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Abstract: Genetic variability can modulate individual drug responses. A significant portion of
pharmacogenetic variants reside in the noncoding genome yet it is unclear if the noncoding variants
directly influence protein function and expression or are present on a haplotype including a functionally
relevant genetic variation (synthetic association). Gene-wise variant burden (GVB) is a gene-level
measure of deleteriousness, reflecting the cumulative effects of deleterious coding variants, predicted
in silico. To test potential associations between noncoding and coding pharmacogenetic variants,
we computed a drug-level GVB for 5099 drugs from DrugBank for 2504 genomes of the 1000
Genomes Project and evaluated the correlation between the long-known noncoding variant-drug
associations in PharmGKB, with functionally relevant rare and common coding variants aggregated
into GVBs. We obtained the area under the receiver operating characteristics curve (AUC) by
comparing the drug-level GVB ranks against the corresponding pharmacogenetic variants-drug
associations in PharmGKB. We obtained high overall AUCs (0.710 ± 0.022–0.734 ± 0.018) for six
different methods (i.e., SIFT, MutationTaster, Polyphen-2 HVAR, Polyphen-2 HDIV, phyloP, and
GERP++), and further improved the ethnicity-specific validations (0.759 ± 0.066–0.791 ± 0.078). These
results suggest that a significant portion of the long-known noncoding variant-drug associations
can be explained as synthetic associations with rare and common coding variants burden of the
corresponding pharmacogenes.

Keywords: drug response; genetic variability; deleterious sequence variant; pharmacogenomics;
pharmacogenetics; next generation sequencing; variant burden

1. Introduction

Person-to-person drug response variability is a major problem in pharmacotherapy, clinical trials,
and drug development since it can often lead to a therapeutic failure or an adverse drug reaction (ADR).
Besides common genetic polymorphisms, recent sequencing projects have revealed a plethora of rare
genetic variants in genes encoding proteins. Genetic variations in genes encoding drug-metabolizing
enzymes, receptors, and transporters have been associated with individual variability in drug efficacy
and toxicity [1,2].

Population-based and genome-wide observational studies such as the genome-wide association
studies (GWAS), are some of the most powerful tools for investigating the genetic variant-drug
associations (VDAs). However, current approaches in a clinical affected vs. non-affected case-control
setting are inherently limited because: (1) the numbers of genotypes, drugs, and their associations
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are too numerous to be reliably tested. (2) rare variants are not likely observed, which are crucial
to understanding the inter-individual differences in drug response. [3] Study sizes are usually only
enough to find the common variants. (3) Most of the variants identified from GWAS appear in the
noncoding regions, which are not directly informative [4].

Recently, technological advances in next generation sequencing (NGS) have facilitated large-scale
genetic variability studies, and pharmacological impacts of numerous genetic variants continue to
be discovered. This enables alternative approaches for predicting the inter-individual drug response
differences. Gene-wise variant burden (GVB), an integrated gene-level measure of the cumulative
impact of the multitude of deleterious variants, including common, rare, and even novel variants
on a given gene, has been successfully applied to address many pharmacogenetic problems [5–8].
Pharmacokinetic and pharmacodynamic genes associated with withdrawn, precautionary, and the US
FDA-approved pharmacogenomics biomarker drugs exhibited significantly lower GVBs than those
associated with safe drugs [5].

Pharmacogenomics Knowledge Base (PharmGKB) is a comprehensive manually curated catalog of
variant-drug associations (VDAs) between the identified pharmacogenetic variants and the drug-related
phenotypes, with varying levels of evidence from literature and ongoing research [9]. However,
significant portions of the pharmacogenetic variants are common genetic polymorphisms within the
noncoding genome, severely limiting their functional implications. It is unclear if the noncoding
variants directly influence protein function, expression or are present on a haplotype that includes the
functionally relevant genetic variations (synthetic association). Dickson et al. [10] defined synthetic
association as the association of a genotyped common marker resulting from multiple unobserved
low-frequency causal variants.

To test the potential associations between the long-known PharmGKB noncoding and the
NGS-based coding variants, we computed a drug-level GVB score for each of the 5099 drugs obtained
from DrugBank, by integrating the gene-level GVBs of 3668 drug-related genes with 19,038 drug-gene
relations for each of the 2504 individual genomes of the 1000 Genomes Project [11]. Using the VDAs
registered in PharmGKB as ‘gold standard’, we evaluated the correlations between the long-known
noncoding pharmacogenetic variants (or markers) and the gene-wise burdens of newly identified rare
and common coding variants aggregated into the drug-level GVBs.

