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Abstract

It is commonly assumed that perfusion in a given cerebral territory can be inferred from

Blood Flow Velocity (BFV) measurements in the corresponding stem artery. In order to test

this hypothesis, we construct a cerebral blood flow (CBF) estimator based on transcranial

Doppler (TCD) blood flow velocity and ten other easily available patient characteristics and

clinical parameters. A total of 261 measurements were collected from 88 older patients. The

estimator is based on local regression (Random Forest). Its performance is analyzed

against baseline CBF from 3-D pseudocontinuous arterial spin labeling (pCASL) magnetic

resonance imaging (MRI). Patient specific CBF predictions are of poor quality (r = 0.41 and

p-value = 4.5 × 10−12); the hypothesis is thus not clearly supported by evidence.

Introduction

Cardiovascular diseases are the number one cause of death globally: more people die annually

from them (31%) than from any other cause [1]. Cerebrovascular diseases account for a signifi-

cant proportion of these deaths–nearly 40% for stroke alone. Consequently, considerable

efforts are devoted to the development of cerebral blood flow (CBF) measurement methods

[2]. These methods include magnetic resonance imaging (MRI), positron emission tomogra-

phy (PET), single photon emission computed tomography (SPECT), perfusion CT, xenon CT

and others. The relative performance of CBF measurement methods has been extensively stud-

ied [3–14]. For instance, two distinct MRI protocols are considered in [15]: pseudocontinuous

arterial spin labeling (pCASL, which is the MRI protocol used in the present study) and phase

contrast; measurements from the two protocols are only weakly correlated (r = .59). The

reported results are sometimes contradictory: [7] reports strong correlation (r = .89) between

dynamic susceptibility contrast MRI and pulsed Arterial Spin Labeling (ASL), while [4] finds

the results from these two protocols uncorrelated.

It is often difficult to synthesize and compare such studies because of

1. variable skill levels of the operators;

2. differences in size and homogeneity of patient groups;
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3. population sizes that are too small to be statistically significant: among the previously cited

studies, only two consider more than 35 subjects (152 subjects in [3] and 436 in [15]);

4. differences in equipment,

5. differences in the reported quantities and post-processing methods,

6. inconsistencies in elapsed times between repeated measurements,

7. differences in temporal vs. spatial resolutions across methods,

8. inherent variability of CBF even within the same subject [16].

Reflecting the above challenges, no specific protocol is currently considered as gold stan-

dard [17].

Under the assumption of a Poiseuille flow, an estimate of CBF can be obtained from the

TCD measurement of the centerline velocity v through

CBFTCD ¼
pR2

M
v

2 cosy
; ð1Þ

where R is a characteristic value of the vessel radius, M the mass of the territory under consid-

eration–here, the Middle Cerebral Artery (MCA) territory–and θ the insonation angle (i.e. the

angle between the ultrasound probe and the vessel). The values of M, R and θ can, in principle,

be estimated from medical images for each patient. In particular, θ can be approximated

through elementary trigonometry using anatomical images, the location of the insonation site

and the MCA location at the depth of insonation. Formula (1) illustrates in particular the

importance of the radius of the stem artery R when attempting to use BFV as a surrogate for

CBF. The quadratic dependency of the flow on the radius and the possibility of varying radii

during measurement are at the origin of the most strident dismissals of BFV as a possible sur-

rogate for flow, see for instance [18]. The extent to which the radius varies during experiments

is itself somewhat controversial. While both [19] and [20] analyze the MCA diameter during

hypercapnia and hypocapnia through similar methodologies, these studies significantly differ

in their findings [17].

