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Abstract Direct lineage conversion of adult cells is a promising approach for regenerative 
medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The 
pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin+ β-cells, 
glucagon+ α-cells, and somatostatin+ δ-cells. We previously reported that a combination of three 
transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. 
We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa 
respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. 
Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes 
δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and 
Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose 
combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo.
DOI: 10.7554/eLife.01846.001

Introduction
Cellular reprogramming is a rapidly expanding area of regenerative medicine. With suitable repro-
gramming factors, adult cells can be instructively converted to induced pluripotent stem cells (pluripo-
tent reprogramming) or other types of adult cells (lineage reprogramming) (Gurdon and Melton, 
2008; Graf and Enver, 2009). Induced pluripotent stem cells (iPS) can be differentiated into many cell 
types in the body. However, the generation of iPS cells and their subsequent differentiation is a lengthy 
and technically demanding process. Lineage conversion between adult cell types offers a promising 
alternative, directly producing defined cell types in vitro or even in vivo that may be used for disease 
modeling and cellular therapies (Zhou and Melton, 2008; Vierbuchen and Wernig, 2011). Recent 
examples of lineage reprogramming include the conversion of pre-B cells to macrophages, pancreatic 
acinar, α-cells, and gut cells to insulin-secreting β-cells, cardiac fibroblasts to cardiomyocyte-like cells, 
amniotic cells to endothelial cells, and skin fibroblasts to neurons, oligodendrocytes, neural precur-
sors, or blood progenitors (Xie et al., 2004; Zhou et al., 2008; Ieda et al., 2010; Szabo et al., 2010; 
Thorel et al., 2010; Vierbuchen et al., 2010; Caiazzo et al., 2011; Yang et al., 2011; Ginsberg 
et al., 2012; Han et al., 2012; Song et al., 2012; Talchai et al., 2012; Thier et al., 2012; Najm et al., 
2013; Yang et al., 2013).

Despite increasing success of lineage conversion, a major challenge of this approach is to direct the 
formation of specific cell types: there is a great diversity of cell types in the adult body, and many of 
them are further differentiated into closely related subtypes. The most extensive subtype diversifica-
tion can be found in the mammalian central nervous system, where hundreds of neuronal subtypes 
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exist. A few mammalian neuronal subtypes, including dopaminergic-like and motoneuron-like cells, 
have been produced from fibroblast conversion (Caiazzo et al., 2011; Son et al., 2011); methods to 
generate many others remain to be defined. To study subtype specification in lineage reprogramming, 
it is necessary to first establish models, where a defined set of factors promote formation of distinct 
subtypes. A recent study in Caenorhabditis elegans provided such an example, where removal of a 
chromatin factor confers neurogenic competence to germ cells, which can be subsequently converted 
to different neuronal subtypes by neuron selector genes (Tursun et al., 2011).

To establish models of mammalian subtype specification in lineage reprogramming, we focused our 
studies in a relatively simple system, the adult pancreas, where the endocrine islets are surrounded by 
acinar cells, a type of exocrine cells that secret digestive enzymes. The islets contain three major endo-
crine subtypes: insulin+ β-cells, glucagon+ α-cells, and somatostatin+ δ-cells. β-cells secret insulin and 
play a key role in blood glucose regulation, whereas α- and δ-cells secrete glucagon and somatostatin 
to support β-cell function (Edlund, 2001; Jensen, 2004).

We reported previously that pancreatic acinar cells can be directly converted to insulin+ β-cells in 
adult mouse pancreas by combined actions of three transcription factors, Ngn3, Pdx1, and Mafa 
(referred to as M3 factors) (Zhou et al., 2008). We now report that acinar cells can also be converted 
to the other endocrine subtypes, namely, somatostatin+ δ-like cells and glucagon+ α-like cells, by Ngn3 
and Ngn3+Mafa respectively. A defined set of factors can therefore reprogram acinar cells to the three 
major islet endocrine subtypes. Further studies indicate that Ngn3, but not Mafa and Pdx1, promotes 
establishment of a generic endocrine state in acinar cells at the onset of reprogramming by suppress-
ing acinar fate-regulators and activating pan-endocrine genes. Ngn3 also promotes δ-subtype specifi-
cation in the absence of other factors. Mafa and Ngn3 in turn suppress δ-specification in α- and β-cell 
formation, thus ensuring creation of singular endocrine subtypes. Our studies establish a series of 
models where combinatorial functions of defined factors convert pancreatic acinar cells to three dis-
tinct endocrine subtypes in vivo. These models provide a powerful system to gain mechanistic under-
standing of the lineage reprogramming process.

Results
Reprogramming acinar to δ-, α-, and β-like endocrine cells
We have previously reported that pancreatic acinar cells can be converted to insulin+ β-like cells by the 
combined activity of three reprogramming factors: Ngn3, Mafa, and Pdx1, referred to as M3 factors 
(Zhou et al., 2008). Employing the same experimental system of adenoviral expression in adult mouse 

eLife digest In mammals, the pancreas is responsible for controlling blood sugar by secreting 
insulin from specialized β-cells. Other cells in the pancreas, called δ-cells and α-cells, secrete other 
hormones to assist the β-cells. Diabetes is caused when this system breaks down: either the body 
attacks its own β-cells (type I diabetes), or the body stops responding properly to insulin (type II).

Type I diabetes is usually treated with insulin injections, but there is increasing interest in the 
possibility of replacing the defective β-cells instead. Building on previous work in which a fourth 
type of pancreatic cell, called an acinar cell, was reprogrammed to become a β-cell, Li et al. have 
now shown that the same technique can be used to produce α- and δ-cells as well. Just as the 
reprogrammed β-cells secreted insulin, like real β-cells, the reprogrammed α- and δ-cells also 
behaved like real α- and δ-cells.