We comprehensively evaluated GVB for predicting the noncoding VDAs in PharmGKB, by
applying six different in silico methods (i.e., SIFT [12,13], MutationTaster [14], PolyPhen-2 HDIV [15],
PolyPhen-2 HVAR [15], phyloP [16], and GERP++ [17]), different ethnic groups, and anatomical main
groups of drugs (i.e., The Anatomical Therapeutic Chemical (ATC) Classification System). We obtained
the areas under the receiver operating characteristics curves (AUCs) by comparing the drug-level GVB
ranks against the long-known PharmGKB noncoding VDAs for each of the 2504 individual genomes of
the 1000 Genome Project considering ethnicity or not considering ethnicity. The AUCs ranged from
0.710 ± 0.022 to 0.734 ± 0.018 for six different deleterious variant scoring algorithms. Considering
ethnicity generally improved the prediction accuracies (0.759 ± 0.066 to 0.791 ± 0.078). These results
suggest that a significant portion of the long-known noncoding VDAs in the PharmGKB may be
explained by synthetic associations on haplotypes with rare and common coding variants. In silico
drug-level GVB integrating individual genome sequences with pharmacogenetic knowledge may
complement the current population-based observational pharmacogenomics research, and vice versa.

2. Results

Figure 1 demonstrates the steps for computing the gene-level and the drug-level GVBs of the 3668
pharmacogenes and 5099 drugs with the 19,038 PK/PD relations obtained from the DrugBank (Figure 1,
left panel), and evaluating scores by testing presence or absence of the 2011 known noncoding VDAs
in the PharmGKB (right panel) for each of the 2504 individual genomes of the 1000 Genomes Project
(middle panel). Figures S1 and S2 show the distributions of variant score and the GVB distributions of
genes and drugs using six variant scoring algorithms.
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Figure 1. Workflow of the study. This workflow shows the steps for calculating the gene and drug 
GVB and evaluating scores by testing the presence or absence of the known VDAs in the PharmGKB. 
Abbreviations: VDA, variant-drug associations; PK, pharmacokinetics; PD, pharmacodynamics; GVB, 
gene-wise variant burden; AUC, area under the receiver operating characteristics curve; ROC, 
receiver operating characteristic; TP, true-positive (red); TN, true-negative (green); FP, false-positive 
(blue); FN, false-negative (orange); and GS, gold standard. 

2.1. GVB Score Distribution According to Pharmacogenomics Categories 

Pharmacogenes from DrugBank were classified as belonging either to the more strictly defined 
ADME Core (n = 32) or the ADME Extended (n = 266) genes [18] (Figure 2A) and the PharmGKB VIP 
(Very Important Pharmacogenes) (n = 66) or the ‘general’ PharmGKB (n = 325) genes, with known 
SNPs, which affect the drug efficacy (Figure 2B). The ADME Core and the PharmGKB VIP genes are 
generally regarded as having a stronger pharmacogenetic impact than that in the ADME Extended 
and the ‘ordinary’ PharmGKB genes, respectively. The average gene-level GVBs among the 2504 
subjects, obtained using all the six in silico methods, were statistically significantly lower (p < 0.01) 
for both the ADME Core and the Extended genes than those in both the Other PK (n = 196) and the 
Other PD (n = 1977) genes (Figure 2A). Moreover, the ADME Core genes exhibited a tendency for 
lower average gene-level GVBs than the tendency for the ADME Extended genes. These findings for 
the ADME Core/Extended genes associated with variable drug responses are consistent with the 
general understanding that core pharmacogenetic genes are associated with higher inter-individual 
and/or inter-ethnic drug response variabilities. GVB, which applies geometric mean to individual 
sequences, is designed to capture the genetic variability due to a variable variant distribution in a 
population, by the highly weighting variants with lower (or deleterious) in silico scores, even with 
very low frequencies, down to singletons. Low or very low-frequency variants are frequently ignored 
by other gene-level approaches. Consistent with the ADME classifications, the PharmGKB VIP and 
the ‘general’ PharmGKB genes showed significantly lower average GVBs than those observed in the 
‘ordinary’ Other PK/PD genes in DrugBank (Figure 2B). While a significant portion of the long-
known VDAs in the PharmGKB has been established, considering noncoding SNPs, GVB considers 
only coding variants. Ab initio GVB may suggest the association between noncoding and coding 
variants in the PK/PD genes and their role in drug response variabilities (Figure 2).  