Yet, over the last five years, more than 1800 studies have relied on measurements of BFV

for diagnostic evaluation of CBF, vasoreactivity to CO2 and blood pressure challenges. The

underlying assumption is that vasoreactivity of small vessels and perfusion in the correspond-

ing vascular territory can be inferred from BFV measurements in the stem artery. We demon-

strate in this paper that this hypothesis is not clearly supported by evidence. Our approach

consists in constructing a CBF estimator based not only on blood flow velocity (BFV) mea-

sured by TCD but also on other predictors that are easy to access in a clinical setting. The

approximation process is based on methods from nonparametric statistics which can handle

mixtures of categorical and numerical variables as well as noisy data. More specifically, we

train Random Forest approximations on various subsets of the data to predict CBF as mea-

sured by pCASL-MRI.

Materials and Methods

Subjects

The results are based on data from 88 subjects (38 men and 50 women over 50 years of mean

age of 67.7±8.02 years). Participants were recruited to participate in clinical trials (ADA 1-

06-CR-25; NIH-NINDS 1R01-NS045745-01A2; NIH-NIA 1 R01- AG028760A2; 2009-2011)

from community advertisement and through Beth Israel Deaconess Medical Center, Joslin
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Diabetes Clinic patient registries and the Harvard Cooperative Program on Aging research

subject registry. All participants signed the informed consent form for the studies approved by

the Institutional Review Board at Beth Israel Deaconess Medical Center (BIDMC), i.e., the

Committee on Clinical Investigations (CCI). The participants provided consent to the use of

their data in future research. The original protocols were amended to include analyses evaluat-

ing the relationships between TCD and MRI; the amendments were approved by the BIDMC

CCI. The current retrospective analyses use exclusively de-identified datasets.

The data for this retrospective analysis of 88 subjects were selected from a database of rec-

ords prospectively collected at the Syncope and Falls in the Elderly Laboratory and the Center

for Magnetic Resonance Imaging at BIDMC. The database was composed of records from

three completed projects spanning January 2002 to February 2008: Cerebral vasoregulation in

the elderly with stroke (March 2003-April 2005); Cerebral vasoregulation in diabetes (January

2002-December 2005); and Cerebral perfusion and cognitive decline in type 2 diabetes (Janu-

ary 2006-December 2008) (see Acknowledgment/Funding Section for grant numbers). Cohort

characteristics are summarized in Table 1. BFV and CBF measurements are, ideally, acquired

on both the left and right side of the brain for each patient; left and right measurements are

considered independently on each side and correspond to a total of 261 measurements. For

most patients, 49 of them, one left and one right measurements are available. A total of 32

patients have two left and two right measurements. A full description of the number of avail-

able measurements is given in Table 2. Several patients had multiple measurements spanning

several projects (i.e., several years); this makes it possible to investigate the predictive values of

this type of data, see Results and Discussion below.

A complete dataset for each subject includes: demographic data, laboratory values, plasma

hematocrit, TCD-based BFV in MCA, pCASL perfusion, blood pressure end tidal CO2 at base-

line, during hypercapnia, hypocapnia and cognitive challenge; time of flight MR angiography

(TOEF MRA) to characterize vessels in the Circle of Willis (CoW) and T1 and T2 weighted

images to characterize brain tissue volumes. TCD recordings were visually inspected for signal

quality before including in the analysis. Baseline MCA BFV and baseline CBF from 3-D

pCASL were acquired on the same day. Patients were on a no caffeine diet 24 hours before the

exam. Antihypertensive medications were tapered and stopped on the day of the study; medi-

cations not affecting the cardiovascular system were allowed. The TCD and MRI protocols are

discussed below.

Table 1. Cohort chacteristics and distribution of healthy, hypertensive (HTN), diabetic (DM), diabetic and hypertensive (DM-HTN) subjects.

total male female

participants 88 38 50

measurements 261 114 147

age 67.7±8.02 67.4 ±8.61 68.0±7.61

healthy 28 (31.8%) 16 (42.1%) 12 (24.0%)

HTN 41 (46.6%) 15 (39.5%) 26 (52.0%)

DM without HTN 2 (2.3%) 1 (2.6%) 1 (2.0%)

DM-HTN 17 (19.3%) 6 (15.8%) 11 (22.0%)

doi:10.1371/journal.pone.0165536.t001

Table 2. Number of measurements (defined as either left or right MCA measurements) available per patient.

