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Abstract

Here we utilize a combination of genetic data, oceanographic data, and local ecological
knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fa-
bricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mito-
chondrial DNA control region and 10 polymorphic microsatellites did not detect genetic
structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses
show no evidence for genetic differentiation among populations (mtDNA control region se-
quences s =-0.008; microsatellite loci Fs7= 0.003). A lack of evidence for regional or lo-
calized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes,
reveals a pattern of high gene flow in P. ornatusthroughout the South-East Asian Archipela-
go. This lack of genetic structure may be due to the oceanography-driven connectivity of the
pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines
and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of
genetic structure of P. ornatuspopulation in the South-East Asian archipelago has important
implications for the sustainable management of this lobster in that the species within the re-
gion needs to be managed as one genetic stock.

Introduction

The ornate spiny lobster, Panulirus ornatus, lives in tropical waters of the Indo-West Pacific
from the Red Sea and south-east Africa in the west to Japan and Fiji in the east.The species is of
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significant commercial importance supporting local capture fisheries and developing aquacul-
ture operations. P.ornatus pueruli (final lobster larval stage) are heavily exploited as seed-stock
for aquaculture in South-East Asia, particularly in Vietnam and Indonesia, where wild pueruli
are collected from the ocean in large numbers [1]. Even though natural fluctuations on larval
recruitment are common to other spiny lobsters [2-4], there is concern from fishery managers
that large fluctuations in juvenile recruitment and puerulus settlement repeatedly experienced
in recent years represent a high risk to the adult lobster fishery [5, 6]. This apprehension was
highlighted in 2006-2007 and 2009-2010, when the P. ornatus pueruli wild harvest in Vietnam
was only ~50% of that caught in other years [1, 7]. This high variability in pueruli settlement
raised concerns as to whether the annual removal of 1-2 million pueruli by fishers in Vietnam
was significantly impacting the demography of the species, particularly that of adult popula-
tions. However, very little is understood about the population distribution and dynamics of P.
ornatus and it is not known where the source of pueruli being harvested is situated. An investi-
gation into the connectivity among spiny lobster populations is therefore needed to provide
data on the resilience and sustainability of heavy exploitation, as well as to provide information
on larvae sources and sinks.

Several approaches are available to evaluate connectivity between marine populations, in-
cluding genetic markers (e.g. mitochondrial DNA or microsatellites), geochemical markers
(e.g. microchemical signatures in shells), and/or the utilization of high-resolution biophysical
models; however none of these approaches are likely to be conclusive in isolation and have not
yet been applied to adequately address population connectivity in P. ornatus [8-10]. To date
the studies that have been done have been limited to hydrodynamic-dispersion models of P.
ornatus in restricted areas of the species distribution. Previous studies in eastern Australian wa-
ters [11] and in the Philippines [12] focused on short-term larval dispersion within a single
generation of P. ornatus (i.e. from spawning ground to puerulus settlement site over a few
months). According to these models most larvae released from spawning grounds in the Coral
Sea, such as the Gulf of Papua, would be carried back to the coastline of northeast Queensland,
while a part of them could advect northward to the Vitiaz Strait of eastern PNG within three
months [11]. From different spawning grounds in both western and eastern coasts of the Phil-
ippines, larvae would be transported northward to Taiwan, advected into the South China Sea,
or dispersed into the interior of the Sulawesi Sea [12]. These studies, however, could not ad-
dress the issue of connectivity of P. ornatus across the broader South-East Asian archipelago
(Fig 1).

The bathymetry and oceanography of the South-East Asian archipelago is very complex,
with numerous shoals, straits, islands, reefs, and semi-enclosed seas, as well as mass-flow of
water carried by currents between the Pacific and Indian Oceans. Currently there is no fine-
scale oceanographic model encompassing the whole archipelago to assist in better understand-
ing the drivers influencing P. ornatus genetic structure, or in fact connectivity of other marine
species. The existing oceanographic models include a number of fine-scale models focusing on
restricted areas within the archipelago (e.g. [13]), and medium-scale models of the whole do-
main (e.g. [14]) that have a grid size too coarse to resolve the current fluxes through the Philip-
pines Straits and, as a result, they largely ignore the connectivity between the Philippine Sea,
the South China Sea and the western Pacific Ocean [15].

Adults P. ornatus are found in waters from 1 to 50m in depth and occupy diverse habitats
such as sandy and muddy substrates, coral reefs, rocky bottoms and even turbid coastal waters
[16]. Adults are known to migrate by walking along the seafloor for hundreds of kilometers to
form large spawning aggregations; for instance, adult P. ornatus from the Torres Strait, Austra-
lia, migrate up to 500 km to a spawning ground near Yule Island in the Gulf of Papua [17-19].
Furthermore, P. ornatus larvae have a long planktonic phase lasting between 135 to 210 days
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Fig 1. Sampling sites and number of Panulirus ornatus specimens collected from across the tropical waters of the South-East Asian archipelago.
The numbers of individuals sampled at each location are indicated within the black circles. A Indian Ocean. B Pacific Ocean. C Coral Sea. D South China
Sea. E Sulawesi Sea.

doi:10.1371/journal.pone.0124568.g001

[17, 20]. Before settlement the larvae metamorphose to the puerulus stage, which is the final
larval stage with strong swimming ability; this phase lasts 9-25 days in the laboratory and pos-
sibly more in nature [4, 17]. Williams [6]suggested that this long larval development period,
swimming ability of puerulus, and the potential for mixing of the phyllosoma in eddies of the
South-East Asian archipelago would result in low levels of population genetic structure for the
species in the region. However, to date this hypothesis has not been tested.

