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Molecular evolution

Real-time characterization of the
molecular epidemiology of
an influenza pandemic
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Early characterization of the epidemiology and evolution of a pandemic is

essential for determining the most appropriate interventions. During the

2009 H1N1 influenza A pandemic, public databases facilitated widespread

sharing of genetic sequence data from the outset. We use Bayesian phyloge-

netics to simulate real-time estimates of the evolutionary rate, date of

emergence and intrinsic growth rate (r0) of the pandemic from whole-

genome sequences. We investigate the effects of temporal range of sampling

and dataset size on the precision and accuracy of parameter estimation. Par-

ameters can be accurately estimated as early as two months after the first

reported case, from 100 genomes and the choice of growth model is important

for accurate estimation of r0. This demonstrates the utility of simple coalescent

models to rapidly inform intervention strategies during a pandemic.
1. Introduction
When the swine-origin influenza A virus (A(H1N1)pdm09) was detected in

April 2009, rapid characterization of its transmission potential and pathogen-

icity was urgently required for determination of appropriate interventions [1].

Early estimates of its emergence and transmission using phylogenetic analysis

of genetic sequence data were reported within just three months of detection

[2,3]. Such analyses are possible owing to rapid accumulation of genetic vari-

ation within the virus population, enabling its evolution to be modelled on

an epidemiological timescale [4].

Here, we determine the efficiency with which Bayesian phylogenetics based

on coalescent processes can estimate the evolutionary rate, date of emergence

and intrinsic growth rate, r0, of A(H1N1)pdm09 using whole-genomes. The

evolutionary rate provides an indication of the adaptive potential of a virus

in a new host population. Accurate estimation is required for inferring

divergence times and population size changes. The time of the most recent

common ancestor (TMRCA) of a random sample of viruses provides an

upper bound to the date of emergence of an epidemic. We use simple para-

metric growth models to estimate r0 as a measure of the relative ease with

which A(H1N1)pdm09 spread through a host population.
2. Material and methods
We downloaded all available A(H1N1)pdm09 whole-genome sequences sampled

April–December 2009 from the EpiFlu database hosted by the Global Initiative

on Sharing All Influenza Data (GISAID; platform.gisaid.org) on 26 April 2010

(see the electronic supplementary material, table S1). We analysed whole-genomes

(by concatenating segments) to maximize genetic variation in the dataset and

only included North American samples to limit spatial heterogeneity in viral
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Figure 1. Bayesian skyride reconstruction of the demographic history of A(H1N1)pdm09 in North America until December 2009. Mean genetic diversity (solid black)
with corresponding 95% BCI (grey) are shown in (a – c). Incidence rate (number of new A(H1N1)pdm09 cases confirmed by the WHO/week; dashed) is plotted on
secondary axes in (a). Similar reconstructions from analysis of the nine cumulative datasets under the (b) exponential and (c) logistic growth models are plotted with
saturation increasing with dataset size in each analysis.
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population structure. We removed all isolates sampled from a

non-human host, missing an exact sampling date, or with

sequencing coverage less than 80% for any genome segment.

To minimize the effect of epidemiologically linked cases, which

may confound assumptions of the coalescent, we subsampled

one isolate/location/day [5,6], resulting in a dataset of 328

sequences. After aligning, we trimmed sequences to 13 158 bp.

We carried out Bayesian phylogenetic analysis of the entire

dataset in BEAST v. 1.7.4 [7–9], using the GTRþG nucleotide sub-

stitution model and uncorrelated lognormal relaxed molecular

clock, which had greater Bayes factor support than a strict clock

(BF¼ 3.65) [10,11]. The clock used a gamma-distributed prior on

the mean evolutionary rate, with a mean of 1 substitution/site/

year (k ¼ 0.001, u¼ 1000) and exponentially distributed prior on

the standard deviation (m ¼ 0.333). To model the demographic his-

tory of the virus population, we used the non-parametric Gaussian

Markov random fields Bayesian skyride model [12], which speci-

fies the prior on the TMRCA. We performed four independent

Markov chain Monte Carlo runs of 100 million steps to achieve

good mixing, sampling trees every 10 000 steps and combining

runs after removing 10% burn-in.