Figure 1. Workflow of the study. This workflow shows the steps for calculating the gene and drug
GVB and evaluating scores by testing the presence or absence of the known VDAs in the PharmGKB.
Abbreviations: VDA, variant-drug associations; PK, pharmacokinetics; PD, pharmacodynamics; GVB,
gene-wise variant burden; AUC, area under the receiver operating characteristics curve; ROC, receiver
operating characteristic; TP, true-positive (red); TN, true-negative (green); FP, false-positive (blue); FN,
false-negative (orange); and GS, gold standard.

2.1. GVB Score Distribution According to Pharmacogenomics Categories

Pharmacogenes from DrugBank were classified as belonging either to the more strictly defined
ADME Core (n = 32) or the ADME Extended (n = 266) genes [18] (Figure 2A) and the PharmGKB VIP
(Very Important Pharmacogenes) (n = 66) or the ‘general’ PharmGKB (n = 325) genes, with known
SNPs, which affect the drug efficacy (Figure 2B). The ADME Core and the PharmGKB VIP genes are
generally regarded as having a stronger pharmacogenetic impact than that in the ADME Extended
and the ‘ordinary’ PharmGKB genes, respectively. The average gene-level GVBs among the 2504
subjects, obtained using all the six in silico methods, were statistically significantly lower (p < 0.01)
for both the ADME Core and the Extended genes than those in both the Other PK (n = 196) and the
Other PD (n = 1977) genes (Figure 2A). Moreover, the ADME Core genes exhibited a tendency for
lower average gene-level GVBs than the tendency for the ADME Extended genes. These findings
for the ADME Core/Extended genes associated with variable drug responses are consistent with the
general understanding that core pharmacogenetic genes are associated with higher inter-individual
and/or inter-ethnic drug response variabilities. GVB, which applies geometric mean to individual
sequences, is designed to capture the genetic variability due to a variable variant distribution in a
population, by the highly weighting variants with lower (or deleterious) in silico scores, even with
very low frequencies, down to singletons. Low or very low-frequency variants are frequently ignored
by other gene-level approaches. Consistent with the ADME classifications, the PharmGKB VIP and
the ‘general’ PharmGKB genes showed significantly lower average GVBs than those observed in the
‘ordinary’ Other PK/PD genes in DrugBank (Figure 2B). While a significant portion of the long-known
VDAs in the PharmGKB has been established, considering noncoding SNPs, GVB considers only
coding variants. Ab initio GVB may suggest the association between noncoding and coding variants in
the PK/PD genes and their role in drug response variabilities (Figure 2).



Int. J. Mol. Sci. 2020, 21, 3091 4 of 13
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 13 

 

 
Figure 2. Gene-level GVB distribution in four pharmacogenetic categories across six in silico methods 
obtained from the 2504 individual genomes. Average GVB distributions of (A) ADME Core, 
Extended, Other PK, and Other PD genes and (B) PharmGKB VIP, Genes with known SNPs which 
affect drug efficacy from PharmGKB, Other PK, and Other PD genes across six in silico variant scoring 
methods (i.e., SIFT, MutationTaster, PolyPhen-2, PolyPhen-2 HVAR, phyloP, and GERP++). The 
ADME Core and the ADME Extended genes exhibited significantly lower GVBs than those in the 
Other PK/PD genes and the PharmGKB (VIP) genes, similarly, exhibited significantly lower GVBs 
than those in the Other PK/PD genes from DrugBank. *** p < 0.005; ** p < 0.01. 

2.2. Drug-Level GVB Association with the ‘Gold Standard’ Variant-Drug Associations in PharmGKB 

For each of the 2504 subjects of the 1000 Genome Project, we ranked the drug-level GVBs for the 
5099 drugs from DrugBank. By matching the list of VDAs from the PharmGKB [9] to each of the 2504 
individual genome sequences, we created a PharmGKB drug list as gold standard with their drug-
level GVBs for the 5099 drugs. We obtained the prediction accuracy profiles, including sensitivity, 
specificity, and the area under the receiver operating characteristic curves (AUCs, Figures 3–5), by 
systematically comparing the GVB ranks against the gold standard PharmGKB drug list from the 
known pharmacogenetic VDAs (Figure 1). 