number of patients 1 49 1 32 1 3 0 1

measurements per patient 1 2 3 4 5 6 7 8

doi:10.1371/journal.pone.0165536.t002
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Inclusion criteria were: (i) Healthy normotensive group: normotensive (BP under 140/90

mm Hg); not being treated for any systemic cardiovascular, renal, or neurological disease; no

focal deficit on neurological exam; normal glucose and hemoglobin A1c. (ii) Hypertensive
(HTN) group: BP over 140/90 mm Hg or diagnosed/treated for hypertension. (iii) Diabetes
(DM) group: diagnosed and treated for type 2 diabetes mellitus for more than one year. (iv)

DM-HTN group: with both hypertension and type 2 diabetes. Exclusion criteria were: type 1

DM, major event or surgery within 6 months, stroke history, carotid stenosis, intracranial ste-

nosis, uncontrolled HTN, significant renal, liver, cardiac disease or failure, substance abuse,

body mass index over 40, failed TCD insonation.

TCD protocol

About an hour after a light breakfast, participants were instrumented (PMD150 Spencer Tech-

nologies, Inc) with continuous monitoring of BFV in major Circle of Willis’ (CoW) vessels

(anterior and middle cerebral arteries, ACAs and MCAs); continuous cardiovascular monitor-

ing (beat-to-beat blood pressure, ECG), respiratory tidal volume, flow rate O2 and CO2 were

simultaneously sampled at 500Hz using Labview. Blood pressure was measured beat-to-beat

noninvasively from the finger using a volume-clamp method with a Portapres device (Finapres

Medical Systems BV, Amsterdam, The Netherlands). TCD assessments were performed by an

experienced sonographer (V.N.). Vessels were insonated bilaterally to record the maximum

velocity for each vessel; probes were stabilized with 3D holders. A transtemporal window was

used with sample volume set up in the Doppler mode, see Spencer Technologies and [21].

Average insonation depth was 54–57mm. The mean BFV v was calculated as an integral over

time of the velocity envelope; systolic and diastolic peak velocities were recorded. Six minute

supine baseline was acquired for each vascular territory. Insonation failure incidences were

below 10%. Upon completion, participants were escorted to the MRI suite for MRI study.

MRI protocol

CASL [22–26] is one of several Arterial Spin Labeling MRI techniques; it allows the non-

invasive measurement of regional perfusion. It is based on electromagnetically labeling arterial

blood water in the supplying vessels to an area under study. The CASL protocol uses “continu-

ous” radio frequency pulses (� 2 seconds). After some time, the area is imaged; labeled and

control states are compared to infer perfusion.

A GE 3 Tesla HDxt scanner with 8 channel brain coil was used. 3D CASL images were

acquired with pseudo-continuous labeling, background suppression, and a volumetric stack of

spirals fast spin echo acquisition. The resulting pseudocontinuous ASL (pCASL) [27] is a

hybrid approach developed in collaboration with GE Healthcare. Modifications to the stan-

dard sequence include (i) interleaved labeling and background suppression [28] to enable lon-

ger labeling and better signal and (ii) transit time prescan [29, 30] to improve quantification of

flow in subjects with vascular pathology or slow flow. Labeling was done at the level of cervical

vertebra C1 for whole brain images and at the ICA level for vessel specific labeling [29]. Perfu-

sion and vasoreactivity data were acquired through established protocols and methods [27, 29,

31, 32].

