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Introduction
Experimental high-throughput techniques, such as microarray and RNA sequencing, 
allow for large-scale assays of gene expressions. Correlation-based network approaches 
have been used for analysing a wide variety of gene-expression data in humans, iden-
tifying both individual genes and clusters of genes with prominent relationships to the 
phenotype (disease) in question [1–4]. More recently, there has been a realization that 
differential co-expression analyses, i.e. the study of changes in the correlations rather 
than just a test for their presence or absence in the conditions, may identify important 
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genes [5, 6]. This may be of interest for the study of diseases, as a central goal is to iden-
tify genes contributing to differences between sick patients and healthy controls.

There exist multiple methods for differential co-expression analysis [7, 8]. Some make 
separate co-expression networks for both conditions and compare the networks in order 
to score differential expressed genes [9–11]. Another major approach is based on scor-
ing gene pairs directly based on their differential expression between different condi-
tions [12–15]. The CSD approach [7] is of the second type and explicitly distinguishes 
between three different kinds of differential co-expression, that of Conserved (C), Spe-
cific (S), and Differentiated (D), hence its name. Each pair of genes will have a score for 
each of these three categories.

Previously, two implementations of CSD have been written. The first one (https://​
github.​com/​andre-​voigt/​CSD) was written as part of the original CSD work [7]. It is 
implemented in a combination of C++ and Python and is not focused on performance 
and user-friendliness. The other implementation (https://​github.​com/​magnu​solav​hella​
nd/​CSD-​Softw​are) is written in C++ and is fine-tuned for performance [16]. However, 
practical experience has shown it difficult to use due to its strict and obscure require-
ments for input data format. CoDiNa [17] is an R package which implements a proce-
dure similar to CSD and allows for comparing data from more than two environments. 
On the other hand, CoDiNa does not account for the variability in co-expression within 
an environment.

Implementation
We will assume that the expression vectors of two genes A and B have Spearman corre-
lations of ρ1 and ρ2 in the first and second condition respectively. Furthermore, we define 
σ1 and σ2 as the corresponding standard deviations of the aforementioned Spearman 
correlations, estimated by resampling. The values for C, S and D are then defined by:

The CSD algorithm consists of three principal parts: 

1	 Calculation of the Spearman correlation between each pair of genes for each of the 
two datasets individually. This is conducted with resampling to provide an estimate 
of the variance of the correlation.

2	 Comparison of the values of mean correlation and standard deviation from the two 
conditions, allowing the computation of Conserved, Specific, and Differentiated 
scores.
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3	 Selection of the gene pairs with the highest values for C, S and D, and the generation 
of a network from them. In typical disease-network analyses, this network is studied 
further with tools such as module finding and enrichment analysis.

An example CSD network containing both C-, S- and D-links is shown in Fig.  1. A 
link in a CSD-network indicates a relation between the genes across the two condi-
tions and is likely to be due to regulatory effects which are the same or different in the 
two conditions. With this in mind, we can consider the CSD network a product of the 
underlying gene regulatory network. This allows us to suggest regulatory mechanisms 
which are the same for both conditions in addition to mechanisms which are different 
in the two conditions. Hence, CSD can be used as a tool to point to possible gene-
phenotype relationships underlying the condition in question. In turn, the results 
from CSD can be integrated with prior knowledge to shed more light on the genetic 
basis for the condition and serve as a starting point for follow-up experiments.
csdR is an R [18] package which implements this procedure and is written to 

achieve good performance, be well documented and user-friendly, and provide seam-
less integration with other tools in the R ecosystem. The source code is available on 
GitHub (https://​github.​com/​Almaa​sLab/​csdR). Parts of it are written with Rcpp [19–
21] in order to boost performance. The package is designed to utilize multicore pro-
cessors and processor SIMD (Single Instruction, Multiple Data) instructions through 
its usage of openMP [22]. In addition, the package is available in Bioconductor release 
3.14.

The data provided to the package must be numerical data organized in matrices by 
sample and gene. In theory, any numerical measure of gene expression could be used. In 
practice, normalized read counts from RNA-seq or proteomics studies are the most rele-
vant to use. Note that imputation of missing values is not implemented in the package. If 
missing values are present in the raw data, an error message will be reported to the user.

Fig. 1  An example CSD network taken from the csdR vignette. The nodes are genes and the edges C- (dark 
blue), S- (green) and D-links (dark red)

https://github.com/AlmaasLab/csdR
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In the original implementation [7] and the CSD C++ implementation, the resampling 
is done through an ad-hoc method termed independent subsampling, meaning that 
no points are sampled together more than once and each subsample has a fixed size. 
Instead, our implementation uses bootstrapping [23] which is a more common statis-
tical practice. This means that the data points are drawn with replacement, and each 
bootstrap sample contains as many points as the original sample. Consequently, a data 
point is likely to be picked more than once in the same sample or not being in the sam-
ple at all. Compared to indendent subsampling, bootstrapping may be conducted an 
arbitrary number of times, which ensures stable results given a sufficiently large num-
ber of iterations. In addition, bootstrapping is easier to implement and allows for faster 
computations.

As part of computing the Spearman correlation, the observational ranks of the genes 
in each sample must be computed. In the original implementation, this rank is re-com-
puted for every gene pair. csdR optimizes this approach by first finding the ranks of all 
genes before computing the all-to-all Pearson correlation of the ranks. For this computa-
tion, the efficient WGCNA version of cor is used [1, 24]. Internally, WGCNA::cor() uses 
matrix multiplication handled by BLAS (Basic Linear Algebra Subprograms). Because 
this step is the major performance bottleneck, linking R against an optimized BLAS 
library, such as OpenBLAS (http://​www.​openb​las.​net/), is strongly recommended.

