two participants in the MCI group failed to
complete TMT assessment, two data points are missing. After
correcting for multiple comparisons, the correlation between the
DC measures of the compensatory ROIs, total VLMT, and delta
TMT values revealed no significant association in senior HC (see
Table 4).

Seed-to-ROI Analysis
As shown in Figure 5, the compensatory ROIs in the right and
the left precentral gyri (Brainnetome label: PrG_R_6_2 and
PrG_L_6_2) and the right superior parietal lobe (Brainnetome
label: SPL_R_5_1) demonstrated a significant increase of
connectivity with cognition-associated regions, including
multiple ROIs in the occipital lobes, the cuneus, fusiform gyri,
and pre- and postcentral gyri. The compensatory ROI in the
right middle frontal gyrus (Brainnetome label: MFG_R_7_7)
also showed a significant increase in connectivity with cognition-
associated ROIs in the left superior frontal gyrus and the
left orbital gyrus.
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FIGURE 2 | Increase and decrease of degree centrality in a comparison of young HC, senior HC, and MCI. (A) Young HC vs. senior HC and MCI contrast, in which
blue shade circles represent a significant increase, and red shade circles represent a significant decrease of DC in Senior HC and MCI subjects compared to young
HC (p < 0.05, FDR-corrected). (B) Senior HC vs. MCI contrast, in which blue shade circles represent a significant increase, and red shade circles represent a
significant decrease of DC in MCI subjects compared to senior HC (p < 0.05, FDR-corrected). The significant ROIs are according to labeling by the Brainnetome
atlas (I) PrG_L_6_2, (II) SPL_R_5_1, (III) PrG_R_6_2, and (IV) MFG_R_7_7. (C) All four compensatory ROIs stem from the two intergroup contrasts.

DISCUSSION

This study contributes to the ongoing discussion on
compensatory mechanisms in neurodegenerative diseases.
The primary purpose of this work was to draw attention to the
dynamics and dimensions of compensation in healthy brain
aging and MCI with AD biomarkers from a new perspective,
namely the contribution of resting-state connectivity derived by
graph theory. To the best of our knowledge, graph theory analysis
has sparsely been used for the detection of compensatory effects
in the AD continuum. We identified four cognition-related ROIs

with characteristics of compensation in a resting-state-fMRI
design, applying connectivity measures. The compensatory ROIs
were the right superior parietal gyrus (rostral area 7), the right-
and the left precentral gyri (caudal dorsolateral area 6), and the
right middle frontal gyrus (lateral area 10). In these ROIs, we
observed an increase of DC, indicating more robust connectivity,
despite regional atrophy. This finding indicates that regional
structural deterioration of the brain does not necessarily reflect
regional brain function. Although the DC of the compensatory
ROIs was well correlated with the cognitive performance in
MCI patients, this correlation could not be observed in senior
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FIGURE 3 | Degree centrality and gray matter volume of compensatory ROIs. Illustration of (A) the degree centrality and (B) the gray matter volume of the right and
the left precentral gyri caudal dorsolateral area 6 (Brainnetome label: PrG_R_6_2 and PrG_L_6_2), the superior parietal lobe, rostral area 7 (Brainnetome label:
SPL_R_5_1), and the right middle frontal gyrus, lateral area 10 (Brainnetome label: MFG_R_7_7). (*) indicates statistical significance (p < 0.05, FDR-Corrected), (**)
indicates statistical significance (p < 0.01, FDR-Corrected), (***) indicates statistical significance (p < 0.005, FDR-Corrected), (****) indicates statistical significance
(p < 0.001, FDR-Corrected).
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TABLE 2 | The coordinates of the ROIs with a significant increase of DC in the intergroup contrasts.