High resolution anatomical images were acquired through 3D magnetization prepared

rapid gradient echo (MP-RAGE) and fluid attenuation inversion recovery (FLAIR). Perfusion

images were averaged during each condition (6 minutes baseline normocapnia) to improve

the signal-to-noise ratio. Perfusion and anatomical MR images (MP-RAGE and FLAIR) was

co-registered to a standard template of regional vascular territories and segmented to calculate

regional perfusion, gray matter, white matter, and cerebrospinal fluid volumes using the

Transcranial Doppler-Based Surrogates for Cerebral Blood Flow
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statistical parametric mapping software package (SPM, University College London, UK) [33]

and tools written in IDL. ECG, end tidal O2, CO2 and blood pressure were simultaneously

acquired. An anatomical template (Laboratory of Neuro Imaging, University of California, Los

Angles, USA) was applied to measure gray matter (GM), white matter (WM) and intracranial

volume (ICV). Vessel diameters were calculated from 3D MR angiography (time of flight,

TOF) using the Medical Image Processing, Analysis, and Visualization (MIPAV) software

from the Biomedical Imaging Research Services Section, NIH, Bethesda, MD, at 3 locations

and averaged, see Fig 1. Based on image resolution, the accuracy of the resulting MCA diame-

ters is conservatively estimated at ±0.4 mm.

Predictor and response variables

We consider the pCASL-MRI CBF measurements yi, i = 1, . . ., N, where N is the number of

observations, as response variables. The other factors xi = (xi,1, . . ., xi,14), i = 1, . . ., N, are pre-

dictor variables, namely hematocrit (HCT), intracranial volume (ICV), weight, height, grey

matter to ICV fraction (GM/ICV), white matter to ICV fraction (WM/ICV), body mass index

(BMI), age, head length (front to back), diabetes (Y/N), hypertension (Y/N), gender, TCD

BFV and MCA diameter.

To lower the dimension of the problem and hence help prediction, we only retain one pre-

dictor from each group of strongly correlated variables. More precisely, the analysis below

Fig 1. Left: time-of-flight MRA 3-D reconstruction; right: single-slice transverse view; bottom: zoom on the locations of three MCA radius

estimates.

doi:10.1371/journal.pone.0165536.g001
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does not include GM/ICV or WM/ICV as they are strongly correlated to ICV, neither does it

include weight which is determined by BMI and height. The 11 considered predictors are thus

HCT, ICV, height, BMI, age, head length, diabetes, hypertension, gender, TCD BFV and MCA

diameter. Statistical information about them is presented in Tables 1, 3 and 4. A previous ver-

sion of this study included all 14 predictors; the difference between the two sets of results is

barely detectable.

Random Forests

The above dataset involves noisy measurements, correlated variables and both categorical and

numerical inputs. To handle all three difficulties, we base our approach on Random Forests

(RF) [34, 35] the principle of which we briefly recall. To describe a RF, we must first introduce

regression trees [36, 37] which are essentially piecewise constant approximations based on the

given data.

Fig 2 illustrates the construction of a regression tree for a generic problem with two predic-

tors only. The first step of the algorithm consists in dividing the parameter space into two sub-

domains along either x1 = t1 or x2 = t1; the split-point t1 and the split variable, x1 or x2, are

chosen so that approximation by constants on each side of t1 results in as small an error as pos-

sible. As the best constants are the mean values in each subdomain, the split point is taken so

that each subdomain contains data points as similar as possible to each other. This simple

recursive partitioning process is then repeated until a stopping criterion is satisfied (for

instance, minimum number of data points in each subdomain [35]).

In general, the parameter space is partitioned into K “hyper-rectangular” regions Ok,

k = 1,. . ., K, in a space that has the dimension of the number of predictors. The response func-

tion is approximated by y � TðxÞ ¼
PK

k¼1
ck wkðxÞ where x stands for the predictor variables,

χk is the indicator function of Ok and ck is a simple local model which is usually, as above,

taken as the mean response in the leaf Ok, i.e., ck ¼ 1=jIkj
PjIkj

j¼1
yj, Ik = {j; xj 2 Ok}.