AUCs obtained for all of the 5099 drugs using GVBSIFT (Figure 3A) were 0.7866 ± 0.0608 and 
0.7296 ± 0.0291 for ethnicity-specific (blue line) and ethnicity-non-specific (red line) validations, 
respectively. The ethnicity-specific validations demonstrated consistently higher AUCs than those in 
the non-specific ones for all of the four major ethnic subgroups, i.e., African, American, Asian, and 
European, of the 1000 Genomes Project. Furthermore, the GVB prediction accuracies, using five other 
in silico methods (Figure 3B MutationTaster, Figure 3C Polyphen-2 HVAR, Figure 3D Polyphen-2 
HDIV, Figure 3E phyloP, and Figure 3F GERP++), showed highly consistent validation results (AUCs: 
0.7586 ± 0.0664-0.7914 ± 0.0777 and 0.7102 ± 0.0216–0.7338 ± 0.0181) for ethnicity-specific and non-
specific validations, respectively. The African population benefited the most from the ethnicity-
specific validation, with the resulting AUC score ranging from 0.8183 ± 0.051 to 0.8972 ± 0.0586 for 
the six in silico methods. Please note that some GWAS genotype-phenotype associations may be 
validated in one specific ethnic group but not in others [19–21] due to ethnic differences in the linkage 
disequilibrium patterns with causal variants [20].  

Figure 2. Gene-level GVB distribution in four pharmacogenetic categories across six in silico methods
obtained from the 2504 individual genomes. Average GVB distributions of (A) ADME Core, Extended,
Other PK, and Other PD genes and (B) PharmGKB VIP, Genes with known SNPs which affect drug
efficacy from PharmGKB, Other PK, and Other PD genes across six in silico variant scoring methods
(i.e., SIFT, MutationTaster, PolyPhen-2, PolyPhen-2 HVAR, phyloP, and GERP++). The ADME Core and
the ADME Extended genes exhibited significantly lower GVBs than those in the Other PK/PD genes
and the PharmGKB (VIP) genes, similarly, exhibited significantly lower GVBs than those in the Other
PK/PD genes from DrugBank. *** p < 0.005; ** p < 0.01.

2.2. Drug-Level GVB Association with the ‘Gold Standard’ Variant-Drug Associations in PharmGKB

For each of the 2504 subjects of the 1000 Genome Project, we ranked the drug-level GVBs for
the 5099 drugs from DrugBank. By matching the list of VDAs from the PharmGKB [9] to each of the
2504 individual genome sequences, we created a PharmGKB drug list as gold standard with their
drug-level GVBs for the 5099 drugs. We obtained the prediction accuracy profiles, including sensitivity,
specificity, and the area under the receiver operating characteristic curves (AUCs, Figures 3–5), by
systematically comparing the GVB ranks against the gold standard PharmGKB drug list from the
known pharmacogenetic VDAs (Figure 1).

AUCs obtained for all of the 5099 drugs using GVBSIFT (Figure 3A) were 0.7866 ± 0.0608 and 0.7296
± 0.0291 for ethnicity-specific (blue line) and ethnicity-non-specific (red line) validations, respectively.
The ethnicity-specific validations demonstrated consistently higher AUCs than those in the non-specific
ones for all of the four major ethnic subgroups, i.e., African, American, Asian, and European, of the
1000 Genomes Project. Furthermore, the GVB prediction accuracies, using five other in silico methods
(Figure 3B MutationTaster, Figure 3C Polyphen-2 HVAR, Figure 3D Polyphen-2 HDIV, Figure 3E phyloP,
and Figure 3F GERP++), showed highly consistent validation results (AUCs: 0.7586 ± 0.0664-0.7914
± 0.0777 and 0.7102 ± 0.0216–0.7338 ± 0.0181) for ethnicity-specific and non-specific validations,
respectively. The African population benefited the most from the ethnicity-specific validation, with the
resulting AUC score ranging from 0.8183 ± 0.051 to 0.8972 ± 0.0586 for the six in silico methods. Please
note that some GWAS genotype-phenotype associations may be validated in one specific ethnic group
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but not in others [19–21] due to ethnic differences in the linkage disequilibrium patterns with causal
variants [20].
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Figure 3. Ethnicity-specific and non-specific GVB evaluations against the variant-drug associations in 
PharmGKB, the gold standard, for 2504 individual genomes of the 1000 Genome Project. The AUCs 
(mean ± SD) were obtained from the ethnicity-specific (blue line) and the non-specific (red line) 
evaluations of the 5099 drugs from the DrugBank using (A) SIFT, (B) MutationTaster, (C) Polyphen-
2 HVAR, (D) Polyphen-2 HDIV, (E) phyloP, and (F) GERP++ for all and four ethnic subgroups, 
including African (n = 661), American (n = 347), Asian (n = 993), and European (n = 503). The dotted 
line represents the reference line (AUC = 0.5). AUC: area under the receiver operating characteristics 
curve. 