Contrast Brainnetome
atlas label

Region Behavioral domain according to the
Brainnetome atlas

Senior HC + MCI > young HC (p < 0.05,
FDR-corrected)

PrG_L_6_2 Left precentral gyrus, caudal dorsolateral area 6 Spatial cognition, action execution

Senior HC + MCI > young HC (p < 0.05,
FDR-corrected)

SPL_R_5_1 Right superior parietal gyrus, rostral area 7 Working memory, somatic and spatial
cognition, attention, action execution

Senior HC + MCI > young HC (p < 0.05,
FDR-corrected)

PrG_R_6_2 Right precentral gyrus, caudal dorsolateral area 6 Somatic and spatial cognition, action
execution

MCI > senior HC (p < 0.05, FDR-corrected) MFG_R_7_7 Right middle frontal gyrus, lateral area 10 Cognition, explicit memory

TABLE 3 | Correlation between DC of cognition-related compensatory ROIs, total VLMT, and delta TMT scores in MCI.

Total VLMT Delta TMT Behavioral domain according to the Brainnetome atlas

ROI r p-value r p-value

PrG_L_6_2 0.312 0.258 0.701 0.007 Spatial cognition, action execution

PrG_R_6_2 0.599 0.018 0.689 0.009 Somatic and spatial cognition, action execution

SPL_R_5_1 0.670 0.006 0.555 0.048 Working memory, somatic and spatial cognition, attention

MFG_R_7_7 0.522 0.046 0.173 0.571 Explicit memory

Correlation with significant p-values are highlighted in bold. All p-values are corrected for multiple comparisons.

FIGURE 4 | Correlation between DC and neuropsychological tests. Illustration of the correlation between the DC of the compensatory ROIs [the right and the left
precentral gyri, caudal dorsolateral area 6 (Brainnetome label: PrG_R_6_2 and PrG_L_6_2), the superior parietal lobe, rostral area 7 (SPL_R_5_1), and the right
middle frontal gyrus, lateral area 10 (Brainnetome label: MFG_R_7_7)], and the total VLMT score (upper row) and Delta TMT in MCI (lower row).
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TABLE 4 | Correlation between DC of cognition-related compensatory ROIs, total
VLMT, and delta TMT scores in senior HC.

Total VLMT Delta TMT Behavioral domain
according to the
Brainnetome atlas

ROI r p-value r p-value

PrG_L_6_2 0.286 0.301 0.368 0.178 Spatial cognition,
action execution

PrG_R_6_2 0.260 0.350 0.464 0.082 Somatic and spatial
cognition, action
execution

SPL_R_5_1 0.274 0.322 0.002 0.995 Working memory,
somatic and spatial
cognition, attention

MFG_R_7_7 0.396 0.144 0.002 0.995 Explicit memory

All p-values are corrected for multiple comparisons.

healthy controls. And, this finding is in good accordance with
the concept of compensation, which is considered to reflect
the brain’s attempt to compensate for the cognitive decline
by increasing neural activity or connectivity. In the additional
seed-to-ROI analyses using the aforementioned compensatory
ROIs as seeds or hubs, we observed a significant increase of
connectivity between these ROIs and cognition- and memory-
associated ROIs in the caudal cuneus, the fusiform gyrus, the
occipital polar cortex, the middle occipital gyrus, and the pre-
and the postcentral gyri. The cognitive domains covered by these
ROIs include language, semantic, and spatial cognition (Fan
et al., 2016). Besides, and of particular relevance in the context
of dementia, some of these ROIs were associated with learning
and sequence recall (Fan et al., 2016), which is in line with our
observation that the DC of the compensatory ROIs showed a
significant correlation with memory, cognitive flexibility, and
executive functioning, as derived by VLMT and TMT values.

In the context of task-based fMRI-experiments, various
compensatory patterns of activity increases associated with
brain aging have been proposed. According to one account,
the hemispheric asymmetry of the prefrontal lobes observed
in younger subjects is reduced in older adults. This pattern
is called “Hemispheric Asymmetry Reduction in Older Adults”
or HAROLD (Cabeza, 2002). Subsequent work suggested that
such a mechanism may also be observed in the parietal lobe
(Piefke et al., 2012). Another account suggested an increase
of activity in prefrontal cortex in elderly individuals together
with a. reduction of occipital lobe activity. This pattern was
termed “Posterior-Anterior Shift with Aging” or PASA (Davis
et al., 2008). Furthermore, a compensatory mechanism in healthy
brain aging and AD was suggested by an increase in functional
connectivity in the prefrontal cortex (Gregory et al., 2017)
even though postmortem, in vivo, and brain imaging studies
provided evidence for atrophy in the prefrontal cortex. This
led to the frontal lobe hypothesis, which posits that cognitive
inefficiencies in aging are predominantly due to the structural
and functional deterioration of the frontal lobes (Cabeza and
Dennis, 2012). The CRUNCH model (compensatory-related
utilization of neural circuits) extends the models mentioned
above and explains in general terms aging-related changes in

activity related to compensation without restricting it to cerebral
areas (Reuter-Lorenz and Cappell, 2008).

