
csdR, an R package for differential
co‑expression analysis
Jakob P. Pettersen1 and Eivind Almaas1,2*   

Introduction
Experimental high-throughput techniques, such as microarray and RNA sequencing,
allow for large-scale assays of gene expressions. Correlation-based network approaches
have been used for analysing a wide variety of gene-expression data in humans, iden-
tifying both individual genes and clusters of genes with prominent relationships to the
phenotype (disease) in question [1–4]. More recently, there has been a realization that
differential co-expression analyses, i.e. the study of changes in the correlations rather
than just a test for their presence or absence in the conditions, may identify important

Abstract 

Background:  Differential co-expression network analysis has become an important
tool to gain understanding of biological phenotypes and diseases. The CSD algorithm
is a method to generate differential co-expression networks by comparing gene co-
expressions from two different conditions. Each of the gene pairs is assigned conserved
(C), specific (S) and differentiated (D) scores based on the co-expression of the gene
pair between the two conditions. The result of the procedure is a network where the
nodes are genes and the links are the gene pairs with the highest C-, S-, and D-scores.
However, the existing CSD-implementations suffer from poor computational perfor-
mance, difficult user procedures and lack of documentation.

Results:  We created the R-package csdR aimed at reaching good performance
together with ease of use, sufficient documentation, and with the ability to play well
with other tools for data analysis. csdR was benchmarked on a realistic dataset with
20,645 genes. After verifying that the chosen number of iterations gave sufficient
robustness, we tested the performance against the two existing CSD implementations.
csdR was superior in performance to one of the implementations, whereas the other
did not run. Our implementation can utilize multiple processing cores. However, we
were unable to achieve more than ∼2.7 parallel speedup with saturation reached at
about 10 cores.

Conclusion:  The results suggest that csdR is a useful tool for differential co-expres-
sion analysis and is able to generate robust results within a workday on datasets of
realistic sizes when run on a workstation or compute server.

Keywords:  R, Genome-scale, Co-expression, Gene network, Network

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79
https://doi.org/10.1186/s12859-022-04605-1 BMC Bioinformatics

*Correspondence:
eivind.almaas@ntnu.no
1 Department
of Biotechnology and Food
Science, NTNU- Norwegian
University of Science
and Technology, Trondheim,
Norway
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-9125-326X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04605-1&domain=pdf

Page 2 of 7Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79

genes [5, 6]. This may be of interest for the study of diseases, as a central goal is to iden-
tify genes contributing to differences between sick patients and healthy controls.

There exist multiple methods for differential co-expression analysis [7, 8]. Some make
separate co-expression networks for both conditions and compare the networks in order
to score differential expressed genes [9–11]. Another major approach is based on scor-
ing gene pairs directly based on their differential expression between different condi-
tions [12–15]. The CSD approach [7] is of the second type and explicitly distinguishes
between three different kinds of differential co-expression, that of Conserved (C), Spe-
cific (S), and Differentiated (D), hence its name. Each pair of genes will have a score for
each of these three categories.

Previously, two implementations of CSD have been written. The first one (https://​
github.​com/​andre-​voigt/​CSD) was written as part of the original CSD work [7]. It is
implemented in a combination of C++ and Python and is not focused on performance
and user-friendliness. The other implementation (https://​github.​com/​magnu​solav​hella​
nd/​CSD-​Softw​are) is written in C++ and is fine-tuned for performance [16]. However,
practical experience has shown it difficult to use due to its strict and obscure require-
ments for input data format. CoDiNa [17] is an R package which implements a proce-
dure similar to CSD and allows for comparing data from more than two environments.
On the other hand, CoDiNa does not account for the variability in co-expression within
an environment.

Implementation
We will assume that the expression vectors of two genes A and B have Spearman corre-
lations of ρ1 and ρ2 in the first and second condition respectively. Furthermore, we define
σ1 and σ2 as the corresponding standard deviations of the aforementioned Spearman
correlations, estimated by resampling. The values for C, S and D are then defined by:

The CSD algorithm consists of three principal parts:

1	 Calculation of the Spearman correlation between each pair of genes for each of the
two datasets individually. This is conducted with resampling to provide an estimate
of the variance of the correlation.

2	 Comparison of the values of mean correlation and standard deviation from the two
conditions, allowing the computation of Conserved, Specific, and Differentiated
scores.