Table 3. Mean values, standard deviations, and number of measurements of the considered numerical

variables which are independent of side (for age, see Table 1).

variable healthy diseased

height (m) 1.67±0.0954 (83) 1.65±0.0934 (49)

BMI (kg/m2) 25.9±4.04 (83) 27.3±5.24 (49)

head length (dm) 1.90±0.106 (82) 1.92±0.171 (48)

ICV (ml) 1547±211 (80) 1634±248(49)

HTC % (dimensionless) 40.6±3.50 (83) 39.5±3.12 (49)

doi:10.1371/journal.pone.0165536.t003

Table 4. Mean values, standard deviations, and number of measurements of the considered numerical

variables which are side dependent.

variable healthy left healthy right

velocity (cm/sec) 40.6 ± 13.5 (63) 38.9 ± 15.9 (65)

diameter (mm) 2.35 ± 0.388 (58) 2.33 ± 0.309 (57)

CBF (ml/min/100g) 40.7 ±9.27 (84) 40.3 ± 8.86 (81)

diseased left diseased right

velocity (cm/sec) 41.9 ± 11.9 (40) 39.2 ± 14.0 (38)

diameter (mm) 2.48 ± 0.261 (25) 2.50 ± 0.258 (25)

CBF (ml/min/100g) 37.8 ± 9.25 (48) 37.0 ± 10.2 (48)

doi:10.1371/journal.pone.0165536.t004
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While regression trees are fast, simple and robust to irrelevant and/or missing variables,

they may suffer from low accuracy and instability as small dataset changes can result in large

tree changes. By considering ensembles of trees, RFs [34, 35] partially alleviate these problems.

In addition, RF based models allow for correlated parameters, nonlinear interactions, mixed

data type (categorical and continuous) and can handle missing data in a natural way (see

below). A RF model consists of an ensemble of trees fTt; t ¼ 1; . . . ; T g, each tree being grown

from a bootstrap sample of the N data points. The process is outlined in Algorithm 1. We take

T ¼ 500, m = 3, nmin = 5 and p = 11 in the results below.

Algorithm 1 Random Forest
functionRF(x,y, T , m, nmin)
Output:tree ensemble fTtg

T
t¼1

for t ¼ 1 : T do
draw a bootstrapsamplewith replacementof size N from the data (x, y)
grow a tree Tt from the bootstrappeddata,i.e.
initiatedomainR so as to containall data
for all terminalnodesR with |R|� nmin do
randomlyselectm variablesamongthe p availablevariables
determinethe best splitamong thesem variables
splitR into two daughternodes

end for
end for

end function
To make a prediction at a new point x, the values of each of the T trees constructed above

are averaged there

FðxÞ ¼
1

T

XT

t¼1

TtðxÞ: ð2Þ

We refer to [35, 38] for additional information about implementation and the treatment of

mixed data.

The data set contains N = 261 observations. Only 134 of these observations are complete.

The imputation of missing values is an important part of data analysis and is the object of cur-

rent research [39]. The flexibility of RF methods is here again an asset. We follow the iterative

imputation scheme from [40] which has been shown to perform well even for mixed data.

More precisely, let ξ be the N × (p + 1) data matrix, i.e.,

ξ ¼ ½xð1Þ; � � � ; xðpþ1Þ
� ¼ ½xi;1; � � � ; xi;p; yi�; i ¼ 1; � � � ;N:

Fig 2. Illustration of a regression tree for a response depending on two predictors x1 and x2. Left: tree

description of the approximation of the data using five constant values ci, i = 1, . . ., 5; middle: geometrical depiction

of the tree; right: graph of the approximating function.

doi:10.1371/journal.pone.0165536.g002
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For the s-th variable ξ(s), s = 1,. . ., p + 1, we denote by iðsÞmis � f1; . . . ;Ng the indices of the miss-

ing values in that column and by iðsÞobs ¼ f1; . . . ;NgniðsÞmis the rest of the indices. The data matrix

ξ is then partitioned in four parts

1. the observed part of ξ(s): z
ðsÞ
obs ¼ xðsÞðiðsÞobsÞ,

2. the missing part of ξ(s): z
ðsÞ
mis ¼ xðsÞðiðsÞmisÞ,

3. the part of ξ, without the s-th column, corresponding to iðsÞobs: Z
ðsÞ
obs ¼ ½x

ðiÞðiðsÞobsÞ�, i = 1,. . .,

s − 1, s + 1,. . ., p + 1,

4. the part of ξ, without the s-th column, corresponding to iðsÞmis: Z
ðsÞ
mis ¼ ½x

ðiÞðiðsÞmisÞ�, i = 1,. . .,

s − 1, s + 1,. . ., p + 1.