2.3. Evaluation of GVB Prediction Accuracies for Drugs in Different Drug Categories 

The ATC classification system provides 14 anatomical main groups into which 1336 of the 5099 
drugs are classified (Table S1). The overall AUC was better for the ethnicity-specific (blue line) than 
that in the non-specific validations (red line), except for the class [B] Blood and the blood-forming 
organs and [S] Sensory organs (Figure 4). The best AUC score (0.7862) was obtained for antineoplastic 
and immunomodulating agents (class [L], n = 180). Antineoplastic drugs are known to be associated 

Figure 3. Ethnicity-specific and non-specific GVB evaluations against the variant-drug associations
in PharmGKB, the gold standard, for 2504 individual genomes of the 1000 Genome Project. The
AUCs (mean ± SD) were obtained from the ethnicity-specific (blue line) and the non-specific (red line)
evaluations of the 5099 drugs from the DrugBank using (A) SIFT, (B) MutationTaster, (C) Polyphen-2
HVAR, (D) Polyphen-2 HDIV, (E) phyloP, and (F) GERP++ for all and four ethnic subgroups, including
African (n = 661), American (n = 347), Asian (n = 993), and European (n = 503). The dotted line
represents the reference line (AUC = 0.5). AUC: area under the receiver operating characteristics curve.

2.3. Evaluation of GVB Prediction Accuracies for Drugs in Different Drug Categories

The ATC classification system provides 14 anatomical main groups into which 1336 of the 5099
drugs are classified (Table S1). The overall AUC was better for the ethnicity-specific (blue line) than
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that in the non-specific validations (red line), except for the class [B] Blood and the blood-forming
organs and [S] Sensory organs (Figure 4). The best AUC score (0.7862) was obtained for antineoplastic
and immunomodulating agents (class [L], n = 180). Antineoplastic drugs are known to be associated
with a large inter-individual toxicity and response profile variabilities, and genetic heterogeneity is one
of the main contributors to these variabilities [22–24].

Figure 5 summarizes the AUC distributions by the different ATC anatomical main groups, using
six different in silico methods. GVBSIFT exhibited robust performance across all the ATC drug classes,
especially in the ethnicity-specific validations (all AUCs > 0.5 and AUC = 0.7862) for antineoplastic and
immunomodulating agents, respectively, (class [L], n = 180). Classes [G] and [H] were excluded because
they had no gold standard VDAs in the PharmGKB. For classes [M], [P] and [V], no ethnicity-specific
VDA information was available in the PharmGKB. Evaluation results using the other five in silico
methods for the ATC anatomical main drug groups have been provided in Figures S3–S7.
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Figure 4. Drug-level GVB evaluation in predicting the variant-drug associations in PharmGKB across
different drugs in 12 anatomical main groups. Drug-level GVBSIFT for the 2504 individual genomes
of the 1000 Genome Project was evaluated, according to the 14 anatomical main groups provided by
ATC, two classes, [G] and [H], were excluded due to the lack of variant-drug association in PharmGKB
(Table S1). The dotted line represents the reference line (AUC = 0.5). The best AUC score (0.7862) was
obtained for antineoplastic and immunomodulating agents (class [L], n = 180). Ethnicity-specific (blue
line) rather than the non-specific (red line) validations showed better AUCs, except for class [B] and [S].
AUC: area under the receiver operating characteristics curve.
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The vast majority of GWAS findings are noncoding variants [25]. Indeed, 88% ( = 2011/2364) of 
the known VDAs from PharmGKB used for our evaluation study were noncoding variants. Many 
noncoding variants resided in regulatory regions such as promoter, 5′-untranslated regions (5′-UTR), 
intronic regions, 3′-untranslated regions (3′-UTR), and intergenic regions, which control gene 
splicing, transcription, and translation [26]. The effects of noncoding variants on drug responses can 
be interpreted as the potential impact of noncoding variants on functional aspects of a coding gene 
[4]. Non-coding variants in the vitamin K epoxide reductase complex 1 (VKORC1) gene have been 
known to affect gene transcription and alter dose requirements of warfarin [27], which targets the 
VKORC1 gene and causes inhibition on VKORC1 activities.  