The present study used molecular genetic techniques to elucidate the genetic population
structure of P. ornatus within the South-East Asian archipelago. To explain the observed pat-
terns of genetic structure, the potential dispersal pathway of P. ornatus was inferred based on a
synthesis of data on regional oceanography and the lobster’s known biology.

Methods
Tissue collections and DNA extraction

All work was done in compliance with the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes, and the Queensland Animal Care and Protection Act 2001
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under Animal Ethics Permit no. A1746, as approved and administrated by James Cook Univer-
sity Animal Ethics Committee. Animals were collected from commercial aquaculture or fishery
operations and no specific collection permits were required. Animals are not listed as endan-
gered or threatened.

A total of 216 Panulirus ornatus individuals were sampled from two sites in Vietnam, three
in Indonesia, and one in Australia (Fig 1). Specimens from Vietnamese populations were all
pueruli, while those from Indonesia were juveniles at different age groups (17 samples at 150 g
each collected in October 2009 and 15 samples at 20 g each collected in April 2010). Vietnam-
ese lobster specimens came from the central coastal waters of the Da Nang (16 °N; 108 °E) and
Binh Thuan (11 °Nj; 108 °E) provinces, while Indonesian samples were collected from North
Sumatra (1°N; 97 °E), Lombok (9 °S; 116 °E) and West Timor (10 °S; 123 °E). Australian sam-
ples were collected from wild-caught Torres Strait juveniles (11 °S; 143 °E; 300 g each). All
samples (pleopods from adults or abdominal muscle tissue from juvenile lobsters) were pre-
served immediately in a DMSO-salt preservative solution [21]. Genomic DNA (gDNA) from
all lobster samples was extracted from 4 mm” pleopod clips or from the abdominal muscle tis-
sue of juveniles using a modified CTAB protocol [22].

Mitochondrial DNA (mtDNA) control region

Whole and partial genome sequences including mtDNA control regions of Panulirus ornatus,
P. gracilis, P. stimpsoni, P. japonicus, and P. inflatus from the NCBI database were aligned
using SEQUENCHER version 4.5 (GeneCode) and primers to amplify 809 base pairs of the
mtDNA control region designed based on conserved sites using PRIMER3WEB version 3.0.0
(http://primer3.wi.mit.edu/). These primers were; PO_F2 5 —ATAAAGGTAATAGCAAGAA
TC and PO_R1 5—CAAACCTTTTGTCAGGCATC.

Extracted DNA from samples was diluted to 10-40 ng/ul for use in a polymerase chain reac-
tion (PCR). The control region was amplified in 20 pl reaction volumes containing ~5 ng
DNA, 1x TM buffer (Qiagen), 1.5 uM of MgCl,, 0.2 uM of dNTPs, 0.1 uM of Tag Red (Qiagen)
and 0.3 uM of forward and reverse primers. PCR was performed on a BioRadC1000 Thermal
Cycler (cycling parameters: 3 min at 95°C, followed by 35 cycles of 95°C for 45 s, 50°C for 30s,
72°C for 45 s, before a final extension step of 72°C for 5 min). PCR products were then run on
a 1.5% agarose gel for quantity and quality verification, and subsequently cleaned-up to remove
excess primers by precipitation with isopropanol [23]. A repeat region in the start of the reverse
primed sequence resulted in deterioration of sequence. Consequently, only DNA sequence
from the forward primer was used. To verify nucleotide base calls each sample was sequenced
twice at the Australian Genome Research Facility (AGRF), Brisbane (Australia).

Sequence data were aligned using Geneious ver. 6.0.5 with default alignment parameters
and were checked manually for misalignments. Poorly-aligned regions were removed using
GBlocks with the default setting [24]. The nucleotide compositions and numbers of variable
sites were assessed with MEGAG6 [25]. Haplotype and nucleotide diversity for each location
were estimated using DNAsp 5.1 [26], while neutrality tests (Tajima's D [27]) and partitioning
of genetic structure @7 (using genetic distance) as well as pairwise ®@s were calculated using
ARLEQUIN 3.5 [28]. @srand pairwise @sr comparisons between populations were estimated
using the T92 model (Tamura 1992), with a gamma correction (o = 1.258) as determined by
Model Selection in MEGAG6 [25]. For calculation of the statistical significance of ®¢; values ob-
tained, a significance test with 10,000 permutations was undertaken with ARLEQUIN 3.5 [28].
The median-joining network [29] for the haplotypes was constructed using Network v. 4.6.1.0
and Network Publisher v. 2.0.0.1 (http:\\www.fluxus-engineering.com) with default settings.
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Microsatellite markers

Ten highly polymorphic microsatellite markers [30] were used for population genetic investi-
gations. DNA was diluted to 10-40 ng/ul for use as template in a polymerase chain reaction
(PCR). Microsatellites were individually amplified in 10 pl reaction volumes containing ~20 ng
DNA, 1x Type-it Multiplex PCR Master Mix (Qiagen), 0.04 uM of fluorescent labeled forward
primer (TET, FAM or HEX), and 0.2 uM of reverse primer. PCR was performed on a BioR-
adC1000 Thermal Cycler (cycling parameters: 5 min at 95°C, followed by 28 cycles of 95°C for
30's, 58°C for 90 s, 72°C for 30 s, before a final extension step of 60°C for 30 min). The PCR
products then were checked for consistent amplification by visualization on a 1.5% agarose gel.
After this step, PCR products were pooled according to size, fluorescent label, and product
quantity and the pooled products were purified using Sephadex G-50 resin, before loading on a
Megabace 1000 Capillary Sequencer for size separation of alleles (Amersham Biosciences). Al-
leles were scored on the basis of fragment size using Fragment Profiler 1.2 (Amersham
Biosciences).