In order to ensure numerically stable computation of the variance of the co-expres-
sions, Welford’s algorithm [25] is applied. For the final step of selecting edges with the 
largest values of C, S and D, past implementations used random sampling to find the 
importance cutoff. Our implementation however, uses the more direct approach of par-
tial sorting through the C++ STL functions std::nth_element and std::sort.

Results and discussion
For small datasets (order of 100 samples and 100 genes), all implementations are so fast 
that the runtime is of no practical importance. We benchmarked the different imple-
mentation on a realistic dataset derived from RNA-seq of thyroid glands. The data for 
the patients with thyroid cancer (case) consisted of 504 samples, while the control data-
set consisted of 399 samples. These datasets are the full versions of the down-scaled 
datasets sick_expression and normal_expression provided in the package. 
See https://​github.​com/​Almaa​sLab/​csdR/​blob/​main/​inst/​script/​downl​oad_​prepr​ocess.​
md for more details on how the data were obtained and pre-processed. There were a 
total of 20,  645 genes being compared, which resulted in 213,  097,  690 different gene 
pairs. We ran the three implementations with importance level set to p = 10−6 . This 
resulted in C-, S- and D-networks with 213 edges each. For the two first implementa-
tions, the number of random selections was kept to 104 , and the size of the subsamples 
set to 10. All benchmarked software was compiled with GCC version 9.3.0 using com-
piler flags -O3 -march=native and run on 10 virtual 2.4 GHz Intel Broadwell pro-
cessors. For csdR, the benchmarks were conducted using R version 4.1.0 linked against 
libopenblas version 0.3.15.

In order to determine the number of iterations for csdR, we investigated the robust-
ness of the highest ranking links across different random seeds. We ran 10 parallels with 
different random seeds over 1000 iterations, identified the intersection of the highest 

http://www.openblas.net/
https://github.com/AlmaasLab/csdR/blob/main/inst/script/download_preprocess.md
https://github.com/AlmaasLab/csdR/blob/main/inst/script/download_preprocess.md
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ranking gene pairs between these 10 parallels, and finally calculated the proportion these 
shared gene pairs made up (Fig. 2). For all three link types, the recall across all 10 paral-
lels stabilised at approximately 70%, 80%, and 90% for the S-, D and C-links, respectively, 
when the number of selected links exceeded 2500. For smaller numbers of links, there 
are more random fluctuations. We observe that the S-links have the lowest rate of recall. 
This observation can be attributed to the fact that gene pairs with large S-values have 
low levels of co-expression in one of the conditions and their scores are therefore more 
susceptible to random noise. We are of the opinion that the robustness at 1000 iterations 
is sufficient for practical use, and this choice was therefore used in the benchmarking 
process. Better robustness may be obtained by increasing the number of iterations at the 
expense of run time.

For this benchmark, we were not able to use CSD-C++, as we were unable to reshape 
the data into a format the program would accept. A custom format repair tool (https://​
github.​com/​lars-​as/​csd_​cs_​ged_​tools) was attempted, but did not resolve the issues. For 
the other two implementations, the results are shown in Table 1. We notice that csdR is 
much faster than the original implementation even on a single core. The original imple-
mentation is single-threaded and can thus not take advantage of multiple cores. For 
csdR, running the algorithm on 5 cores instead of one reduces the time spent approxi-
mately by a factor two. Doubling the core count to 10 provides another reduction factor 
of ∼25% of the time. For 15 cores however, no performance gain beyond the margin of 
error was observed. We suspect that the algorithm’s failure to scale to such a large num-
ber of cores is due to the system’s memory bandwidth being exhausted. Another result 
worth noticing is the fact that only the first step in the CSD procedure determines the 
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Fig. 2  Cumulative overlap of the highest ranking links from csdR. The shared links are the intersection of 10 
parallels run over 1000 iterations with different random seeds

Table 1  Running time (s) for CSD on the large datasets with 1000 iterations

Implementation Cores Step 1 Step 2 Step 3 Total

Original 1 1,261,628 4900 116,051 1,382,579

csdR 1 41,387 79 11 41,477

csdR 5 20,737 50 15 20,802

csdR 10 15,488 45 13 15,546

csdR 15 15,192 50 12 15,254

https://github.com/lars-as/csd_cs_ged_tools
https://github.com/lars-as/csd_cs_ged_tools
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performance in practise. The contributions from step 2 and 3 were negligible except for 
step 3 in the original implementation, which consumes up 8.4% of the overall time. In 
terms of memory usage, csdR consumed approximately 30 GB of RAM on the bench-
marked datasets. Due to the fact that most laptops and many desktop computers have 
less memory than this, csdR is more suited for powerful workstations or compute 
servers.

Conclusions
We have shown that csdR is reasonably fast even for large datasets and provides suf-
ficiently robust results. In addition, it is more accessible to the common user and better 
documented than the previous CSD implementations.

Availability and requirements

Project name: csdR
Project home page: https://​github.​com/​Almaa​sLab/​csdR
Operating systems: Cross-platform
Programming language: R, C++11
Other requirements: R(>= 4.1.0 ), R packages WGCNA, glue, matrixStats, 
RhpcBLASctl and Rcpp
License: GNU General Public License v3.0
Any restrictions to use by non-academics: The terms of the GPL-3 license must be 
respected.

Abbreviations
BLAS: Basic linear Algebra Subprograms; CSD: Conserved, Specific, and Differentiated; SIMD: Single instruction, multiple 
data; WGCNA: Weighted correlation network analysis.
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