Figure 5. Comparison of the drug-level GVB prediction accuracies for variant-drug associations in
PharmGKB across different anatomical main groups of drugs, using six different in silico methods. The
AUCs for the (A) ethnicity-specific and (B) ethnicity-non-specific evaluations across the 14 anatomical
main groups using six different in silico methods (i.e., SIFT, MutationTaster, PolyPhen-2 HVAR,
PolyPhen-2 HDIV, phyloP, and GERP++). The dotted line represents the reference line (AUC = 0.5).
GVBSIFT exhibited robust performance across all the ATC classes, especially in the ethnicity-specific
validations (all AUCs > 0.5 and AUC = 0.7862 for antineoplastic and immunomodulating agents (class
[L], n = 180), respectively). Classes G and H were excluded due to the lack of variant-drug association
(VDA) in PharmGKB and classes M, P, and V (A) due to the lack of ethnicity-specific VDA information
in PharmGKB. AUC: area under the receiver operating characteristics curve.

3. Discussion

The present study demonstrated a significant correlation between the long-known noncoding
VDAs (n = 2011), cataloged in the PharmGKB with functionally relevant rare and common coding
variants, in the corresponding 3668 pharmacogenes for the 5099 drugs from the DrugBank. We excluded
coding VDAs in the PharmGKB for fair evaluations. Both the gene- and the drug-level GVBs were
systematically evaluated using six different in silico methods for different ethnic groups of the 2504
subjects of the 1000 Genomes Project. Our study suggests that a significant portion of the long-known
noncoding variant-drug associations could be explained as synthetic associations with rare and
common coding variants in the corresponding pharmacogenes.

The vast majority of GWAS findings are noncoding variants [25]. Indeed, 88% ( = 2011/2364) of
the known VDAs from PharmGKB used for our evaluation study were noncoding variants. Many
noncoding variants resided in regulatory regions such as promoter, 5′-untranslated regions (5′-UTR),
intronic regions, 3′-untranslated regions (3′-UTR), and intergenic regions, which control gene splicing,
transcription, and translation [26]. The effects of noncoding variants on drug responses can be
interpreted as the potential impact of noncoding variants on functional aspects of a coding gene [4].
Non-coding variants in the vitamin K epoxide reductase complex 1 (VKORC1) gene have been known
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to affect gene transcription and alter dose requirements of warfarin [27], which targets the VKORC1
gene and causes inhibition on VKORC1 activities.

In contrast, both the gene- and the drug-level GVBs are based only on the coding variants. The
present study demonstrated that the gene-wise integration of the coding variant burden reliably
predicted the long-known noncoding VDAs (n = 2011) in PharmGKB. It is evident that some of the
noncoding variants directly influence the protein function or expression. However, our result suggests
that a significant portion of the noncoding variants may represent a type of synthetic association
created by the complex unobserved linkage associations of the functionally relevant coding variants
on a haplotype genome. Further studies on these direct-functional and indirect-marker associations
for variable drug responses will be needed.

The current approaches in a clinical affected vs. non-affected case-control setting are prohibitively
costly for correctly evaluating all yet-unknown VDAs, given the overwhelming numbers of genetic
variants, drugs, and their PK/PD associations. Thus, the establishment of an in silico method can be
important and beneficial to the field, which enable us to narrow down and focus on those potentially
critical gene-drug combinations. Ab initio GVB may be applied to discover unknown pharmacogenes
with significant inter-individual drug response variabilities [6–8]. Further improvements and molecular
validations should be required before use GVB as a supportive tool for drug safety scoring for a given
drug for an individual or population, using NGS.

The 1000 Genomes Project provides an effective platform for the systematic analysis of sequence
variations on multiple ethnic groups. Recently, increasing emphasis has been placed on the inter-ethnic
differences in drug response [28]. For instance, the European ancestry has a better antihypertensive
response to calcium channel blockers, compared to those in the African ancestry, whereas the African
ancestry has a better response to diuretics than those in the European ancestry [29]. A specific genotype
may be important in determining drug effects for one population, but not for others. Two common
Beta2-adrenergic receptor (BAR2) polymorphisms, Arg16 to Gly and Gln27 to Glu, are associated with
altered BAR2 response in asthma and hypertension. The Arg16 to Gly allele is more frequent in the
Caucasian-American population than that in the Chinese population and Gln27 to Glu allele, more in
the Caucasian-Americans than those in the African-American or the Chinese populations. Such ethnic
differences in BAR2 polymorphisms explain the altered response to Beta-adrenergic receptor (BAR)
agonists in different ethnic groups [30]. Ethnicity, with different genomic architectures, is one of the
key parameters determining person-to-person drug response variabilities. Our results demonstrated
that GVB correlates better to the ethnicity-specific VDAs than to the non-specific VDAs, which implies
that coding variants are more robust to inter-ethnic variabilities than indirect noncoding ones.