Summary statistics such as the number of alleles, as well as observed and expected heterozy-
gosities, were calculated for microsatellites in GENALEX 6.1 [31], which was also used to test
for deviations from Hardy-Weinberg Equilibrium (HWE). GENEPOP on the web (http://
genepop.curtin.edu.au/) was used to test for linkage disequilibrium among microsatellite loci.
Corrections for multiple comparisons (HWE and linkage disequilibrium) were adjusted using
the False Discovery Rate (FDR) method [32]. Polymorphic Information Content (PIC) was
also calculated for each locus with CERVUS 3.0 [33]. Null allele frequencies were analysed
using FreeNA 3.0 [34] while the presence of null alleles and scoring errors were checked using
MICROCHECKER 2.2.3 [35].

The level of genetic structure of P. ornatus based on microsatellite markers was analysed
using an Analysis of Molecular Variance (AMOVA) with 10,000 permutations, as well as calcu-
lating pairwise Fgr comparisons between populations, both of which were carried out with
ARLEQUIN 3.5 [28]. Further to these analyses, the Bayesian clustering algorithm implemented
in STRUCTURE ver. 2.3.4 [36] was used to determine spatial genetic discontinuities by infer-
ring the highest probable number of genetic clusters present within the dataset with prior
knowledge of the individual’s origin. Individuals are placed in K predetermined sub-groups
based on their likelihood of belonging to that sub-group calculated using allele frequencies of
multiple loci. K was chosen in advance and ranged from one to 10 and the populations were as-
sumed to be admixed (an individual could belong to any population) in origin. Burn-in and
run length were set to 100 000 MCMC (Markov chain Monte Carlo) repetitions and each run
was iterated 10 times. This approach implements a model-based clustering method for infer-
ring population structure and assigning individuals to the most probable genetic sub-group or
population. Structure Harvester (http://taylor0.biology.ucla.edu/structureHarvester/) was used
to determine optimum number of clusters in this analysis. CLUMPP (http://www.stanford.
edu/group/rosenberglab/clumpp.html) also was used to average across the replicate run and
outputs were entered into DISTRUCT (http://www.stanford.edu/group/rosenberglab/distruct.
html) to graph average q values.

The Indonesian samples were a mix of two different age groups (17 samples at 150 g collect-
ed in October, 2009 and 15 samples at 20 g collected in April, 2010). To test if there may have
been temporally-induced genetic differences among these two collections we first undertook
analyses treating each temporal sample as a separate collection. No evidence of genetic differ-
entiation was evident among the temporally separated samples (®gr = -0.0039; Fsr = 0.0037;

P >0.05) and accordingly we only report results from analyses for the Indonesian samples
where we have treated them as a single population.
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Larval dispersal pathway map

Physical and biological data were integrated to develop a larval dispersal pathway map. A litera-
ture review was undertaken and expert opinion from relevant fisheries scientists in Australia,
Vietnam and Indonesia was sought to identify data on spawning grounds and pueruli settling lo-
cations within the archipelago. One spawning ground is located in the southeast of the Gulf of
Papua, Papua New Guinea (PNG), where Torres Strait lobsters spawn during the summer
months from November to March [6, 19, 37, 38]. A second cluster of spawning grounds has
been identified from the Philippines, where lobsters spawn from May to August [12, 39]. Other
information included the observation that (a) 3 month old larvae appear in May-June at the
southern tip of PNG [11, 37], and also on the eastern side of the Gulf of Papua also by May-June;
(b) the central coast of Vietnam receives arrivals of pueruli in September-December in the North
(15° N) and November to January in the South (12° N;[1, 7]); (c) another cohort of pueruli arri-
ves to the Indian Ocean coast of northern Sumatra in November-December (Jones & Priyam-
bodo, unpubl. data); and (d) Lombok receives two cohorts of P. ornatus pueruli, one cohort
arriving in December-February and the second cohort arriving in August-November [1].

This biological data was then merged with oceanographic data to construct a map of the
mean surface water circulation in the South-East Asian Archipelago, focusing on different
months for different areas based on the known age of lobster larvae found during those months
in those areas. We studied only the currents in the surface well-mixed layer, i.e. the layer above
the thermocline, which in the tropics is typically about 100 m deep [40]. The P. ornatus larvae
are found mainly within this layer [11] and it is only at the late-stage phyllosoma (i.e. older
than 5 months) that the lobster can be found below the thermocline [41].The main data source
of currents in the surface well-mixed layer was the ARGO program (http://www.aoml.noaa.
gov/phod/argo/introduction_argo.php), but this had limited coverage for the South China,
Philippines and Indonesian Seas. For those seas, the results of other field studies (listed in
Table 1) were used, together with the results of the previous regional oceanographic models
[13,42-49], and for the South China Sea only (Daryabor, F.; unpubl. data). Streamlines were
drawn representing the connectivity between sites where lobster data were available, using
Microsoft Visio software v.2003.The length (L) between two sites was measured by Distance
Calculator using Google Maps (http://www.mapdevelopers.com/distance_finder.php), not as a
straight line, but as the length of the streamline of the flow field joining these two sites; and u is
the average speed of surface ocean current along that streamline during that period. Thus, the
estimated time (t) for the larvae to reach different locations was calculated by Fischer [50],

t=1/, (1)