While the models mentioned above were revealed by task-
based-fMRI designs and analyses focusing on regional activation
rather than connectivity, our results based on connectivity
showed comparable patterns. First of all, we were able to
demonstrate successful compensation in the right middle frontal
gyrus (lateral area 10) in MCI patients. Besides, we observed
that in the transition from healthy aging to MCI, among all of
the compensatory ROIs, volume reduction is only significantly
pronounced in this prefrontal ROI, which vicariously addresses
the frontal lobe hypothesis. We also demonstrated successful
compensation in the right- and the left precentral gyri (caudal
dorsolateral area 6), which have been consistently indicated in
numerous studies as a key structure utilizing working memory
tasks (Howard et al., 2003; Narayanan et al., 2005; Meltzer et al.,
2008; Kirschen et al., 2010; Huang et al., 2013; Noy et al., 2015;
Kambara et al., 2017). In line with these findings, there is some
evidence, that an increase of resting-state nodal centrality in
the right middle frontal gyrus and the right precentral gyrus
in MCI might effectively serve as a compensatory mechanism,
playing an essential role in MCI patients to recruit additional
cognitive resources to achieve a normal level of cognition (Yao
et al., 2010). Also, previous studies have provided evidence
for task-specific compensatory recruitment of parietal lobe in
brain aging (Huang et al., 2012; Piefke et al., 2012), and
in this study, we could detect a resting-state compensatory
recruitment of the right superior parietal gyrus (rostral area
7) in MCI patients. As an extension of the above-noted links
between our results and previous studies, it is worth noting
that our findings regarding compensatory connectivity change
in the frontal and the parietal lobes could be considered as
the resting-state counterparts of the HAROLD (Cabeza, 2002;
Piefke et al., 2012) and/or CRUNCH (Reuter-Lorenz and Cappell,
2008)model of task-based compensation. By investigating the
PASA phenomenon in the task-based and resting-state networks
using graph measures, McCarthy et al. reported a bilateral
increase of DC in the pre- and post-central gyri, and the superior
parietal gyrus in the healthy aging and early AD (McCarthy
et al., 2014). These findings are in line with our observations
in the right- and the left precentral gyri (caudal dorsolateral
area) and the right superior parietal gyrus (rostral area 7).
McCarthy et al. (2014) have also observed a clear pattern of
declining DC in posterior regions in the aged group, when
compared to the young group. The latter lends support to our
findings in the seed-to-ROI analysis, in which we observed
an anterior-to-posterior tendency in the left precentral gyrus
(caudal dorsolateral area 6) and the right superior parietal gyrus
(rostral area 7).

Despite the converging evidence of our results and
previous studies, it is worth noting that our findings regarding
compensatory connectivity change in the frontal and parietal
lobes could be considered as the resting-state counterparts
of the HAROLD (Cabeza, 2002; Piefke et al., 2012) and/or
CRUNCH (Reuter-Lorenz and Cappell, 2008) model of task-
based compensation. Investigating the PASA phenomenon in
task-based and resting-state networks using graph measures,
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FIGURE 5 | Seed to ROI analysis of the compensatory ROIs. The yellow circles represent the compensatory ROIs. The colored circles depict the ROIs with a
significant increase (blue) or decrease (red) of connectivity with the corresponding compensatory ROIs in our two contrasts. (A–C) young HC > senior HC and MCI
(p < 0.05, FDR-corrected). (D) Senior HC > MCI (p < 0.05, FDR-corrected).