The algorithm is initiated by making initial guesses for the missing values of ξ through mean

imputation. Then, for each ξ(s), a RF is learned with predictor Z
ðsÞ
obs and response z

ðsÞ
obs; z

ðsÞ
mis is then

predicted by applying RF to Z
ðsÞ
mis and ξ is updated. The process is repeated till convergence of

the data matrix.

Results

The scatter plot of the pCASL MRI CBF data versus the TCD velocity measurements shows no

correlation, see Fig 3.

A comparison between pCASL MRI CBF data and TCD CBF as computed from Eq (1) (for

the 98 observations for which estimations of M, R and θ are available) shows that the two are

uncorrelated (r = 0.13 and p-value of 0.25). We conclude that the TCD and MRI data are not

linearly correlated.

We investigate the possible existence of more involved dependencies through local regres-

sion in the form of random forest models. Four numerical experiments are conducted corre-

sponding to four different levels of MRI measurement accessibility in the model’s learning set.

In each one, an ensemble of 500 trees is constructed through bootstrap sampling. The sets on

which the RF is “learned” are as follows.

Experiment 1: All but one measurement: leave out one measurement cross-validation. This

possibly includes multiple measurements for the same patient and the same side as the one

being predicted.

Experiment 2: Leave out measurements from the same patient and the same side. This possi-

bly includes measurements for the same patient but excludes data from the same side as the

one being predicted.

Experiment 3: Leave out measurements taken at the same time. This possibly includes mea-

surements taken from the same patient but at different times.

Experiment 4: All but one patient: leave out one patient cross-validation. No MRI measure-

ments from a specific patient are used to predict CBF for that patient.

Fig 4 displays the resulting relationship between predicted and observed CBF.

Discussion

The results from the above four experiments are summarized in Table 5.

In experiments 1 and 2, CBF in one of the MCA territories, left or right, of a specific subject

is predicted using CBF measurements taken from that subject on the opposite side. Both

Transcranial Doppler-Based Surrogates for Cerebral Blood Flow
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experiments have only limited practical interest with the possible exceptions of asymptomatic

cases with poor/no insonation on one side, those who cannot undergo MRI imaging due to

metal implants or cases with transient ischemia or other unexplained unilateral symptoms that

would have otherwise normal imaging studies but would require continuous monitoring. In

both cases, the predictor is however remarkably accurate, indicating low intrapatient variability.

Fig 3. Scatter plot of the pCASL MRI CBF data versus TCD velocity.

doi:10.1371/journal.pone.0165536.g003
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In experiment 3, we only use CBF measurements taken at a different time (i.e., the subject

came to the clinic on multiple occasions). There are 162 such data points as some subjects only

came to the clinic one time. The results indicates that there may be some predictive power in

combining TCD with previous CBF measurements.

Fig 4. pCASL MRI CBF data versus predicted CBF. From left to right and top to bottom, experiments 1 to 4, see text; corresponding relative correlations

are r = 0.91, p-value = 2.2 × 10−16, r = 0.89, p-value = 2.2 × 10−16, r = .88, p-value = 2.2 × 10−16 and r = 0.41, p-value = 4.5 × 10−12.

doi:10.1371/journal.pone.0165536.g004

Transcranial Doppler-Based Surrogates for Cerebral Blood Flow
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If no CBF measurement for a specific patient informs the predictor (experiment 4), the pro-

posed CBF estimator only gives a poor CBF approximation for that patient, as displayed in

Fig 4, bottom right. The discrepancy observed in experiment 4 casts doubt on the usefulness of

TCD measured BFV as a viable surrogate for CBF.