To investigate how accurately and precisely Bayesian phylo-

genetics can estimate the evolutionary rate, date of emergence

and r0 throughout the pandemic, we extracted nine subsets of

sequences, each with an increasingly longer temporal range

and size. This sampling strategy is akin to carrying out phyloge-

netic analyses using all genome data available at the end of each

month between April and December 2009. Given the increasing

capacity with which sequencing can be performed, we included

all data available from GISAID on 26 April 2010 to estimate par-

ameters from the maximum amount of sequence data that could

have potentially been available if samples were sequenced

immediately. We used the same evolutionary models as above

but replaced the skyride model with either an exponential or

logistic growth model [13]. Here, we use the TMRCA to represent

the date of emergence of the virus into the larger human

population, assuming a single initial case.
We quantified the relative fit of both growth models by

comparing their marginal likelihoods as Bayes factors. The

marginal-likelihood measures the average fit of a model to the

data and we estimated this using a recently described path

sampling procedure [11].
3. Results
The skyride plot in figure 1 shows that the reconstructed past

population dynamics of A(H1N1)pdm09 closely follows the

number of newly confirmed A(H1N1)pdm09 cases per week

(accessed via FluNet; http://who.int/influenza/gisrs_labora-

tory/flunet/), used here as a measure of incidence rate. This

plot captures the exponential growth phase of the first pan-

demic wave, the plateau in genetic diversity and the growth

phase during the second pandemic wave.

The evolutionary rate and date of emergence estimated

from the first 34 sampled genomes have wide 95% Bayesian

credible intervals (BCI) under both growth models, represent-

ing high uncertainty associated with the small sample size

(figure 2). Precision increases when the dataset size is increased

threefold with the addition of sequences sampled during

May, from which the date of emergence is estimated to be 2

February 2009 (95% BCI: 12 January 2009, 2 March 2009) and

evolutionary rate 3.93 � 1023 substitutions/site/year (95%

BCI: 2.99, 5.53 � 1023) with a standard deviation of 0.24

(95% BCI: 8.9� 1026, 4.5� 1021) under the exponential

growth model. The date of emergence remains roughly consist-

ent at later time-points and any further increase in precision is

limited by the lack of alternative independent loci. Conversely,

the mean evolutionary rate estimates tend to decrease with the

addition of data over time, suggesting that many early deleter-

ious/neutral mutations may have later been purged from the

population through purifying selection [3,5,14].
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Figure 2. (a) Mean evolutionary rate, (b) date of emergence and (c) r0 estimates from Bayesian phylogenetic analysis of A(H1N1)pdm09 whole-genomes sampled
cumulatively at the end of every month between April and December 2009 across North America. Exponential (red) and logistic (blue) growth models were used in
analyses of each dataset. Error bars represent 95% BCI. Dataset size is displayed underneath month names in brackets.
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In contrast to either of the other parameters, the choice of

growth model has a considerable effect on r0 estimation

(figure 2). By the end of April, both growth models fail to esti-

mate r0 with sufficient precision to discriminate between slow

and rapid epidemic growth because of the small number of

sequences sampled. However, uncertainty rapidly reduces by

approximately 50% under the exponential growth model

with the addition of 66 sequences in May. In comparison, pre-

cision remains low during the first three months under the

logistic growth model, representing over-parametrization of

the model with smaller datasets. The exponential growth

model consistently estimates r0 with greater precision than

the logistic model early in the pandemic, once data sampled

after May are included in the analysis. Genetic diversity

plateaus around June and the exponential growth model

inappropriately adjusts for this by lowering the r0 estimate

(figure 1b). As the logistic growth model accommodates for

this plateau, the accuracy of r0 estimates remains largely

unaffected by the inclusion of data from the second wave

(figure 1c). A Bayes factor test favours the exponential over

the logistic model until June, when support switches and
increases as data sampled throughout the following months

are included in the analysis (table 1).