Results
Genetic variation of the mtDNA control region

Nucleotide sequences of the control region were determined for 189 P. ornatus individuals
(Genbank accession no. KJ956062-KJ956250). A small number of samples for which DNA was
extracted failed initial quality control checks and were not successfully sequenced. From the
189 individuals sequenced successfully a total of 182 haplotypes were detected, with 601 sites
without gaps and missing data and 231 were polymorphic (Table 2). Among 7 shared haplo-
types, only one was shared among individuals at the same sampling site, six other haplotypes
were represented at two sampling sites (S1 Table).
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Table 1. Field studies providing data of monthly-averaged currents in the surface-well mixed layer for the South-East Asian archipelago.

Author

ARGO (2013)

Cravatte et al. [43]
Condie [42]

Forbes and Church [44]
Liang et al.[45]

Manh and Yanagi [46]
Mayer et al. [47]
Metzger et al.[48]
Potemra and Qu [49]
Schiller et al.[13]

ADCP = Acoustic Doppler Current meter.

doi:10.1371/journal.pone.0124568.t001

Table 2. Genetic indices for mtDNA control region characterized in Panulirus ornatus from six sample sites/collections.

Data source

Ocean drifters
ShipbornADCP

NCEP-NCAR40-year Reanalysis dataset

National Aeronautics and Space Administration (NASA)

ShipbornADCP

Data of the World Ocean Atlas

Digital Bathymetric Data Base 2 (DBDB2)

National Oceanic and Atmospheric Administration (NOAA)

ARGO data

Data Period

2000-2013
1985-2007
1982-1997
1978-1979
1997-2001

1970-2006
2004-2006

1992-2006

The P. ornatus mtDNA control region was found to exhibit an extremely high mutation
rate, resulting in high haplotypic diversity whereby almost every lobster individual possessed a
unique haplotype (Table 2). Haplotype diversities ranged from 0.997 to 1.000 within popula-
tions, while nucleotide diversities indicating the degree of polymorphism within a population/

sample collection ranged from 0.020 (North Sumatra) to 0.034 (Lombok).

No significant population subdivision was detected among the populations sampled, with a
non-significant fixation index evident (®sr = -0.002; P = 0.648). All of the genetic variation
measured with mtDNA occurred within populations, with no detectable among-population
variance (Table 3). In addition, no evidence of individual population-level genetic structure
was detected across the wide geographical range sampled from the Torres Strait of Australia to
Vietnam and Indonesia, with negligible and non-significant pairwise ®@gr values between popu-
lations being very low (from -0.042 to 0.010, P >0.05) (Table 4). Similar evidence for a lack of
structuring was supported by the Tajima's D values, which were not significant at all localities
(from -1.521 to -0.727, P >0.05) (Table 2). As further evidence for widespread gene flow and
lack of genetic structure the haplotype network tree showed no clustering of haplotypes into
geographical regions, or location based groups, with the majority of haplotypes being single or
unique units (Fig 2). Therefore, mtDNA analyses based on the control region provided no evi-
dence for genetic population structure in P. ornatus across the geographical range sampled.

Pop N H hd Pi Tajima's D (p-value)
Torres Strait 54 51 1.000 + 0.004 0.028 + 0.002 -1,473 (0.088)

West Timor 11 11 1.000 £ 0.039 0.029 + 0.006 -1.200 (0.136)
Lombok 28 27 0.997 £ 0.010 0.034 + 0.004 -1.521 (0.088)

North Sumatra 4 4 1.000 + 0.177 0.020 + 0.005 -0.727 (0.279)

Binh Thuan 51 51 1.000 + 0.004 0.028 + 0.003 -1.859 (0.050)

Da Nang 41 41 1.000 + 0.005 0.026 + 0.003 -1.497 (0.088)
Total/Mean 189 182 1.000 £ 0.001 0.028 + 0.001 -1.379 (0.089)

N, sample size; H, number of haplotypes; hd, haplotype diversity; Pi, nucleotide diversity;

doi:10.1371/journal.pone.0124568.1002

PLOS ONE | DOI:10.1371/journal.pone.0124568 May 7, 2015 7/19



el e
@ ' PLOS ‘ ONE Ornate Spiny Lobster in the South-East Asian Archipelago

Table 3. Summary table of analysis of molecular variance (AMOVA) describing the partitioning of genetic variation for six Panulirus ornatus popu-
lations based on both mtDNA control region sequences and 10 microsatellite loci.