The reprogramming technique relies on using a combination of three transcription factors—
which are called Ngn3, Pdx1 and Mafa—to treat the acinar cells from mice. Previously, it was shown 
that using a combination of all three transcription factors reprogrammed the acinar cells to become 
β-cells. Now, Li et al. show that the Ngn3 transcription factor on its own appears to suppress certain 
genes that are usually expressed in acinar cells, and goes on to cause the acinar cells to become 
δ-cells. However, a combination of Ngn3 and Mafa produces a mixture of α- and δ-cells. The next 
challenge is to adapt this reprogramming technique to generate different types of hormone 
secreting cells from human tissue sources in order to explore its therapeutic potential.
DOI: 10.7554/eLife.01846.002
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pancreas, which specifically targets acinar cells (Figure 1A, Figure 1—figure supplement 1), we 
examined the role of individual M3 factors in endocrine reprogramming. Surprisingly, Ngn3 alone 
induced formation of somatostatin+ (Sst) cells in approximately 40% of infected cells (Figure 1B–D), 
whereas Mafa or Pdx1 alone did not induce any hormone positive cells (Figure 1—figure supplement 2). 
In addition, co-infection of Ngn3- and Mafa-induced formation of both glucagon+ (Gcg) and somato-
statin+ cells, which are distinct from each other (Figures 1E,F). The other two-factor combinations, 
Ngn3 with Pdx1 and Pdx1 with Mafa, did not yield hormone positive cells (Figure 1—figure supple-
ment 2). Somatostatin and glucagon are the principle hormones of endocrine δ- and α-cells. These 
data suggest that different combinations of three reprogramming factors could convert pancreatic 
acinar cells in vivo to the three major islet endocrine cell types: δ-, α- and β-cells. The expression of 
reprogramming factors in δ- and α-cell induction is transient (Figure 1—figure supplement 3), similar 
to β-cell induction using the same experimental approach (Zhou et al., 2008). To confirm the identity 
of the induced Sst+ and Gcg+ cells, we examined whether the induced cells have key features of 
endogenous δ- and α-cells.

Ngn3 converts acinar to δ-like cells
Among the major islet endocrine cell types, relatively little is known about δ-cell biology and genes 
important for δ-cell development and function. Among the few δ-cell-specific genes identified are 
somatostatin and cholecystokinin receptor B (Cckbr) (Morisset et al., 2000). Our analysis revealed 
that the majority of induced δ-like cells co-express Sst and Cckbr 30 days after induction (87 ±7% by 
immunohistochemistry, Figure 2A). The Sst+ cells also express the endocrine factors Pax6 and synap-
tophysin (Figure 2B,C). The Sst+ induced δ-cells were present in adult pancreas 2 months after induc-
tion (Figure 2—figure supplement 1).

A major method to recognize and distinguish the different islet endocrine subtypes is by ultrastruc-
tural analysis. In particular, the secretory granules of each islet subtype have characteristic morphology 
(Larsson et al., 1976; Leiter et al., 1979). Electron microscopy analysis revealed that the secretory 
granules of induced δ-cells are spherical or ellipsoidal with matrix filling the entire granule space 
(Figure 2E,E′). This morphology is typical of endogenous δ-cells (Figure 2D,D′) and distinct from that 
of α-or β-granules (Figure 2—figure supplement 2). In addition, we observed that the induced δ-cells 
were embedded among acinar cells (Figure 2E, arrow points to dense assembly of endoplasmic retic-
ulum in a neighboring acinar cell), consistent with their origins from acinar cells. In contrast, endoge-
nous δ-cells reside exclusively within islets (Figure 2D).

To further characterize the induced δ-cells, we generated gene expression data from FACS purified 
induced δ-cells (day 10 after infection) using mCherry, a fluorescent marker coexpressed with Ngn3 
(Figure 1A). Cherry+ cells contain approximately 40% induced δ-cells. Gene profiling with illumina 
arrays yielded 1283 genes enriched in the induced δ-cells (30 days after induction) relative to acinar 
cells (GEO: GSE52522). Because there is currently no method available that allows purification of 
endogenous δ-cells, we compared their expression profile with that of whole islets, which are com-
prised largely of β-cells. 632 of the induced genes (49%) overlapped with the islet-enriched gene set 
that we previously reported (Figure 2F) (Zhou et al., 2008) (GEO: GSE12025). Given that δ-cells rep-
resent a minor fraction of total mouse islet cells (5.5% as determined by FACS, see Figure 2—figure 
supplement 4), the non-overlapping genes (651) may contain δ-cell-enriched factors that are under-
represented in the whole-islet samples. Indeed, among the top 30 most highly induced genes in the 
δ-like cells, many show low expression in whole islet samples (Figure 2G). We detected up-regulation 
of Hhex (Figure 2G), a gene recently implicated in δ-cell biology (72nd ADA abstract, Klaus Kaestner 
lab). In contrast, glucagon, insulin, and the β-cell marker Nkx6.1 are abundantly expressed in islets but 
absent from induced δ-cells (Figure 2G).

We analyzed the DNA methylation status of several gene promoters to assess epigenetic changes 
in the conversion of acinar to δ-like cells. These genes included Somatostatin (δ-cells), Amylase2 
(acinar cells), and Insulin2 (β-cells). Studies have shown that insulin2 gene expression is regulated by 
DNA sequences located within approximately 400 bp upstream of the transcription start site (TSS) 
(Hay and Docherty, 2006). Similarly, approximately 200 bp of the Amylase 2 promoter is sufficient to 
direct acinar-specific expression (Minami et al., 2005). We therefore assayed CpGs located in these 
critical promoter regions (Figure 2—figure supplement 3). There are very limited studies on the 
Somatostatin promoter so we assayed seven CpGs that fall within a highly conversed promoter region 
(Figure 2—figure supplement 5). We adapted an intracellular FACS protocol to purify endogenous 
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Figure 1. Induction of somatostatin+, glucagon+, and insulin+ cells with defined factors in adult mouse pancreas in 
vivo. (A) Schematic diagram of experimental strategy. Adenoviruses co-expressing reprogramming factor (R.F.) and 
mCherry (cherry) were used to directly induce conversion of acinar cells in adult pancreas. 2A peptide that 
mediates polycistronic expression. Phenotypes were analyzed 10 days after induction. (B–D) Expression of Ngn3 
alone induced 40 ± 3% of the infected mCherry+ cells to become somatostatin+ (Sst). (E–G) Co-infection of two 
separate viruses carrying Ngn3 and Mafa resulted in the formation of both glucagon+ (Gcg) and somatostatin+ cells 
in 11 ± 6% and 9 ± 5% of infected cells, respectively. (H–I) Co-expression of Ngn3, Mafa, Pdx1, and mCherry 
from a single polycistronic construct led to exclusive formation of insulin+ cells in 47 ± 8% of the mCherry+ cells. 
(K) Summary of pancreatic acinar cell conversion to endocrine subtypes with different combinations of factors. A, 
acinar cells. Quantifications are shown in mean ± s.d. At least 1000 cherry+ cells counted from three different 
animals. Scale bar: 50 µm.
DOI: 10.7554/eLife.01846.003
Figure 1. Continued on next page
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and induced δ-cells after staining with somatostatin (Figure 2—figure supplement 4) (Pechhold 
et al., 2009). We note that this protocol allows isolation of genomic DNA but not intact mRNA from 
the pancreatic tissues. We have not been successful at generating gene-profiling data from the induced 
δ-cells using the intracellular FACS method.