Our current scoring method can be further refined by constructing networks of the drug-gene
interactions and carefully weighting the edges based on a better PK/PD knowledge such as Km, Kcat,
and, Vmax. Although we collected these pharmacokinetic parameters from various databases such
as PubChem [31], BRENDA [32], SABIO-RK [33], and MetaCyc [34], we found that less than 10% of
all the DrugBank drugs had at least one of the above pharmacokinetic parameters. Future work will
be required in order to use up-to-date pharmacokinetic parameters when identified. Demographic
factors, including age, gender, body weight, and ethnicity, and clinical factors such as the renal and
hepatic functions, should also be integrated in order to improve the accuracy of the method and its
potential clinical relevance.

In summary, we suggest that a significant portion of the long-known noncoding pharmacogenetic
markers are indeed ‘synthetic’ representations of the deleterious coding variant burdens on the
corresponding pharmacogenes. We used GVB, which is a gene-level measurement of deleteriousness,
representing the cumulative effects of genetic variants by using next generation sequencing (NGS) data.
We comprehensively evaluated the validity of the method using the known pharmacogenomics VDAs
in the PharmGKB, as the ‘gold standard’, across six different in silico variant scoring methods, different
ethnic groups, and anatomical main groups of drugs. Prediction accuracies were well-validated and
we found ethnicity as one of the essential parameters that improves the accuracy. Our GVB scoring
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method, which is a computational approach for integrating personal genomes with pharmacogenomics
knowledge, may complement the current population-based approach, and vice versa.

4. Materials and Methods

4.1. Data Sets

We downloaded 2504 individual genomes from the 1000 Genomes Project, which comprises
26 ethnic subgroups [11]. No phenotype information was available for the 2504 genomes. Data
about drugs and their targets, metabolic enzymes, transporters, and carriers were collected from the
DrugBank [35], and then we selected 5099 drugs that had at least one PK/PD gene information. Drugs
(5099), 3668 drug-related genes, and 19,038 drug-gene relations were included in the present study
(Table 1).

Table 1. Number of drugs and gene-drug relations used in this study.

Drugs Count

Total drugs 5099

Relations

Enzyme-drug relations 3477

Transporter-drug relations 1772

Carrier-drug relations 318

Target-drug relations 13,471

Total gene-drug relations 19,038

4.2. Calculation of Gene-Wise Variant Burden (GVB) Scores for Genes and Drugs

Gene-wise deleterious coding variant burden (GVB) was calculated as described in our
previous studies [5,6]. Several previous studies [11–15,36,37] have demonstrated that the impact
of nonsynonymous coding variants on protein structure/function can be reliably predicted by
applying empirical rules to the sequence, phylogenetic, and structural information characterizing the
substitutions. An individual who carries a gene affected by deleterious coding variants may show an
altered response to a drug with the PK/PD relationship with that gene. The deleterious variant scores
of SIFT are used to define and derive the GVB scores. For each nonsynonymous coding variant, we
computed the variant deleterious score of variant i, Svi, using the SIFT algorithm as follows:

Svi = SIFT(vi), i f SIFT(vi) ≤ 0.7 (1)

where SIFT(vi) is an estimate of the deleterious effects of a variant vi on the gene/protein
structure/function obtained using the SIFT algorithm.

Multiple nonsynonymous variants of the same gene may synergistically impact the
structure/function of the gene. Gene-level GVB(Gj), the cumulative genic effect of all coding variants of
the gene j, is defined as the geometric mean of the variant scores of all nonsynonymous variants in the
coding region of the gene as follows:

GVB
(
G j

)
=


1 , i f

∣∣∣G j
∣∣∣ = 0 ∏

vi∈G j

Svi


1
|Gj |

, i f
∣∣∣G j

∣∣∣ > 0
(2)

where G j represents the set of all nonsynonymous coding variants of gene j.
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For drug-level GVB of drug k GVB(Dk), the cumulative effect of all genes related with a drug k is
defined as the geometric mean of the GVB scores of all PK and PD genes of the drug extracted from the
DrugBank database as follows:

GVB(Dk) =

 ∏
g j∈Dk

GVB
(
G j

)
1
|Dk |

(3)

where Dk is the set of genes that interact with drug k. The SIFT score ranges from 0 to 1, with a lower
score representing a more severe deleterious variant. Like variant scores, GVB scores range from 0 to 1,
with lower scores representing more severe deleterious genes or altered drug responses.