Source of variation (%)

Among population Within population DsrlFst p- value
mtDNA-control region -0.20 100.20 -0.002 0.648
Microsatellites 0.26 99.74 0.003 0.195

doi:10.1371/journal.pone.0124568.t003

Genetic variation of microsatellite markers

Ten polymorphic microsatellite markers were successfully amplified (Table 5) and PCR prod-
ucts of all 216 samples of P. ornatus were genotyped for subsequent population genetics analy-
ses. A total of 143 alleles were observed, ranging from five (Orn_01) to 29 (Orn_11) alleles per
locus. Significant departures from HWE were observed for two loci in the Lombok and Binh
Thuan populations (Orn_01 in Lombok and Orn_17 in Binh Thuan) and the dataset was rean-
alyzed with and without these markers in these two populations to test if they were significantly
influencing results obtained. No differences were found in genetic structure indices when these
markers were included so the complete dataset of markers were analyzed and is presented here.
No linkage disequilibrium was detected among the 10 loci genotyped. Null allele frequencies
were above 10% at locus Orn_02 in Lombok (13%), at locus Orn_17 in West Timor (17%) and
in Binh Thuan (15%) (S2 Table). Null allele frequencies also detected at loci Orn_16 (17%) and
Orn_21 (11%) in North Sumatra, which could be the results of small samples size (4 samples).
Dataset then were corrected and reanalysed. The results showed no difference in the AMOVA
test and pairwise Fgr estimates (S3 and S4 Table). The original dataset was therefore

left unchanged.

As for the mtDNA control region, no significant population genetic structure was evident
between the six sites when genotyped with the 10 microsatellite loci. Fsr estimates of popula-
tion structure were again negligible and non-significant (AMOVA, Fgr = 0.003; P = 0.195)
(Table 3). The microsatellite data indicated that less than 1% of genetic variation was present
among populations. A similar lack of population genetic structure was evident in pairwise pop-
ulation comparisons across the Indo-West Pacific region (Fsy ranged from -0.003 to 0.031,
Table 4). The pairwise Fst comparison between North Sumatra and other sampling sites were
the highest observed (from 0.017 to 0.034), but were all non-significant after FDR correction
(P > 0.05). Due to the small sample size collected from North Sumatra the higher sample Fgr

Table 4. Genetic differentiation between Panulirus ornatus from collection locations using pairwise ®sr for mtDNA-control region (upper value)
and pairwise Fsr for microsatellite loci (lower value).

Australia Indonesia Vietnam

Localities Torres Strait West Timor Lom-bok North Sumatra Binh Thuan Da Nang
Torres Strait 0.007 0.005 -0.012 0.002 0.010
West Timor 0.006 -0.030 -0.038 -0.005 -0.012
Lombok -0.003 0.008 -0.042 -0.008 -0.004
North Sumatra 0.029 0.030 0.034 -0.037 -0.026
Binh Thuan 0.001 0.002 0.004 0.026 -0.006
Da Nang 0.000 0.009 0.001 0.017 0.002

No significant value was found after correction using FDR.

doi:10.1371/journal.pone.0124568.1004
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Fig 2. Haplotype network of Panulirus ornatus control region sequences from six collection locations from the South-East Asian archipelago. The
larger tree on the right has been edited to show more detail, and the unedited tree is shown in the inset. Each circle represents a haplotype, whose diameter
is proportional to the number of individuals with that haplotype. The black dots on the lines between haplotypes represent missing haplotypes. The numbers
on the connecting lines are the number of mutations between haplotypes.

doi:10.1371/journal.pone.0124568.9002

values involving this population are likely a result of random sampling effects and small sample
size.

Individual based Bayesian assignment tests supported the lack of population genetic struc-
ture indicated by non-significant and small pairwise Fgr estimates. Although Structure Har-
vester suggests K = 2 from multiple simulations runs at values of K from 1 to 10, visual
examination of individual bar plots for K = 2 indicates an inability of the STRUCTURE algo-
rithm to reliably assign any of the individuals to a distinct cluster, with assignment probabilities
for each of the two populations of ~50% for all individuals sampled in each of the 10 replicate
runs (Fig 3). The inability to assign individuals using post-hoc plots if the true K < 2 has been
discussed in Evanno et al. [51]. Therefore, Bayesian analysis using STRUCTURE, also suggests
a lack of genetic structure, among the six populations examined, despite the widely spaced re-
gional sampling employed here.

Larval dispersal pathway map throughout the South-East Asian
archipelago

The above genetic studies using both mtDNA control region and microsatellites reveal a single
genetic population of P. ornatus within the South-East Asian archipelago, implying high
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Table 5. Genetic indices for 10 microsatellites characterized in Panulirus ornatus at six sample sites/collections.