The results of experience 4 do not improve significantly if the model is learned separately

on the sets of healthy and diseased subjects (r = .48 and p = 2.2 × 10−16). It is striking, as men-

tioned above, that adding an approximation of the insonation angle to the list of predictors

(these are available for 98 observations only) does not improve correlation between predicted

and observed CBF. Indeed, the insonation angle can take values from 0 to up to 40 degrees; the

corresponding geometric factor 1/cos(θ), see Eq (1), can thus induce changes larger than 40%

in the velocity readings. The fact that such a potentially important factor does not seem to

make a significant difference points to the possible noisiness of the data.

For TCD, causes of noisiness includes the quadratic dependence of the flow on the diameter

D. We rewrite Eq (1) as CBFTCD ¼ CD2, where C ¼ p

4M
v

2 cos y
. Therefore, a relative measurement

error Δ in the diameter, i.e., D� D(1 + Δ), results in a relative error in surface area (and thus

flow) of 2Δ + Δ2� 2Δ. In other words, a 10% relative error in diameter measurement, as is the

case here and in [11], will potentially contribute over 20% of relative error in flow estimates.

For MRI, the well-documented low signal-to-noise ratio [41] may contribute to noisiness of

the pCASL-MRI measurements. Another potential source of noise is associated to difficulties

in identifying perfusion territories. Indeed, perfusion measurements using pCASL in individ-

ual vascular territories are determined by co-registration of MR images to the standard tem-

plate. There is, however, no accurate way to estimate the actual perfusion territory and

collateral beds for a given patient. Imaging approaches that would specifically label MCA

blood flow were not available in our protocol.

The above experiments display a noticeable bias as, for instance, a simple linear regression

line would not intersect the origin in any of the four cases; this effect increases strongly as the

amount of information used for inference diminishes from Experiment 1 to Experiment 4.

Possible reasons for a systematic bias include the following.

1. Underestimation of CBF through pCASL-MRI: This may result from the arterial transit time

being longer than the post-labelling delay and may be exacerbated by possible collateral

flows [42]. pCASL perfusion measurements also strongly correlate with hematocrit; conse-

quently, CBF may be underestimated in subjects with lower hematocrit (common in older

people) [43].

2. Incorrect characterization of the flow profile: The predicted CBF relies on Eq (1) which

results from the assumption of a Poiseuille flow, i.e., a flow where the longitudinal velocity

V depends on the distance r to the centerline through VðrÞ ¼ v 1 � r2
R2

� �
, v being the

Table 5. Correlations between predicted and measured CBF for the above four experiments. Due to

cross-validation and the number of the various measurements available, see Table 2, the number of data

points used to learn the models vary.

Experiment Learning Data r p

1 260 .91 2.2 × 10−16

2 257-260 .89 2.2 × 10−16

3 259-260 .88 2.2 × 10−16

4 253-259 .41 4.5 × 10−12

doi:10.1371/journal.pone.0165536.t005
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centerline velocity measured by TCD. This parabolic profile is an idealization; the actual

longitudinal velocity V may be a non-monotonic time-dependent function of r and/or may

not have a cylindrical symmetry [44].

3. One or more key predictors may be absent from the considered dataset.

The remarkable difference in accuracy between experiments 1-2 and 4 indicates that left

and right MCA CBF are generally correlated for any given patient. Further analysis is needed

to determine the predictive power of using CBF measurements from earlier visits to the clinic

as in experiment 3; such a study would require additional data.

More generally, our experiments address the possibility of CBF prediction for a specific

subject through data analytics by

• collecting easily available information about that subject–the above predictors,

• leveraging information, predictors and response, available for a group of “like-subjects”

identified here through RF.

While such an approach would be an asset in the clinical setting in terms of both cost and

convenience, the present results do not support its feasibility, at least for the set of predictors

and response considered here.
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