None of the CpG sites assayed in the somatostatin promoters was methylated in all samples tested 
(Figure 2—figure supplement 5), indicating that this promoter is not subject to regulation by DNA 
methylation. Amylase2, a gene exclusively expressed in pancreatic acinar cells, was largely unmethylated 
in acinar cells (Figure 2H). In contrast, the induced δ-cells showed strong methylation in this promoter 
similar to islet δ-cells (Figure 2H and Figure 2—figure supplement 6). The Insulin2 promoter was fully 
methylated in acinar cells but partially demethylated in both endogenous and induced δ-cells (Figure 2H). 
For both amylase and Insulin promoters, the methylation differences of acinar/islet δ-cell and acinar/
induced δ-cell are statistically highly significant (p<0.001) whereas there is no significant difference 
between islet δ-cells and induced δ-cells (p=0.23 and 0.30 for amylase and insulin promoter respec-
tively). These studies suggest that substantial DNA methylation changes occurred during acinar to 
δ-cell conversion in the promoters we studied. It is notable that not all cell fate conversion events are 
associated with DNA methylation changes. For example, no significant DNA methylation was observed 
in the conversion of pre-B cells to macrophages (Rodriguez-Ubreva et al., 2012).

We evaluated the ability of induced δ-cells to secret hormones in an in vitro secretion assay. The 
acinar fraction that contains induced δ-cells was isolated 30 days after induction and stimulated with 
the secretagogue Arginine. The induced δ-cells responded to Arginine and released somatostatin, in 
a manner similar to isolated islets which contain endogenous δ-cells (Figure 2I). In contrast, control 
acinar cells did not respond to Arginine stimulation (Figure 2I), consistent with the fact that they do 
not express endocrine hormones. These data suggest that induced δ-cells possess cellular machineries 
necessary for hormone production, storage, and release.

The data described above collectively indicate that δ-like cells induced by Ngn3 expression in adult 
pancreas possess key features of endogenous δ-cells.

Ngn3 and Mafa converts acinar to α-like cells
Co-infection of adult mouse pancreas with two different adenoviruses carrying Ngn3- and Mafa-
induced formation of glucagon+ cells (Figure 3A). This co-infection also induced somatostatin+ cells, 
which are distinct from the glucagon+ cells (Figure 3A′). We tested different ratios of Ngn3/Mafa 
viruses and observed that a 1:1 ratio yielded the most number of Gcg+ cells (Figures 1F and 9 ± 5% 
at 1:1 ratio, and data not shown). Due to the random nature of co-infection, cells that received pre-
dominately Ngn3 infection likely become the Sst+ cells. In contrast to co-infection by two separate 
viruses, polycistronic co-expression of Ngn3 and Mafa from a single construct yielded substantially 
reduced number of glucagon+ cells (less than 1%, data not shown). We therefore used co-infection to 
induce glucagon+ cells in all subsequent experiments.

The most important gene that controls endogenous α-cell development and identity is the tran-
scription factor Arx. Genetic deletion of Arx during embryonic development results in the absence of 
α-cells, whereas ectopic expression of Arx in β-cells causes their phenotypic drift towards α-cells 
(Collombat et al., 2003; Dhawan et al., 2011). We observed strong Arx expression in all induced 
Gcg+ cells, although some Gcg− cells also expressed Arx (Figures 3B,B′). In addition, all Gcg+ cells 
expressed the endocrine genes Pax6 (Figure 3C,C′) and synaptophysin (Figure 3D,D′). Due to 
the intermingling of induced Gcg+ cells and Sst+ cells, we were unable to purify these cells for 
detailed transcriptome analysis. The induced α-cells are readily observable 2 month after induction 

The following figure supplements are available for figure 1:

Figure supplement 1. Adenoviral constructs used in the experiments and polycistronic factor expression. 
DOI: 10.7554/eLife.01846.004

Figure supplement 2. Mafa alone, Pdx1 alone, and combinations of Pdx1.Mafa and Ngn3.Pdx1 do not induce 
endocrine cells in pancreas. 
DOI: 10.7554/eLife.01846.005

Figure supplement 3. Transgene expression mediated by adenoviral infection in adult pancreas is transient. 
DOI: 10.7554/eLife.01846.006

Figure 1. Continued
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Figure 2. δ-like cell induction by Ngn3. (A–C) Induced δ-cells co-express somatostatin (SST) and cholecystokinin receptor B (Cckbr) (A and A′). They also 
co-express the endocrine markers Pax6 (B and B′) and Synaptophysin (Syn, C and C′). Scale bar: 50 µm. (D and E) Ultrastructure of endogenous and 
induced δ-cells in electron micrographs. D′ and E′ are magnified view of the boxed areas in D and E, showing the characteristic morphology of δ-cell 
granules. White arrow indicates a neighboring acinar cell with dense ER (endoplasmic reticulum) assembly. Induced δ-cells were found intermingled 
among acinar cells. In comparison, endogenous δ-cells reside exclusively in islets. (F and G) Transcriptional profiling identified 1283 genes enriched in 
induced δ-cells 30 days after induction. 632 of the induced genes are present in a whole-islet gene signature (F). Many of the top 30 induced δ-cell 
genes show medium to low expression in whole islet samples, which contain mostly β-cells. β- and α-specific genes, including Ins1 (insulin1), Ins2 (insulin2), 
NKX6.1, and Gcg (glucagon), are absent from the induced δ-cell samples. (H) DNA methylation analysis of the proximal promoters of Amylase 2a and 
Insulin2 genes in acinar cells, islet δ-cells, and induced δ-cells (20 days after induction). Methylation status of the induced and endogenous δ-cells is 
similar, indicating appropriate methylation changes during acinar to δ-cell conversion. (I) Induced δ-cells released somatostatin in response to the 
secretagogue Arginine (20 mM) in an in vitro assay. Acinar cells and islets were used as controls. Data were normalized as fold increase over baseline  
(no Arginine). Quantifications are shown in mean ± SD, n = 3 animals.
DOI: 10.7554/eLife.01846.007
The following figure supplements are available for figure 2:

Figure supplement 1. Induced δ-cells persist in adult pancreas. 
DOI: 10.7554/eLife.01846.008

Figure supplement 2. Ultrastructure comparison of induced and endogenous endocrine subtypes. 
DOI: 10.7554/eLife.01846.009
Figure 2. Continued on next page
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(Figure 3—figure supplement 1). Electron microscopy analysis of the induced α-cells indicates that 
they share a similar ultrastructure as the endogenous α-cells (Figure 3E,F). The secretory granules 
have a narrow halo between the core and membrane (Figure 3E′,F′) that is typical of α-granules and 
distinct from δ- and β-granules (Figure 2—figure supplement 2). The induced α-like cells were inter-
mingled among acinar cells (Figure 3F, arrow points to zymogene granules of a neighboring acinar 
cells), whereas endogenous α-cells were found exclusively within islets (Figure 3E). In an in vitro hor-
mone secretion assay, the acinar fraction that contains induced α-cells isolated from the adult pancreas 
30 days after induction responded to the secretagogue Arginine and released glucagon (Figure 3H), 
indicating their ability to produce and secrete hormone.

We used intracellular FACS to isolate endogenous and induced α-cells (Figure 2—figure 
supplement 4 and Figure 3—figure supplement 2). DNA methylation analysis at the Glucagon, 
Amylase2a, and Insulin2 promoters showed a general similarity of induced α-cells with endogenous 
α-cells (Figure 3G, Figure 3—figure supplement 3). Statistical analysis showed no significant differ-
ence between endogenous and induced cells at glucagon and insulin promoters (p=0.26, 0.50, 
respectively). However, a difference was detected at the amylase promoter (p=0.02). Amylase protein 
expression was absent in the majority of Gcg+ cells (over 95%). However, a small fraction (<5% of all 
Gcg+ cells) were Amylase+ (Figure 3—figure supplement 4), indicating incomplete reprogramming in 
a small subset of glucagon+ cells.

Taken together, these results indicate that induced α-cells possess key features of endogenous 
α-cells.

Induced δ- and α-cells are converted from adult acinar cells in the 
absence of cell proliferation
We previously reported that the acinar cell is the cell-of-origin for most of the induced β-cells in M3 
factor-mediated reprogramming of adult pancreas (Zhou et al., 2008). This is in part due to preferen-
tial infection of adenovirus for acinar cells but not the other pancreatic cell types (Zhou et al., 2008). 
To test whether the induced δ-and α-cells also derive from acinar cells, we used a genetic lineage 
tracing strategy similar to the previous study. A Ptf1aCreER mouse line, which drives CreER expression 
exclusively in acinar cells of the adult pancreas, was crossed with a Rosa-floxed-Stop-YFP (RosaYFP) 
reporter line to create bigenic Ptf1aCreER::RosaYFP animals. Tamoxifen induction resulted in the 
labeling of 20–30% of mature acinar cells (Figure 4A′,B′), consistent with published report of this 
line (Pan et al., 2013). After adenoviral delivery of Ngn3 or Ngn3+Mafa, which targets acinar 
cells, we confirmed that acinar cells can give rise to both δ-like and α-like cells (Figure 4A,B). The 
induced endocrine cells are also smaller than acinar cells (Figure 4A,B, arrows), consistent with pre-
vious report (Zhou et al., 2008).

Continuous BrdU labeling showed that the conversion of acinar cells to induced δ- and α-cells 
occurred largely in the absence of cell proliferation (Figure 4C,D). Only about 1% of the induced 
δ- and α-cells incorporated BrdU in a 10-day reprogramming period (Figure 4E).

These studies confirmed that induced δ- and α-cells derive from adult acinar cells and that the 
acinar conversion occurred largely in the absence of cell proliferation.

Ngn3 promotes an endocrine state in acinar cells by suppressing acinar 
fate regulators and activating pan-endocrine genes
In principle, the conversion of one cell fate to another involves two major components: suppression of 
the original cell fate and activation of a new one within the same cell. We examined the ability of the 

Figure supplement 3. Genomic maps of CpG sites in the promoter region of mouse insulin2 (ins2) and amylase2a2 (Amy2a2) genes. 
DOI: 10.7554/eLife.01846.010

Figure supplement 4. Purification of endogenous δ- and α-cells, and induced δ-cells by intracellular FACS for DNA methylation studies. 
DOI: 10.7554/eLife.01846.011

Figure supplement 5. Somatostatin promoter DNA methylation analysis. 
DOI: 10.7554/eLife.01846.012

Figure supplement 6. COBRA analysis of Amylase promoter. 
DOI: 10.7554/eLife.01846.013

Figure 2. Continued
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three reprogramming factors to suppress acinar fate-regulators and activate pan-endocrine genes, 
two key events necessary for establishing an endocrine fate in acinar cells.

Ptf1a, Nr5a2, and Mist1 are key acinar cell-fate regulators. They are expressed in adult acinar; 
their genetic deletion results in abnormalities of acinar development and function (Pin et al., 2001; 
Kawaguchi et al., 2002; Lin et al., 2004; Beres et al., 2006; Holmstrom et al., 2011). We observed 
that Ngn3 and Mafa, but not Pdx1, strongly suppressed Ptf1a, Mist1, and Nr5a2 expression 4 days 
after gene delivery in pancreas (Figure 5A,B,E,F,I,J,M).