Here, r0 can be used to estimate the basic reproductive

ratio (R0), which describes the average number of secondary

infections arising from a primary infection [15]. For example,

assuming a gamma-distributed generation time [16,17]

with m ¼ 2.6 and s ¼ 1.3 (estimates from household data in

the USA [18]), and r0 estimated from the first two months

of data (100 sequences) under an exponential growth

model, we estimate an R0 of 1.12 (95% BCI: 1.07, 1.16). This

supports previous estimates from phylogenetic analyses of

A(H1N1)pdm09 but is towards the lower end of estimates

from incidence data sampled over similar temporal and

spatial scales [2,19,20].

We investigated the effect of sample size on parameter

estimation by constraining each cumulative dataset to 100

randomly selected genomes (see electronic supplementary

material, figure S1). Although variation exists between the

means of estimates from different random subsamples at

each time-point, their 95% BCIs overlap with one another

and those from analysis of the complete dataset. Additionally,



Table 1. Log-marginal likelihoods of both growth models used to analyse the nine subsets of sequences with increasing temporal ranges. The preferred model
for each dataset (values in italics) was determined using a Bayes factor test, in which the exponential growth model was the null model.

last month sampled in
dataset

no. sequences in
dataset

log-marginal likelihood

Bayes factor
exponential growth
model

logistic growth
model

April 34 219697.73 219698.77 21.03

May 100 222630.98 222633.16 22.18

June 164 226029.90 226029.20 0.70

July 186 227662.79 227650.54 12.25

August 206 229552.01 229543.42 8.59

September 243 233031.06 233009.23 21.83

October 276 236103.46 236078.91 24.55

November 307 239147.32 239115.72 31.60

December 328 241934.96 241912.87 22.09
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the complete dataset provides only slightly higher precision

of estimates of each parameter.
4. Discussion
Widespread genome sequencing and rapid sharing of data

during the 2009 H1N1 pandemic enabled real-time characteriz-

ation of an influenza pandemic for the first time [2,3,5]. Within

approximately two months of the first cases (100 genomes), esti-

mates of evolutionary rate, date of emergence and r0 from

sequence data were in agreement with those from analyses of

incidence data, where comparison is available [1,2,19,20].

Over a longer sampling period, parameter estimates from 100

genomes maintain similar accuracy and precision to estimates

from more intensively sampled datasets. We discuss potential

reasons for the general decrease in evolutionary rate observed

over time, although the difference in evolutionary rates is not

significant and the datasets are not independent so this result

should be interpreted with caution.

The exponential growth model accurately estimates all

three parameters during the exponential growth phase,

although precision was low with less than 100 sequences.

Once growth begins to plateau, this model should be

replaced by the logistic growth model to avoid severely

underestimating r0. A demographic reconstruction using a

non-parametric coalescent model, such as the skyline or sky-

ride model, can be used to reveal when exponential growth

ceases [12,21]. However, these models are unable to estimate

the change in relative genetic diversity between the most

recent coalescent event and the youngest sample. If this

time is large, the demographic plot may appear to flatten pre-

maturely [6]. The exponential growth model is unaffected by
an absence of recent coalescence events, estimating r0 from

the density of early coalescent events.

Simple parametric coalescent models are powerful tools

for early characterization of an epidemic, even while growth

remains exponential. More complex phylogenetic models

have been developed to estimate epidemiological parameters

that cannot be achieved with parametric coalescent models

alone [22–25]. However, the over-parametrization of early

A(H1N1)pdm09 data under the logistic growth model high-

lights the disadvantages of using highly parametrized models

during the initial stages of an epidemic. With the increasing

capacity of sequencing technologies, the lag between sampling

and sequencing viral genomes is expected to decrease, making

earlier parameter estimation feasible in future epidemics and

before alternative types of data become available.
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