Microsatellites

Localities Orn 01 Orn 02 Orn 11 Orn 12 Orn 16 Orn 17 Orn 18 Orn 20 Orn 21 Orn 25
Torres Strait N 72 72 71 71 71 70 72 69 71 70
N4 8 4 20 23 9 10 9 10 7 9
Ho 0.72 0.54 0.85 0.94 0.79 0.5 0.74 0.42 0.79 0.71
P nhwe 0.98 0.93 0.98 0.76 0.98 0.98 0.98 0.98 0.92 0.98
West Timor N 12 12 12 11 12 12 12 12 12 12
Na 6 3 13 9 6 7 9 7 6 7
Ho 0.75 0.58 0.92 0.91 0.75 0.42 1 0.67 0.83 0.83
P uwe 0.95 0.43 0.93 0.98 0.98 0.32 0.93 0.98 0.95 0.98
Lombok N 32 32 32 32 32 31 32 30 32 32
Na 10 3 20 19 8 7 10 7 8 7
Ho 0.69 0.41 0.88 1 0.84 0.45 0.69 0.3 0.72 0.63
P ywe 0.00 0.32 0.11 0.98 0.56 0.95 0.98 0.98 0.98 0.93
North N 3 3 3 8 4 3 3 3 3 3
Sumatra
N4 3 3 5 4 5 2 5 1 3 3
Ho 0.33 0.67 1 1 0.5 0.67 1 0 0 1
P nhwe 0.93 0.95 0.95 0.98 0.75 0.93 0.98 0.97 0.93
Binh Thuan N 49 49 49 48 49 51 10 49 51 50
Na 8 4 22 21 7 6 6 9 7 9
Ho 0.69 0.67 0.9 0.94 0.76 0.33 0.7 0.55 0.73 0.74
P nhwe 0.93 0.56 0.68 0.98 0.95 0.00 0.58 0.98 0.58 0.98
Da Nang N 40 40 44 44 44 43 0 45 44 45
Na 8 3 24 21 8 10 0 8 8 10
Ho 0.75 0.65 0.91 0.91 0.82 0.67 0 0.47 0.75 0.73
P uwe 0.78 0.95 0.98 0.43 0.98 0.98 0.98 0.95 0.98
Mean N 34.67 34.67 35.17 34.83 35.33 35.00 21.50 34.67 35.50 35.33
Nj 7.3 3.5 17.2 16.0 7.3 6.8 6.3 7.0 6.33 7.3
Ho 0.70 0.60 0.91 0.89 0.74 0.49 0.69 0.39 0.69 0.77
PIC 0.69 0.55 0.92 0.93 0.72 0.54 0.71 0.44 0.81 0.69
Total N 208 208 211 209 212 210 129 208 213 212
Nj 11 5 29 26 11 16 11 14 8 12
Allele size range 139- 258- 175- 304- 163— 260— 352— 318- 240- 184—
(bp) 176 278 242 400 195 321 372 362 264 216

N sample size, Ny number of alleles, Hp observed heterozygosity, P e Hardy-Weinberg equilibrium significance value at P<0.05 after FDR correction,
ns non-significant, bold text significant, PIC polymorphic information content.

doi:10.1371/journal.pone.0124568.t005

population connectivity of P. ornatus throughout this region. To explain how this connectivity
may eventuate, the distribution of currents in the surface well-mixed layer in the South-East
Asian archipelago is shown in Fig 4 for the larval transport periods listed in Table 6. From
these data, the suggested connectivity network is shown in Fig 5 and further elaborated on in
the discussion. Accordingly, the apparent lack of genetic structure in this tropical lobster spe-
cies across South-East Asian archipelago is explained by current-mediated larval transport that
connects lobsters among spawning populations. This connectivity requires at least three
generations.

PLOS ONE | DOI:10.1371/journal.pone.0124568 May 7, 2015 10/19



D)
@ : PLOS | ONE Ornate Spiny Lobster in the South-East Asian Archipelago

$ g 5 g § §
& § §& N $ $
= S &) &) N <
$ S $ kS £ $
h. o N § N =~ =~
1.00
0.80
0.60
0.40
0.20
0.00
N & oy &,
& § LA $ §
& & N < N Q
I S
& 2 &

Fig 3. Bayesian individual assignment analysis for K = 2 for Panulirus ornatus genotyped at ten microsatellites across six Indo-Pacific sampling
sites. Colours (grey or white) represent probability (y-axis) of individuals being assigned to each genetic cluster, whilst numbers (x-axis) represents
population individuals sampled from 1 = Torres Strait, 2 = West Timor, 3 = Lombok, 4 = North Sumatra, 5 = Binh Thuan (Vietnam), 6 = Da Nang (Vietnam).
Sampling locations were used as priors.

doi:10.1371/journal.pone.0124568.9003

Discussion
Genetic population structure

A combination of mitochondrial DNA control region and microsatellite DNA data suggest a
single, genetically homogeneous stock of tropical ornate spiny lobster across a broad region of
the South-East Asian archipelago. Genetic differences were not detected between samples of P.
ornatus from Vietnam, Indonesia and Australia-PNG, supporting the hypothesis by Williams
[6] of low genetic structuring of this species across the region due to its long oceanic larval de-
velopment phase and wide larval transport capability. Neither population genetic (Fsr, 7,
Bayesian) or phylogeographic network analyses indicated any evidence for restrictions on gene
flow across the region and integration of biological and oceanographic data show that genes
can potentially circulate unimpeded throughout the entire region in only a few generations.

Similar occurrences of high population inter-connectivity have been observed in other
Panulirus species and may be a consequence of the long larval dispersal and adult migration
life-history within this genus of lobsters. For instance, genetic studies on Japanese spiny lobster,
P. japonicus, failed to reveal any stock heterogeneity within the Japan Sea [52]. Low heteroge-
neity was also observed for P. gilchristi in South Africa [53] and P. cygnus in Western Australia
[54]. However, the long pelagic larval duration of Panulirus lobsters does not always lead to
low population divergence. In P. argus, for example, genetic differentiation is present between
Bermuda and Florida populations within the Caribbean Sea, as well as those from Venezuela
and Brazil [55]. Likewise, South African P. delagoae and P. elephas populations in the Atlantic
Ocean and Mediterranean Sea exhibit shallow, but significant, levels of genetic structuring [56,
57]. Recently, high gene flow was found in P. penicillatus within localities in Western Pacific,
but genetic structure was detected between Western and Eastern Pacific populations [58, 59].
In both study cases, the patterns of ocean currents were considered to be main factors contrib-
uting to larval dispersal and thus the population structure of spiny lobster species. Therefore,
while life-history might play a part in determining genetic structure in this genus of lobsters,
local oceanographic and other biogeographic factors largely drive the level of genetic structure
that can be formed.
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Fig 4. Seasonal surface ocean currents in the surface well-mixed layer in the South-East Asian archipelago at the times when Panulirus ornatus
larvae are travelling between the various sites shown in Fig 5, based on previous studies [13, 42, 45, 48, 49] and ARGOS data (http://www.aoml.
noaa.gov/phod/graphics/dacdata/seasonal_wpac.gif). To explain how this connectivity may eventuate, this figure shows the distribution of currents in the
surface well-mixed layer in the South-East Asian archipelago during the periods of larval transport listed in Table 6.