(1)C =

|ρ1 + ρ2|
√

σ
2
1
+ σ

2
2

,

(2)S =

||ρ1| − |ρ2||
√

σ
2
1
+ σ

2
2

,

(3)D =

||ρ1| + |ρ2| − |ρ1 + ρ2||
√

σ
2
1
+ σ

2
2

.

https://github.com/andre-voigt/CSD
https://github.com/andre-voigt/CSD
https://github.com/magnusolavhelland/CSD-Software
https://github.com/magnusolavhelland/CSD-Software

Page 3 of 7Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79 	

3	 Selection of the gene pairs with the highest values for C, S and D, and the generation
of a network from them. In typical disease-network analyses, this network is studied
further with tools such as module finding and enrichment analysis.

An example CSD network containing both C-, S- and D-links is shown in Fig. 1. A
link in a CSD-network indicates a relation between the genes across the two condi-
tions and is likely to be due to regulatory effects which are the same or different in the
two conditions. With this in mind, we can consider the CSD network a product of the
underlying gene regulatory network. This allows us to suggest regulatory mechanisms
which are the same for both conditions in addition to mechanisms which are different
in the two conditions. Hence, CSD can be used as a tool to point to possible gene-
phenotype relationships underlying the condition in question. In turn, the results
from CSD can be integrated with prior knowledge to shed more light on the genetic
basis for the condition and serve as a starting point for follow-up experiments.
csdR is an R [18] package which implements this procedure and is written to

achieve good performance, be well documented and user-friendly, and provide seam-
less integration with other tools in the R ecosystem. The source code is available on
GitHub (https://​github.​com/​Almaa​sLab/​csdR). Parts of it are written with Rcpp [19–
21] in order to boost performance. The package is designed to utilize multicore pro-
cessors and processor SIMD (Single Instruction, Multiple Data) instructions through
its usage of openMP [22]. In addition, the package is available in Bioconductor release
3.14.

The data provided to the package must be numerical data organized in matrices by
sample and gene. In theory, any numerical measure of gene expression could be used. In
practice, normalized read counts from RNA-seq or proteomics studies are the most rele-
vant to use. Note that imputation of missing values is not implemented in the package. If
missing values are present in the raw data, an error message will be reported to the user.

Fig. 1  An example CSD network taken from the csdR vignette. The nodes are genes and the edges C- (dark
blue), S- (green) and D-links (dark red)

https://github.com/AlmaasLab/csdR

Page 4 of 7Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79

In the original implementation [7] and the CSD C++ implementation, the resampling
is done through an ad-hoc method termed independent subsampling, meaning that
no points are sampled together more than once and each subsample has a fixed size.
Instead, our implementation uses bootstrapping [23] which is a more common statis-
tical practice. This means that the data points are drawn with replacement, and each
bootstrap sample contains as many points as the original sample. Consequently, a data
point is likely to be picked more than once in the same sample or not being in the sam-
ple at all. Compared to indendent subsampling, bootstrapping may be conducted an
arbitrary number of times, which ensures stable results given a sufficiently large num-
ber of iterations. In addition, bootstrapping is easier to implement and allows for faster
computations.

As part of computing the Spearman correlation, the observational ranks of the genes
in each sample must be computed. In the original implementation, this rank is re-com-
puted for every gene pair. csdR optimizes this approach by first finding the ranks of all
genes before computing the all-to-all Pearson correlation of the ranks. For this computa-
tion, the efficient WGCNA version of cor is used [1, 24]. Internally, WGCNA::cor() uses
matrix multiplication handled by BLAS (Basic Linear Algebra Subprograms). Because
this step is the major performance bottleneck, linking R against an optimized BLAS
library, such as OpenBLAS (http://​www.​openb​las.​net/), is strongly recommended.

In order to ensure numerically stable computation of the variance of the co-expres-
sions, Welford’s algorithm [25] is applied. For the final step of selecting edges with the
largest values of C, S and D, past implementations used random sampling to find the
importance cutoff. Our implementation however, uses the more direct approach of par-
tial sorting through the C++ STL functions std::nth_element and std::sort.