McCarthy et al. reported a bilateral increase of DC in the
pre- and post-central gyri, and the superior parietal gyrus in
healthy aging and early AD (McCarthy et al., 2014). This is in
line with our findings in the right- and the left precentral gyri
(caudal dorsolateral area 6) and the right superior parietal gyrus
(rostral area 7). McCathy et al. also reported a declining DC in
posterior regions in the aged group when compared to a group
of young subjects (McCarthy et al., 2014). These findings support
our graph theory-based method, which reveals resting-state
compensatory mechanisms in healthy aging and prodromal
Alzheimer’s disease.

Finally, a critical issue for the relevance of these findings
is their applicability and translation to the clinical and
interventional settings. In general terms, non-invasive
stimulation methods such as transcranial magnetic stimulation
(TMS) may improve the neural performance of various
brain regions (Solé-Padullés et al., 2006; Cotelli et al., 2008)
and the compensatory ROIs might be used as targets of
non-invasive stimulations.

There are several limitations to consider in our current study:
First, our dataset is composed of only a small number of MCI
patients characterized by beta-amyloid (Ab) and tau biomarkers.
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Thus, a study with a larger patient cohort is warranted to
confirm these results. Second, we referred to the previous version
of the A/T/N classification framework (Jack et al., 2016) as
the diagnostic criteria for our participants. Whereas in the
previous version of the framework (Jack et al., 2016), an isolated
positive beta-Amyloid (A+) biomarker status was sufficient for
AD classification, in the latest version (Jack et al., 2018), having
both a beta-Amyloid (A+) and phospho-Tau (T+) biomarker
status is required for an AD classification. Third, the CSF
biomarkers were not available for the participants in the senior
HC group. As some of the healthy elderly individuals might
already have AD pathologies, including their biomarkers status
would have been advantageous in interpreting the results. Fourth,
in this study we only focused on group level comparisons.
However, testing these criterions in an individual level have
concrete preferences in terms of personalized medicine for
the application in clinical practice, and it is an issue which
merits further discussion. Group comparison fMRI studies have
been extensively used to realize the generic aspect of brain
function, usually by averaging across individuals to optimize
the signal-to-noise ratio (SNR). Averaging the data has also a
statistical advantage which is leveraged in group comparisons.
However, the group comparison studies have fallen short of an
appropriate characterization of brain function in the individual
level. By far, the most frequently used approach to interpret
the fMRI-derived results in an individual level is to relate
them to other individual measures in the same subjects such
as test scores or behavioral measures (Dubois and Adolphs,
2016; Dubois et al., 2016), which has also been the method of
choice in our study. Nevertheless, another proposed approach
is to shift from correlation analysis to a predictive (machine-
learning inspired) framework to improve generalizability and
interpretability of fMRI-derived results at the individual level
(Linden, 2012; Gabrieli et al., 2015; Yarkoni and Westfall, 2017).
Fifth, in this paper we exclusively investigated the applicability
of our proposed framework of compensation using Brainnetome
atlas in cerebral regions. However, the role of cerebellum in
cognition, memory and learning (Schmahmann, 2010) could
potentially expand the scope of cognitive compensation beyond
the purview of cerebrum. Therefore, it will be essential to explore
compensatory mechanism in cerebellum using other functional
brain atlases with cerebellum coverage.

In conclusion, using combined graph theory analysis of
resting-state fMRI data and volumetric analyses of structural
MRI, we here show new characteristics of compensation in
healthy brain aging and early neurodegeneration. Moreover,
using an ROI-based atlas with fine parcellation, a more precise
map of compensatory regions could be identified. The identified

compensatory regions were well associated with the cognitive
performance scores in MCI subjects, which offers new insights
into the compensatory mechanism of memory and executive
functions. Based on these findings, preferably more longitudinal
studies with a broader spectrum of various categories and
stages of cognitive impairment such as subjective memory
impairment, early MCI, late MCI, amnestic vs. non-amnestic
type of MCI, mild to moderate and severe AD are warranted to
elucidate further the dynamics and dimensions of resting-state
compensatory mechanism in neurodegenerative processes with
cognitive decline. For future studies, analyses on individual level
using a predictive machine-learning based framework seem to
be a promising approach to further our understanding of the
compensatory mechanisms.
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