doi:10.1371/journal.pone.0124568.9004

Regarding the mtDNA data presented in our study, previous papers have illustrated the
point that inadequate sampling can lead to the wrong conclusions and for studies based on the
mtDNA control region alone, in the situation where such high haplotypic diversity is evident
within a species very large sample sizes can be required to detect common haplotypes and asso-
ciate them with particular geographic areas [60, 61]. As a result, any conclusions made on levels

of genetic structure based purely on the mtDNA control region data presented herein should
be made with caution.

Connectivity network and dispersal pathway

Our oceanographic informed dispersal modelling suggests the potential for complete connec-
tivity of P. ornatus populations within the South-East Asian archipelago within three genera-
tions of breeding. Starting arbitrarily as the first generation from the spawning ground in the
Gulf of Papua, with spawning known to occur from November to March (Fig 5), modelling
suggests currents in this region would carry and split the resultant P. ornatus larva into two lar-
val plumes; one plume is transported in a loop in the northwest Coral Sea to return to the Tor-
res Strait, while the other plume exits the Coral Sea through the Vitiaz Strait to enter the
Bismarck Sea where larvae are carried north-westward along the north-eastern coast of PNG
from April to June. Timing is critical for the larvae of this second plume. If the larvae were to
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Table 6. Estimate time (t) for larvae/pueruli to reach different locations in the South-East Asian Archipelago, calculated from the length (L) between
two sites, measured by Distance Calculator (http://www.mapdevelopers.com/distance_finder.php) and the average speed of current (u) in the sur-
face well-mixed layer along that streamline during that period, inferred from modelling studies of different authors.

Route Local Route Author Data time Data u(em/s) L t (days)
depth
(m) From To (km) From To Average
PNG - Gulf of Papua—Torres Strait Schiller et al. [13] Jan-Jul <250 10 15 1,361 105 157 105-157
Australia - Gulf of Papua—Bismack Sea Schiller et al. [13] Jan-Jul <250 15 30 1,381 53 107 49-107
Philippines Cravatteet al. [43] Jan-Jul <100 15 35 1,381 46 107
Bismack Sea—Philippines/Banda ARGO (2013) Jun-Sep <50 20 30 2,744 106 159 106-159
Sea
Luzon Strait—Central Vietnam Manh and Yanagi [46] Oct-Dec ~0 15 20 1,416 82 109 76-109
Philippines Liang et al. [45] Dec <50 15 20 1,416 82 109
Vietnam - Potemra and Qu [49] Dec-Jan- <100 15 25 1,416 66 109
Feb
Indonesia Palawan—Central Vietnam Liang et al. [45] Dec <50 15 20 2,148 124 166 124-166
Central Vietnam—Java Sea Liang et al. [45] Dec <50 25 30 1,818 70 84 7095
Farshid (unpubl. data)  Dec-Jan- <10 20 30 1,818 70 105
Feb
Eastern Samar—Lombok Liang et al. [45] Jul <50 25 50 2,674 62 124 67-119
Schiller et al. [13] Jul <250 25 45 2,674 69 124
Potemra and Qu [49] Mar-Apr- <100 30 40 2,674 77 103
May
Metzger et al. [48] Mean <120 25 50 2,674 62 124
Philippines ~ North Lombok—South Lombok Schiller et al. [13] Jul <250 20 25 2,663 123 154 123-180
Indonesia-  through Banda Sea Mayer et al. [47] Oct <700 15 25 2,663 123 205
Australia South Lombok—North Sumatra Schiller et al. [13] Jul < 250 15 20 2,114 122 163 122-163
Potemra and Qu [49] Jun-Nov <100m 15 20 2,114 122 163
Java Sea—Arafura Sea Forbes and Church Jan <20 10 20 2,536 147 293 147-293
[44]
Schiller et al. [13] Jan <250 10 20 2,536 147 293
Condie [42] Jan <18 10 20 2,536 147 293

doi:10.1371/journal.pone.0124568.1006

arrive two months earlier along the north-eastern coast of PNG, they would be swept eastward
into the Pacific Ocean by the Northern Equatorial Counter Current (NEC). Instead, larvae are
carried through to the southern Philippines where they are dispersed widely by complex, swift
currents through straits between islands from August to September (days 106 to 159 after
spawning). This dispersal is facilitated by the directional swimming towards the shore of the
pueruli during the last 25 days of development. After metamorphosis to the puerulus stage, lob-
sters settle to a benthic existence, where they progressively grow to maturity. It is unlikely they
will move any great distance during this period, however, upon maturation adult lobsters may
migrate up to a few hundred kilometres to the identified spawning grounds in the northern or
western Philippines where they will spawn the second generation of larvae [4], [19, 61].