Results and discussion
For small datasets (order of 100 samples and 100 genes), all implementations are so fast
that the runtime is of no practical importance. We benchmarked the different imple-
mentation on a realistic dataset derived from RNA-seq of thyroid glands. The data for
the patients with thyroid cancer (case) consisted of 504 samples, while the control data-
set consisted of 399 samples. These datasets are the full versions of the down-scaled
datasets sick_expression and normal_expression provided in the package.
See https://​github.​com/​Almaa​sLab/​csdR/​blob/​main/​inst/​script/​downl​oad_​prepr​ocess.​
md for more details on how the data were obtained and pre-processed. There were a
total of 20, 645 genes being compared, which resulted in 213, 097, 690 different gene
pairs. We ran the three implementations with importance level set to p = 10−6 . This
resulted in C-, S- and D-networks with 213 edges each. For the two first implementa-
tions, the number of random selections was kept to 104 , and the size of the subsamples
set to 10. All benchmarked software was compiled with GCC version 9.3.0 using com-
piler flags -O3 -march=native and run on 10 virtual 2.4 GHz Intel Broadwell pro-
cessors. For csdR, the benchmarks were conducted using R version 4.1.0 linked against
libopenblas version 0.3.15.

In order to determine the number of iterations for csdR, we investigated the robust-
ness of the highest ranking links across different random seeds. We ran 10 parallels with
different random seeds over 1000 iterations, identified the intersection of the highest

http://www.openblas.net/
https://github.com/AlmaasLab/csdR/blob/main/inst/script/download_preprocess.md
https://github.com/AlmaasLab/csdR/blob/main/inst/script/download_preprocess.md

Page 5 of 7Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79 	

ranking gene pairs between these 10 parallels, and finally calculated the proportion these
shared gene pairs made up (Fig. 2). For all three link types, the recall across all 10 paral-
lels stabilised at approximately 70%, 80%, and 90% for the S-, D and C-links, respectively,
when the number of selected links exceeded 2500. For smaller numbers of links, there
are more random fluctuations. We observe that the S-links have the lowest rate of recall.
This observation can be attributed to the fact that gene pairs with large S-values have
low levels of co-expression in one of the conditions and their scores are therefore more
susceptible to random noise. We are of the opinion that the robustness at 1000 iterations
is sufficient for practical use, and this choice was therefore used in the benchmarking
process. Better robustness may be obtained by increasing the number of iterations at the
expense of run time.

For this benchmark, we were not able to use CSD-C++, as we were unable to reshape
the data into a format the program would accept. A custom format repair tool (https://​
github.​com/​lars-​as/​csd_​cs_​ged_​tools) was attempted, but did not resolve the issues. For
the other two implementations, the results are shown in Table 1. We notice that csdR is
much faster than the original implementation even on a single core. The original imple-
mentation is single-threaded and can thus not take advantage of multiple cores. For
csdR, running the algorithm on 5 cores instead of one reduces the time spent approxi-
mately by a factor two. Doubling the core count to 10 provides another reduction factor
of ∼25% of the time. For 15 cores however, no performance gain beyond the margin of
error was observed. We suspect that the algorithm’s failure to scale to such a large num-
ber of cores is due to the system’s memory bandwidth being exhausted. Another result
worth noticing is the fact that only the first step in the CSD procedure determines the

S−links
D−links

C−links

0

25

50

75

100

0 2500 5000 7500 10000
Link rank cutoff

S
ha

re
d

lin
ks

 [%
]

Fig. 2  Cumulative overlap of the highest ranking links from csdR. The shared links are the intersection of 10
parallels run over 1000 iterations with different random seeds

Table 1  Running time (s) for CSD on the large datasets with 1000 iterations

Implementation Cores Step 1 Step 2 Step 3 Total

Original 1 1,261,628 4900 116,051 1,382,579

csdR 1 41,387 79 11 41,477

csdR 5 20,737 50 15 20,802

csdR 10 15,488 45 13 15,546

csdR 15 15,192 50 12 15,254

https://github.com/lars-as/csd_cs_ged_tools
https://github.com/lars-as/csd_cs_ged_tools

Page 6 of 7Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79

performance in practise. The contributions from step 2 and 3 were negligible except for
step 3 in the original implementation, which consumes up 8.4% of the overall time. In
terms of memory usage, csdR consumed approximately 30 GB of RAM on the bench-
marked datasets. Due to the fact that most laptops and many desktop computers have
less memory than this, csdR is more suited for powerful workstations or compute
servers.