Figure 3. α-like cell induction by Ngn3 and Mafa. (A) Co-infection of two separate viruses carrying Ngn3 and Mafa led to the induction of Glucagon 
(Gcg+) cells. Somatostatin (Sst+) cells were also induced as a separate population (A′). (B–D) Induced Gcg+ cells express α-cell fate regulator Arx (B and B′) 
and endocrine factors Pax6 (C and C′) and synaptophysin (Syn, D and D′). Arrows indicate double positive cells. Scale bar: 50 µm. Syn is expressed in 
both Gcg+ and Sst+ cells. (E and F) Electron micrographs of endogenous and induced α-cells. E′ and F′ are magnified view of the boxed areas in E and F, 
showing the characteristic morphology of α-cell granules. Arrows indicate zymogen granules of a neighboring acinar cell. Endogenous α-cells reside 
within islets, whereas induced α-cells reside among acinar cells. (G) DNA methylation analysis of the proximal promoters of Glucagon, Amylase 2a, and 
Insulin2 genes in acinar cells, islet α-cells, and induced α-cells (20 days after induction). Methylation status of the induced and endogenous α-cells is 
similar, indicating appropriate methylation changes during acinar to α-cell conversion. (H) Induced α-cells responded to stimulation by the secretagogue 
Arginine (20 mM) and released glucagon. Acinar and islets were used as controls. Data were normalized as fold increase over baseline (no Arginine). 
Quantifications are shown in mean ± s.d., n = 3 animals.
DOI: 10.7554/eLife.01846.014
The following figure supplements are available for figure 3:

Figure supplement 1. Induced α-cells persist in adult pancreas. 
DOI: 10.7554/eLife.01846.015

Figure supplement 2. Purification of induced α-cells by intracellular FACS for DNA methylation studies. 
DOI: 10.7554/eLife.01846.016

Figure supplement 3. Genomic map of CpG sites in the promoter region of mouse glucagon gene. 
DOI: 10.7554/eLife.01846.017

Figure supplement 4. A small number of Gcg+ cells are partially reprogrammed. 
DOI: 10.7554/eLife.01846.018

http://dx.doi.org/10.7554/eLife.01846
http://dx.doi.org/10.7554/eLife.01846.014
http://dx.doi.org/10.7554/eLife.01846.015
http://dx.doi.org/10.7554/eLife.01846.016
http://dx.doi.org/10.7554/eLife.01846.017
http://dx.doi.org/10.7554/eLife.01846.018
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Figure 4. Induced δ- and α-like cells are converted from acinar cells in the absence of cell proliferation. (A–B) 
Genetic lineage tracing of induced δ- and α-like cells. Tamoxifen induction of bigenic Ptf1aCreER::RosaYFP animals 
led to specific and indelible labeling of approximately 20% of adult pancreatic acinar cells. Delivery of Ngn3+Mafa 
or Ngn3 by adenovirus in the pancreas resulted in formation of Gcg+YFP+Cherry+ (A–A′′, arrows) and Sst+YFP+Cherry+ 
(B–B′′, arrows) cells, indicating that the induced cells derive from adult acinar cells. Note that both endogenous and 
induced endocrine cells are smaller than acinar cells. (C–E) Continued BrdU labeling during the first 10 days of 
δ- and α-induction showed that few induced cells incorporated BrdU, indicating a lack of proliferation during 
this period. Arrows indicate BrdU+ cells. A total of 1000 Sst+ or Gcg+ cells were quantified from three animals. 
i-δ: induced δ-cells. i-α: induced α-cells.
DOI: 10.7554/eLife.01846.019

Pax6 and Islet1 are endocrine genes expressed in all islet endocrine cells. Genetic studies have 
established their important role in the development of all islet endocrine subtypes (Ahlgren et al., 
1997; Sander et al., 1997; Ashery-Padan et al., 2004). Ngn3, but not Mafa or Pdx1, activated the 
expression of these pan-endocrine genes at day 4 after pancreas infection (Figure 5C,D,G,H,K,L,M).

The data discussed above together indicate that among the three reprogramming factors, Ngn3 
alone possesses the ability to initiate two key events in endocrine reprogramming, namely, acinar sup-
pression and pan-endocrine activation, thereby establishing a generic endocrine state in acinar cells.

Acinar factors are molecular barriers of endocrine reprogramming
Given the important role played by key acinar factors in maintaining acinar cell fate, we hypothesized 
that these factors could act as molecular barriers in endocrine conversion. We tested this hypothesis 

http://dx.doi.org/10.7554/eLife.01846
http://dx.doi.org/10.7554/eLife.01846.019
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Figure 5. Ngn3 can simultaneously suppress acinar fate-regulators and activate pan-endocrine genes to establish 
an endocrine state. Immunohistochemistry showed that 4 days after expression of the three reprogramming factors 
individually in the pancreas, Ngn3 and Mafa, but not Pdx1, strongly suppressed the expression of the acinar 
fate-regulators Mist1, Ptf1a, and Nr5a2 (A, B, E, F, I, J, M). Ngn3 also activated expression of the pan-endocrine 
genes Pax6 and Islet1 (C, D, M), whereas Mafa and Pdx1 did not (G, H, K, L, M). Ngn3 alone can therefore establish 
an endocrine state in acinar cells by simultaneous suppression of acinar factors and activation of pan-endocrine 
genes. Infection with Cherry was used as control (M). Quantifications are shown as mean ± s.d. At least 1000 cherry+ 
cells counted from three different animals.
DOI: 10.7554/eLife.01846.020

by co-infecting pancreas with two viruses carrying Nr5a2 and Ngn3. 10 days after the infection, 
analyses revealed that persistent expression of Nr5a2 strongly blocked induction of Pax6 and Sst 
(Figure 6B,E,G), compared with Ngn3 alone controls (Figure 6A,D,G). Another acinar factor Ptf1a 
similarly suppressed Pax6 and Sst induction (Figure 6C,F,G). These results demonstrate that key 
acinar factors are potent molecular barriers; their down-regulation is a prerequisite for endocrine 
reprogramming.

http://dx.doi.org/10.7554/eLife.01846
http://dx.doi.org/10.7554/eLife.01846.020
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Figure 6. Acinar factors are molecular barriers of endocrine reprogramming. Compared with the robust induction 
of Pax6 and Sst by Ngn3 alone (A, D, G), co-expression of Nr5a2 and Ngn3 (by co-infection of two separate viruses) 
strongly inhibited the activation of both endocrine genes (B, E, G). A similar suppression was observed when Ngn3 
was co-expressed with Ptf1a (C, F, G). Samples were analyzed 10 days after infection. Quantifications are shown as 
mean ± s.d. At least 1000 cherry+ cells counted from three different animals.
DOI: 10.7554/eLife.01846.021