4.3. Validation Using Known VDAs in PharmGKB

Direct GVB validation using the 2504 individuals of the 1000 Genomes Project is infeasible due to
the lack of phenotype information or traceability. However, the existing pharmacogenomic knowledge
base PharmGKB [9] can be used as the ‘gold standard’ for validation. We were able to identify 2364
PharmGKB associations that had at least one link to the 5099 study drugs. PharmGKB contains
information on drug associations with both coding and noncoding variants. To avoid overlaps, we
excluded 353 PharmGKB VDAs in the coding regions and used only 2011 VDAs in the noncoding
regions to evaluate GVB obtained from coding variants. PharmGKB provides ethnicity information for
some of its VDAs using the Office of Management and Budget (OMB) ethnicity classification scheme.
We identified the ethnicity-specific VDAs in 1232 (61.3%) of the 2011 associations with at least one link
to 246 (4.96%) of the 5099 drugs: 27 African-American, 86 Asian, 138 Caucasian, and the remaining 191
were unspecified.

We created a list of drug-level GVB ranks for the 5099 drugs from the DrugBank for each of the
2504 individuals of the 1000 Genome Project. Then, for each individual, we created a list of PharmGKB
drugs that affected that person by mapping their sequence variants to the known pharmacogenomic
variant-drug associations (VDAs) from PharmGKB.

The GVB score sensitivity and specificity were determined by comparing the GVB score ranks
against the PharmGKB drugs from the known VDAs as the ‘gold standard’ for each individual at all
score rank thresholds. This approach involves assigning the drug (i) a true-positive (negative) value if
it is ranked above (below) a rank threshold and (not) found in the set of PharmGKB drugs and (ii)
a false-positive (negative) if ranked higher (lower) than a threshold, but not (is) found in the set of
PharmGKB drugs.

By counting the numbers of true- and false-positives and negatives at all the threshold cutoffs (or
drug ranks) L for each of the 2504 individuals, we computed the drug rank sensitivity and specificity
as follows:

sensitivity =
|DL ∩GS|
|GS|

, speci f icity = 1−
|DL −GS|
|D−GS|

(4)

where D represents the 5099 drugs, GS is the set of PharmGKB drugs used as the gold standard, and
DL the set of drugs that appear above the threshold L. We also computed the AUCs for the 26 ethnic
subgroups. It should be noted that we defined GS in both the ethnicity-specific and the non-specific
settings. The ethnicity-specific GS was extracted from the VDAs reported in the same ethnic group as
the individual, while the non-specific GS, from all of the VDAs regardless of ethnicity. The specificity,
sensitivity, and area under the receiver operating characteristics curves were obtained using the R
language ROCR package [38], R version 3.5.1.

4.4. Evaluation of GVB Derived from Other in Silico Variant Scoring Methods

For a comprehensive evaluation, we also computed GVB of the 5099 drugs for the 2504 subjects
using five other in silico variant scoring methods (i.e., MutationTaster [14], PolyPhen-2 HDIV [15],
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PolyPhen-2 HVAR [15], phyloP [16], and GERP++ [17]). Several other scoring algorithms were excluded
for evaluation by reason of right-skewed distribution (MutationAssessor [39], FATHMM [40] and
Siphy [41]) or binary weighting scheme (LRT [42]). To normalize the GVB derived from the different
scoring methods specified above, we transformed the score ranges from zero to one, with a lower score
representing a more severe deleterious variant. After normalizing the GVBs, we performed the same
validation steps on the long-known VDAs in the PharmGKB as mentioned above.

Supplementary Materials: Can be found at http://www.mdpi.com/1422-0067/21/9/3091/s1. Table S1. ATC drug
classes by anatomical main groups. Figure S1. Variant score distributions of the 2504 individual genomes of the
1000 Genome Project using six variant scoring algorithms. Figure S2. GVB distributions of genes and drugs of the
2504 individual genomes of the 1000 Genome Project. using six variant scoring algorithms. GVB distributions
of (A) 3668 drug-related genes and (B) 5099 drugs. Figure S3. Evaluation of different anatomical main groups
using the Mutation Taster algorithm. Figure S4. Evaluation of different anatomical main groups using the
Polyphen-2 HVAR algorithm. Figure S5. Evaluation of different anatomical main groups using the Polyphen-2
HDIV algorithm. Figure S6. Evaluation of different anatomical main groups using the PhyloP algorithm. Figure
S7. Evaluation of different anatomical main groups using the GERP++ algorithm.
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