Conclusions
We have shown that csdR is reasonably fast even for large datasets and provides suf-
ficiently robust results. In addition, it is more accessible to the common user and better
documented than the previous CSD implementations.

Availability and requirements

Project name: csdR
Project home page: https://​github.​com/​Almaa​sLab/​csdR
Operating systems: Cross-platform
Programming language: R, C++11
Other requirements: R(>= 4.1.0 ), R packages WGCNA, glue, matrixStats,
RhpcBLASctl and Rcpp
License: GNU General Public License v3.0
Any restrictions to use by non-academics: The terms of the GPL-3 license must be
respected.

Abbreviations
BLAS: Basic linear Algebra Subprograms; CSD: Conserved, Specific, and Differentiated; SIMD: Single instruction, multiple
data; WGCNA: Weighted correlation network analysis.

Acknowledgements
Thanks for to Kristin Salvesen for testing the software and André Voigt for helpful discussions.

Authors’ contributions
J.P.P. developed, tested, and benchmarked the software and wrote the first draft of the paper. E.A. supervised the project.
Both authors read and approved the final manuscript.

Funding
This work is funded by ERA CoBioTech project CoolWine and the Norwegian Research Council grant 283862.

Availability of data and materials
The scripts and datasets used for benchmarking are available for download at Figshare https://​doi.​org/​10.​6084/​m9.​figsh​
are.​16713​121

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://github.com/AlmaasLab/csdR
https://doi.org/10.6084/m9.figshare.16713121
https://doi.org/10.6084/m9.figshare.16713121

Page 7 of 7Pettersen and Almaas ﻿BMC Bioinformatics (2022) 23:79 	

Author details
1 Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim,
Norway. 2 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU- Nor-
wegian University of Science and Technology, Trondheim, Norway.

Received: 30 September 2021 Accepted: 7 February 2022

References
	1.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;(1),

559.
	2.	 Najafzadeh L, Mahmoudi M, Ebadi M, Dehghan Shasaltaneh M, Masoudinejad A. Co-expression network analysis

reveals key genes related to ankylosing spondylitis arthritis disease: computational and experimental validation. Iran
J Biotechnol. 2021;19(1):74–85. https://​doi.​org/​10.​30498/​IJB.​2021.​2630.

	3.	 Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH. Transcrip-
tomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380–4. https://​doi.​
org/​10.​1038/​natur​e10110.

	4.	 Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer
disease pathways. Proc Natl Acad Sci. 2010;107(28):12698–703. https://​doi.​org/​10.​1073/​pnas.​09142​57107.

	5.	 de la Fuente A. From ‘differential expression’ to ‘differential networking’ -identification of dysfunctional regulatory
networks in diseases. Trends Genet. 2010;26(7):326–33. https://​doi.​org/​10.​1016/j.​tig.​2010.​05.​001.

	6.	 Chowdhury HA, Bhattacharyya DK, Kalita JK. (Differential) co-expression analysis of gene expression: a survey of best
practices. IEEE-ACM Trans Comput Biol Bioinform. 2020;17(4):1154–73. https://​doi.​org/​10.​1109/​TCBB.​2019.​289317.

	7.	 Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals pos-
sible genetic interactions in glioma. PLoS Comput Biol. 2017;13(9):1–34. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10057​
39.

	8.	 Kakati T, Bhattacharyya DK, Barah P, Kalita JK. Comparison of methods for differential co-expression analysis for
disease biomarker prediction. Comput Biol Med. 2019;113:103380. https://​doi.​org/​10.​1016/j.​compb​iomed.​2019.​
103380.

	9.	 Reverter A, Ingham A, Lehnert SA, Tan S-H, Wang Y, Ratnakumar A, Dalrymple BP. Simultaneous identification
of differential gene expression and connectivity in inflammation, adipogenesis and cancer. Bioinformatics.
2006;22(19):2396–404. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btl392.

	10.	 Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-
associated genes. BMC Bioinform. 2012;13(1):182. https://​doi.​org/​10.​1186/​1471-​2105-​13-​182.

	11.	 Choi JK, Yu U, Yoo OJ, Kim S. Differential coexpression analysis using microarray data and its application to human
cancer. Bioinformatics. 2005;21(24):4348–55. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bti722.