Establishment of endocrine state precedes activation of endocrine 
subtype-specific genes in acinar conversion
To further understand the temporal sequence of acinar to endocrine subtype conversion, we exam-
ined three key events: acinar suppression, pan-endocrine activation, and subtype-specific gene activa-
tion. In Ngn3-induced acinar to δ-cell conversion, we observed strong suppression of the acinar factor 
Mist1 at day 2 after Ngn3 delivery (Figure 7A). The pan-endocrine gene Pax6 was also robustly acti-
vated at day 2 (Figure 7B). In contrast, expression of δ-specific genes somatostatin and CCKbr was not 
detected until day 4 (Figure 7G,H) and became strongly expressed at day 10 (Figure 7K,L). A similar 
temporal sequence of acinar suppression (Mist1) and pan-endocrine activation (Pax6) followed by 
β-specific gene activation (Nkx6.1 and insulin) was also observed in acinar to β-cell conversion (Figure 8). 
These data collectively suggest that a generic endocrine state was established in acinar cells at the 
onset of reprogramming, temporally preceding endocrine subtype specification.

Pdx1 and Mafa can suppress δ-subtype specification
The studies discussed above indicate that Ngn3 has two main functions in acinar to endocrine conversion: 
establishment of an endocrine state, and δ-subtype specification in the absence of other factors. Ngn3 
is also part of the reprogramming factor combination in the induction of α-cells (Ngn3+Mafa) and 
β-cells (Ngn3+Mafa + Pdx1), which raises the question of how a singular α- or β-cell fate is established. 
We tested the possibility that δ-specification may be suppressed by Pdx1 and/or Mafa. Polycistronic 
co-expression of Mafa with Ngn3 reduced the efficiency of somatostatin induction from 40 ± 3% in 
control Ngn3 animals (Figure 9A) to 24 ± 7% in Ngn3.Mafa animals (Figure 9B,D). Further increasing 
the amount of Mafa in the mixture led to a stronger suppression of δ-cell induction (data not shown). 
Polycistronic co-expression of Pdx1 with Ngn3 led to near complete suppression of somatostatin+ cells 
(2 ± 1%, Figure 9C,D). Immunostaining with pan-endocrine factor synaptophysin revealed that 
Cherry+somatostatin− cells were synaptophysin+ (Figure 9C, inset), suggesting that Ngn3 converted 
acinar cells to an endocrine state, but that δ-subtype specification was blocked. These data indicate 
that Pdx1 and Mafa can suppress δ-subtype specification, which is likely part of the mechanism to 
ensure formation of distinct α- and β-subtypes upon coexpression of multiple reprogramming factors.

Discussion
Our studies indicate that pancreatic acinar cells can be directly converted to endocrine δ- and α-like 
cells by in vivo expression of Ngn3 or Ngn3+Mafa respectively. Together with our previous report of 
β-cell reprogramming with Ngn3+Mafa+Pdx1, these studies provide a set of reprogramming models 

http://dx.doi.org/10.7554/eLife.01846
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Figure 7. Acinar suppression and pan-endocrine activation precedes subtype-specific gene activation in acinar to δ-cell conversion. In acinar to δ-cell 
conversion induced by Ngn3, strong suppression of the acinar factor Mist1 was observed in the Cherry+-infected cells at day 2 (A). The pan-endocrine 
factor Pax6 was also induced at day 2 (B). The Mist1-Pax6+ state was maintained in the majority of Cherry+ cells at later time points (E, F, I, J). In contrast, 
δ-subtype specific factors Sst and CCkbr were not induced until day 4 (G, H) and became robustly expressed at day 10 (K, L). In control samples 
expressing cherry alone, the majority of cherry+ acinar cells had Mist1 expression (M), and none had induced endocrine gene expression (N, O, P). 
Quantifications are shown as mean ± s.d (Q). At least 1000 cherry+ cells counted from three different animals.
DOI: 10.7554/eLife.01846.022

http://dx.doi.org/10.7554/eLife.01846
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Figure 8. Acinar suppression and pan-endocrine activation precedes subtype-specific gene activation in acinar to 
β-cell conversion. In acinar to β-cell conversion induced by M3 (Ngn3+Mafa+Pdx1), near complete suppression of 
the acinar factor Mist1 was observed in the Cherry+-infected cells at day 2 (A). The pan-endocrine factor Pax6 
was also robustly induced at day 2 (B). The Mist1−Pax6+ state was maintained in the majority of Cherry+ cells at 
later time points (E, F, I, J). In contrast, β-subtype specific factors insulin and Nkx6.1 were not induced until 
day 5 (G, H) and became more robustly expressed at day 10 (K, L). In control samples expressing cherry alone, 
the majority of cherry+ acinar cells had Mist1 expression (M), and none had induced endocrine gene expres-
sion (N, O, P). Quantifications are shown as mean ± s.d (Q). At least 1000 cherry+ cells counted from three 
different animals.
DOI: 10.7554/eLife.01846.023

where combinatorial actions of three factors lead to conversion of acinar cells to the three major islet 
endocrine subtypes in vivo (Figure 10A).

Our studies indicate that acinar to endocrine reprogramming includes two main processes: estab-
lishment of a generic endocrine state and endocrine subtype specification (Figure 10B). Ngn3 plays a 
central role in promoting the endocrine state at the onset of reprogramming by suppressing acinar 
fate regulators and activating pan-endocrine genes (Figure 10B, upper panel). This early step is critical 
as continued expression of key acinar factors will block endocrine conversion.