The second generation of larvae are produced from these adults on the east and west coasts
of the Philippines from May to August. These larvae then potentially disperse in three plumes.
The first plume is advected northward towards Taiwan (Fig 5). The second plume is trans-
ported into the South China Sea and reaches the central coast of Vietnam by September to De-
cember. This predicted timing of the arrival of pueruli in Vietnam given the time of spawning
in the Philippines and ocean current models agrees well with field observations [1, 7]. Part of

PLOS ONE | DOI:10.1371/journal.pone.0124568 May 7, 2015 13/19


http://www.mapdevelopers.com/distance_finder.php

Ornate Spiny Lobster in the South-East Asian Archipelago

c
4 au
~G

Banda Sea—~—._¢' a
[ ’ ° 0

AUSTRALIA

Fig 5. Suggested larval dispersal pathways based on the surface water oceanography and the location of spawning grounds, dispersion patterns
and connectivity for Panulirus ornatus larvae throughout the South-East Asian archipelago. Round circles indicate spawning grounds where the
larvae are released. Square boxes are estimated time that the larvae reach different locations as suggested by the oceanography and confirmed by field
data; out of them only two points have no field data, namely arrival times of larvae from Lombok in Torres Strait and the time of transit of the larvae along the
north coast of Papua New Guinea. The different colours represent the different putative larval dispersal pathways, in order to distinguish separate flows.
Estimated time is presented in Table 6.

doi:10.1371/journal.pone.0124568.9005

this larval plume is further transported past Vietnam southward to Indonesia to reach Lombok
70-95 days later. The third larval plume originates from spawning grounds near Samar from
May to August, from where newly-spawned P. ornatus larvae then would rapidly travel with
the Mindanao Current southward to Lombok which they would reach in about 73-113 days.
At that time the larvae are old enough to metamorphose into pueurli and settle and mature to
become the third generation of adults. Spawning P. ornatus adults in Indonesia appear to pro-
duce two larval plumes. One plume originates in the south of Lombok and would travel with
the Indonesian Throughflow to arrive in the Indian Ocean and ultimately to reach the Indian
Ocean coast of northern Sumatra in November—December. These larvae are advected back to-
wards Lombok during the northern winter monsoon (from November to February) before set-
tling. The second larvae plume originates from the north of Lombok and is advected by
currents to the Banda Sea and the northern Arafura Sea during the northern winter monsoon
to reach Torres Strait waters by February. Evidence for these small juveniles (<40 mm carapace
length) have been observed in Western Torres Strait [62]. We suggest that they will remain
there until they mature as adults and can walk eastward across the Torres Strait to spawning
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grounds in the Gulf of Papua. The connectivity cycle is thus completed over three generations.
Thus, based on the timing of the arrival of pueruli cohorts in Lombok and the time expected
for dispersal of lobster larvae from Lombok to Torres Strait, we suggest that a third spawning
ground exists in Indonesia, possibly around Lombok, but no field data are available. Likewise
not all dispersal pathways are understood. Indeed some larvae originating from the Gulf of
Papua may be transported southward towards the Java and Banda Seas, although there are no
field data to confirm this suggestion.

In our study area the mean sea level was 100 m lower at the end of the last Ice Age about
20,000 years ago. At that time the Torres Strait was land and there was no connection between
the Arafura Sea and the Coral Sea; in fact it is only about 8000 years ago that Torres Strait was
flooded [63]. Thus the alternative explanation for our observations, namely that there was a
formerly widespread population that subsequently became genetically differentiated, but with
no apparent genetic signal yet due to incomplete sorting, appears unlikely.

Implications for management

The existence of a single genetic population of P. ornatus characterised by drift connectivity
[64] might have important implications for the sustainable management of this lobster in that
the species within the region needs to be managed as one genetic stock. However, more work is
required on the demographic connectivity of these populations so that the combined genetic
and demographic connectivity datasets can inform management of this species as either one
unit, or on the basis of individual spawning grounds [65].Consequently, a multi-governmental
fishery policy should be developed by Australia, Papua New Guinea, the Philippines, Vietnam
and Indonesia, to ensure sustainability. While the sinks of P. ornatus larvae are known, the
knowledge of larval sources is still rudimentary, with to date only a few spawning sites con-
firmed. The present study suggests that an additional spawning ground may also be present in
Indonesia, and its location needs to be identified and protected. More detailed studies on popu-
lation connectivity are necessary to ensure the sustainability of lobsters in the South-East Asia
archipelago. Genetic connectivity should be conserved as a priority.

Conclusion

This study based on population genetic analyses at both mtDNA and nuclear DNA markers in-
dicates high levels of connectivity among P. ornatus populations throughout the South-East
Asian archipelago. The study is novel in terms of population dynamics because it suggests that
this connectivity requires three generations for the cycle to complete and is reliant on timing of
spawning events, time to settlement and prevailing ocean currents. These results have implica-
tions for fisheries management in the region, because there appears to be single stock of P.
ornatus, which requires the engagement of governments and agencies to provide effective man-
agement policies for the benefit of all countries. A modelling study of larval transport processes
over at least three generations is necessary to better locate the larval dispersal pathways and
quantify the population dynamics including the relative influence of self-seeding versus broad-
cast connectivity between spawning populations.
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