	12.	 Yu H, Liu B-H, Ye Z-Q, Li C, Li Y-X, Li Y-Y. Link-based quantitative methods to identify differentially coexpressed genes
and gene pairs. BMC Bioinform. 2011;12(1):315. https://​doi.​org/​10.​1186/​1471-​2105-​12-​315.

	13.	 Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression.
PLoS Comput Biol. 2013;9(3):1–15. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10029​55.

	14.	 Gao X, Arodz T. Detecting differentially co-expressed genes for drug target analysis. Procedia Comput Sci.
2013;18:1392–401. https://​doi.​org/​10.​1016/j.​procs.​2013.​05.​306.

	15.	 Fukushima A. Diffcorr: An r package to analyze and visualize differential correlations in biological networks. Gene.
2013;518(1):209–14. https://​doi.​org/​10.​1016/j.​gene.​2012.​11.​028.

	16.	 Helland MO. Implementation and application of method for differential correlation network analysis. Master’s thesis,
NTNU - Norwegian University of Science and Technology. 2017. http://​hdl.​handle.​net/​11250/​24653​78

	17.	 Morselli Gysi D, de Miranda Fragoso T, Zebardast F, Bertoli W, Busskamp V, Almaas E, Nowick K. Whole transcriptomic
network analysis using co-expression differential network analysis (codina). PLoS ONE. 2020;15(10):1–28. https://​doi.​
org/​10.​1371/​journ​al.​pone.​02405​23.

	18.	 R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria. 2019. R Foundation for Statistical Computing. https://​www.R-​proje​ct.​org/

	19.	 Eddelbuettel D, François R. Rcpp: seamless R and C++ integration. J Stat Softw. 2011;40(8):1–18. https://​doi.​org/​10.​
18637/​jss.​v040.​i08.

	20.	 Eddelbuettel D. Seamless R and C++ Integration With Rcpp. Springer, New York, 2013. https://​doi.​org/​10.​1007/​978-
1-​4614-​6868-4. ISBN 978-1-4614-6867-7

	21.	 Eddelbuettel D, Balamuta JJ. Extending R with C++: a brief introduction to Rcpp. Am Stat. 2018;72(1):28–36. https://​
doi.​org/​10.​1080/​00031​305.​2017.​13759​90.

	22.	 Chapman B, Jost G, van der Pas R. Using OpenMP: portable shared memory parallel programming. Scientific and
Engineering Computation. MIT Press, Cambridge. 2007. Books24x7, Inc

	23.	 Bootstrap. Springer, New York, NY, 2008, pp. 51–54. https://​doi.​org/​10.​1007/​978-0-​387-​32833-1_​40.
	24.	 Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw.

2012;46(11):1–17.
	25.	 Welford BP. Note on a method for calculating corrected sums of squares and products. Technometrics.

1962;4(3):419–20. https://​doi.​org/​10.​1080/​00401​706.​1962.​10490​022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.30498/IJB.2021.2630
https://doi.org/10.1038/nature10110
https://doi.org/10.1038/nature10110
https://doi.org/10.1073/pnas.0914257107
https://doi.org/10.1016/j.tig.2010.05.001
https://doi.org/10.1109/TCBB.2019.289317
https://doi.org/10.1371/journal.pcbi.1005739
https://doi.org/10.1371/journal.pcbi.1005739
https://doi.org/10.1016/j.compbiomed.2019.103380
https://doi.org/10.1016/j.compbiomed.2019.103380
https://doi.org/10.1093/bioinformatics/btl392
https://doi.org/10.1186/1471-2105-13-182
https://doi.org/10.1093/bioinformatics/bti722
https://doi.org/10.1186/1471-2105-12-315
https://doi.org/10.1371/journal.pcbi.1002955
https://doi.org/10.1016/j.procs.2013.05.306
https://doi.org/10.1016/j.gene.2012.11.028
http://hdl.handle.net/11250/2465378
https://doi.org/10.1371/journal.pone.0240523
https://doi.org/10.1371/journal.pone.0240523
https://www.R-project.org/
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1007/978-0-387-32833-1_40
https://doi.org/10.1080/00401706.1962.10490022

	csdR, an R package for differential co-expression analysis
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Implementation
	Results and discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	References