Compared with Ngn3, Mafa suppresses acinar regulators but does not activate pan-endocrine 
genes, whereas Pdx1 lacks the ability to initiate either of these two events. It is likely that the main 
function of Mafa and Pdx1 is to collaborate with Ngn3 to activate subtype-specific genes such as Arx 
in α-induction (this study) and Nkx6.1 in β-induction (Zhou et al., 2008). Another important function 
of Mafa and Pdx1 is to suppress δ-specification, thus ensuring formation of singular α- and β-subtypes, 
and preventing hybrid cells (Figure 10B, lower panel). Our data together suggest that each of the 

http://dx.doi.org/10.7554/eLife.01846
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Figure 9. Pdx1 and Mafa can suppress δ-subtype specification. Compared with robust induction of Sst+ cells by 
Ngn3 alone (A), polycistronic co-expression of Mafa and Ngn3 led to strong reduction of Sst+ cells (B). Polycistronic 
co-expression of Pdx1 and Ngn3 nearly completely suppressed Sst+ cell induction (C). The Sst-cherry+ cells expressed 
synaptophysin (Syn) (C, inset), suggesting that these cells acquired an endocrine identity but δ-specification was 
blocked. Quantifications are shown as mean ± s.d (D). At least 1000 cherry+ cells counted from three different 
animals. **p<0.01, ***p<0.001. Mann–Whitney test.
DOI: 10.7554/eLife.01846.024

three factors possesses both activator and suppressor functions (Figure 10C). It will be important to 
fully elucidate the molecular details of these functions in future studies.

During pancreatic development, numerous studies have highlighted the importance of Ngn3 in 
controlling endocrine fate specification (Jensen, 2004). A recent study showed that ectopic expres-
sion of Ngn3 in embryonic pancreas suppressed exocrine fate specification (Qu et al., 2013). Thus, 
Ngn3 can suppress exocrine fate and promote endocrine fate during both embryogenesis in progen-
itor cells and during adulthood in differentiated acinar cells. The function of Pdx1 has also been exten-
sively studied and demonstrated to be critical in early pancreatic fate determination, as well as a later 
role in beta cell biology (Murtaugh, 2007). It is not clear, however, exactly what role Pdx1 plays in 
δ- and α-cell specification in embryogenesis. Mafa is expressed in pancreatic β-cells during develop-
ment and plays a role in controlling β-cell gene transcription (Hang and Stein, 2011). The ability of Mafa 
to induce α-cell formation in collaboration with Ngn3 from acinar is nevertheless not entirely sur-
prising. Its close homologue Mafb is expressed during pancreas development in a subset of endocrine 
progenitor cells (Nishimura et al., 2006). Mafb deletion leads to decreased α- and β-cell numbers, 
suggesting a role for Maf factor in α-cell formation (Artner et al., 2007; Nishimura et al., 2008). Taken 
together, there are clear similarities in the function of Ngn3, Mafa, and Pdx1 in normal endocrine 
development and endocrine reprogramming from acinar cells. Nevertheless, the epigenetic landscape 
of pancreatic progenitors and adult acinar cells in which these factors operate is presumably very dif-
ferent. Further, the ‘generic endocrine state’ established by Ngn3 in acinar cells is not equivalent to an 
endocrine progenitor in pancreas development. For example, expression of pancreatic progenitor 
genes such as Sox9 and Hnf6 was not detected during the reprogramming process (data not shown).

One surprising finding from our study is that Ngn3 alone promotes δ-cell formation from acinar 
cells. Among the pancreatic endocrine subtypes, relatively little is known about the δ-cells. No genetic 
factors have been discovered that specify δ-cell fate in pancreas development. The molecular details 
of how Ngn3 functions to specify δ-subtype remains to be determined.

Conversion of acinar cells to α-cells requires both Ngn3 and Mafa. The optimal method to induce 
Gcg+ α-like cells is by co-expression of Ngn3 and Mafa from two separate viruses at a 1:1 ratio. Varying 
the ratio of the two viruses or polycistronic co-expression of both factors led to reduced α-cell forma-
tion. These results are reminiscent of induced pluripotent reprogramming from fibroblasts where poly-
cistronic co-expression of OSKM factors led to substantially reduced efficiency of iPS formation 
compared with random infection by OSKM factors (Carey et al., 2009; Chang et al., 2009). This dif-
ference has been suggested to result from a need for appropriate reprogramming factor stoichiometry 
(Carey et al., 2011). We speculate that the induction of α-like cells may similarly require optimized 
Ngn3/Mafa stoichiometry along with other conditions such as specific expression level and dynamics 
of the factors, which can be met at the more ‘flexible’ co-injection system with each cell expressing 
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Figure 10. Direct in vivo conversion of pancreatic acinar cells to three islet endocrine subtypes by combinatorial 
actions of three factors. (A) Summary of acinar to islet endocrine conversion with defined factors. (B) Our studies 
suggest that there are two main processes in pancreatic acinar to endocrine reprogramming. Ngn3 plays a critical 
role in establishing a generic endocrine state in acinar cells by suppressing acinar fate regulators (Ptf1a, Nr5a2, 
Mist1) and activating pan-endocrine factors (Pax6, Islet1, etc) (upper panel). Down-regulation of acinar regulators is 
critical as they can block reprogramming. In endocrine subtype-specification (lower panel), Ngn3 promotes δ-fate 
in the absence of other factors. Mafa and Pdx1 act in concert with Ngn3 to promote α- and β-specification. Both 
Mafa and Pdx1 can suppress δ-subtype specification, whereas α-specification is also suppressed in β-induction. 
Combinatorial actions of the three reprogramming factors therefore led to formation of distinct endocrine 
subtypes. (C) A summary table of reprogramming factor functions. Asterisks: combinatorial actions of multiple 
factors are required to specify α- and β-cells from acinar cells.
DOI: 10.7554/eLife.01846.025

variable levels of Ngn3/Mafa, compared with the more ‘fixed’ polycistronic expression system. Future 
experiments will be required to elucidate mechanisms of α-cell induction.

Our studies suggest that a suitable strategy to produce specific subtypes of cells by lineage conver-
sion is to combine factors that confer broad competence with factors that confer subtype speci-
ficity. An elegant example was demonstrated in C. elegans, where removal of a chromatin factor and 
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employment of neuron selector genes allows conversion of germ cells to different neuronal subtypes 
(Tursun et al., 2011). The mammalian system is far more complex, but similar principles may well apply. 
It is hoped that insight from lineage reprogramming studies will lead to informed design and improved 
technology, thereby helping to unlock the tremendous therapeutic potential of this approach.

Materials and methods
Construction and purification of adenovirus
Genes of interest were first cloned into a shuttle vector containing a 2A-Cherry, then into the pAd/
CMV/V5-DEST adenoviral vector (Invitrogen, Grand Island, NY). High titer virus (2–10 × 1010 pfu/ml) 
was obtained by purification with the Vivapure Adenopack (Sartorius, Bohemia, NY). Viral tittering was 
performed with direct immuno-staining of inserted genes (Pdx1, Mafa, Ngn3) 2 days after infection in 
HEK293A cells. Viral preparations that did not reach at least 2 × 1010 pfu/ml in one round of purifica-
tion had poor induction efficiency in vivo, and were not used.

Animals, surgery
Rag1−/− animals were obtained from Jackson Labs (Bar Harbor, ME). Adult animals (2–3 month) were 
injected with 100 µl of purified adenovirus (typically 1–2 × 109 pfu, dilution with saline of high titer stocks) 
directly into the splenic lobe of the dorsal pancreas with a 3/10 cc Insulin Syringe (Becton Dickinson, 
East Rutherford, NJ). All experiments were performed under approved institutional regulations.

Immunohistochemistry
Adult mouse pancreata were processed as previously described (Zhou et al., 2008). The following 
primary antibodies were used: goat anti-Ngn3 (Santa Cruz), guinea pig anti-Insulin (Dako, Carpinteria, 
CA), guinea pig anti-Glucagon (Linco, Charles, MO), rabbit anti-somatostatin (Dako), goat anti-
Somatostatin (Santa Cruz), goat anti-Pdx1 (Santa Cruz, Dallas, TX), rabbit anti-mafA (Bethyl, 
Montgomery, TX), goat anti-Glut2 (Santa Cruz), rabbit anti-synaptophysin (Abcam, Cambridge, MA), 
rabbit anti-Ptf1a (BCBC), mouse anti-Mist1 (Santa Cruz), rabbit anti-Nkx6.1 (BCBC, Nashville, TN), 
rabbit anti-Sox9 (Santa Cruz), mouse anti-Pax6 (DSHB, Iowa City, IA), and mouse anti-islet (DSHB). 
Secondary antibodies were obtained from the Jackson Immunoresearch laboratories (West Grove, PA) 
and Life Technologies. Pictures were taken with a Zeiss LSM 510 META confocal microscope.

Islet and acinar preparations, FACS of cherry+ cells, gene profiling
Standard procedures were used to separate adult mouse pancreas into islet fraction and exocrine 
fraction after intra-ductal perfusion and digestion with liberase (Roche, Indianapolis, IN). After 
Dithizone staining, the acinar fraction is manually picked to eliminate all visible islets. Islets and acinar 
clusters are further dissociated into single cells by EGTA treatment. Cherry+ cells were subsequently 
isolated by fluorescent activated sorting (FACS) with FACSaria (BD Bioscience, San Jose, CA). RNA 
was extracted (Qiagene RNeasy kit, Germantown, MD), cRNA synthesized (Ambion Amplification kit, 
Grand Island, NY), and genome-wide gene profiling performed with Illumina arrays.

Intracellular FACS sorting of somatostatin+ and glucagon+ cells
Intracytoplasmic staining of pancreatic cells was performed as previously described (Pechhold et al., 
2009) with minor modifications. Cells were fixed with 4% paraformaldehyde in PBS for 5 min on ice, 
diluted in wash buffer (WB) (1:10), centrifuged at 250×g for 5 min, and permeabilized with detergent 
wash buffer (WB(d)) for 30 min on ice. Primary antibodies and final concentration used for the intracy-
toplasmic staining are mouse monoclonal anti-Glucagon (K79bB10, Sigma St. Louis, MO; 1/1000) and 
Goat anti-Somatostatin (Santa Cruz; sc-7819; 1/500). All primary antibodies were pre-labeled with 
Alexa Fluor 594, Alexa Fluor 488, or Alexa Fluor 647, using Zenon antibody labeling kits according to 
the manufacture’s protocol. Intracellular FACS was carried out with FACSaria (BD Bioscience).

DNA methylation analysis, bisulphite sequencing, COBRA
Genomic DNA was purified using RecoverAll Total Nucleic Acid Isolation Kit (Invitrogen) and treated 
with EpiTect Bisulfite Kit (QIAGEN) according to the manufacture’s protocols. The bisulfited genomic 
DNA was amplified using a touch-down PCR protocol (Amylase2a2 and Ins2 promoters, detailed PCR 
parameters available upon request) or using a nested PCR protocol (Sst and Glucagon promoters). All 
PCR reactions were performed using HotStart Taq DNA polymerase (QIAGEN). For nested PCR: 95°C 
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for 15 min followed by 45 cycles of 95°C/30 s, 52°C/30 s, 72°C/1 min, and last elongation at 72°C 
for 10 min. The final PCR product was purified using MinElute PCR Purification Kit (Qiagen), cloned, 
and sequenced. The sequences were analyzed using BiQ Analyzer software (Bock et al. 2005). For 
COBRA analysis (Combined bisulfite restriction analysis) of Amylase 2a promoter, the PCR product 
was generated and cut with Taqα1 enzyme. All primers used are listed in Table 1.

Ptf1aCreER labeling of exocrine cells
Ptf1aCreER;RosaYFP double heterozygous animals were generated by mating homozygous Cpa1CreER 
males with RosaYFP homozygous females (Jackson lab). 2-month-old Cpa1CreER;RosaYFP adults 
were injected with Tamoxifen at 6 mg per animal every third day for four times to label acinar cells.

Radioimmunoassay (RIA)
Exocrine tissues that contain the induced endocrine cells were harvested after pancreas dissocia-
tion and islets removal. After washing with Preculture Medium (1 and 5 mM glucose in PBS for Sst and 
Gcg RIA, respectively), exocrine tissue (approximately 20 mg per sample) and islets (20-30 islets 
per sample) were incubated in 1 ml pre-warmed Preculture Medium at 37° C for 1 hr. After removing 
Preculture Medium, the exocrine tissue and islet samples were re-suspended in 500 ml PBS in the 
absence or presence of 20 mM Arginine and incubated at 37° C for 1 hr. Supernatants were harvested. 
Somatostatin EURIA kit (Euro Diagnostica, Malmö, Sweden) and Glucagon RIA kit (Millipore, Darmstadt, 
Germany) were used to assess Somatostatin and Glucagon content of the incubation medium.
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