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Cudraxanthone D (CD), derived from the root bark of Cudrania tricuspidata, is a natural xanthone compound. However, the
biological activity of CD in terms of human metabolism has been barely reported to date. Autophagy is known as a self-
degradation process related to cancer cell viability and metastasis. Herein, we investigated the effects of CD on human oral
squamous cell carcinoma (OSCC)metastatic related cell phenotype.We confirmed that CD effectively decreased proliferation and
viability in a time- and dose-dependent manner in human OSCC cells. In addition, OSCC cell migration, invasion, and EMTwere
inhibited by CD. To further determine the underlyingmechanism of CD’s inhibition of cell metastatic potential, we established the
relationship between EMTand autophagy in OSCC cells. /us, our findings indicated that CD inhibited the potential metastatic
abilities of OSCC cells by attenuating autophagy.

1. Introduction

Autophagy is a biological process that protects against
cellular homeostasis disruption from intracellular or envi-
ronmental stresses, such as hypoxia, starvation, and cyto-
chemism [1]. During autophagic processes, double-
membrane vesicles, called autophagosomes, sequester cy-
toplasmic organelles and carry them to lysosomes. Lastly,
autophagosome-fused lysosomes are degraded [2]. Auto-
phagy is related to many pathological and physiological
processes, such as apoptosis and cancer metastasis. /e role
of autophagy in tumor cells is known as a “dual-edged
sword”—it may function as a tumor suppressor by pro-
tecting proteins from damage during the tumor formation
stage, while in terms of tumor growth, autophagy might be a

tumor promoter by distributing substrates for metabolic
balance. Recently, much evidence of autophagy function in
cancer has been reported such that it is key in the devel-
opment of chemotherapeutic agents [3–6].

Tumor metastasis is divided into sequences of stages. Of
the multistep processes, epithelial-mesenchymal transition
(EMT) is concerned with local invasion [7], by which, when
it is initiated, epithelial cells lose their properties and are
transformed into different types of cells with mesenchymal
properties, thereby increasing cell mobility and migration
[8]. /e interplay between autophagy and EMT has been
thought for a long time to be connected. One study reported
that increasing autophagy supports various cancer cells’
EMT during spreading by upregulating cell motility [9–11].
On the other hand, there are data that indicate that
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autophagy prevents tumor cells from engaging in EMT by
activating autophagic process and returning to the EMT
phenotype. Synthetically, it is important to control auto-
phagy and EMT interactions for regulation of tumor me-
tastasis [12–14].

Cudraxanthone D (CD), a natural xanthone compound,
is derived from the root bark of Cudrania tricuspidata
distributed widely in Korea, Japan, and China [15]. Its
compounds are used as traditional drugs for many diseases
[16–19]. However, the relationship among oral squamous
cell carcinoma (OSCC), autophagy, and EMT is unknown.
So, in this study, we investigate what the role of autophagy is
in OSCC cell metastatic cell phenotype and elucidate
whether CD might be a strategically novel agent in oral
cancer cell migration and invasion.

As is well known, autophagy and EMT are major bi-
ological processes in the occurrence and development of
cancer, and there is a complex relationship between auto-
phagy and EMT signaling pathways.

2. Materials and Methods

2.1. Reagents. Fetal bovine serum (FBS), Dulbecco’s mod-
ified Eagle medium (DMEM), and DMEM : nutrient mixture
F-12 (DMEM/F-12) were obtained from /ermo Fisher
Scientific (Pittsburgh, USA). CD was purchased from
ChemFace (Wuhan, China). 3-[4,5-Dimethylthiazol-2-yl]
2,5-diphenyl tetrazolium bromide (MTT) and dimethyl
sulfoxide (DMSO) were procured from Duchefa Biochemie
(Haarlem, the Netherlands). Rabbit antibodies, E-cadherin,
slug, snail, ATG5, beclin-1, and LC3B were purchased from
Cell Signaling Technology (Beverly, USA). /e anti-mouse
HRP-conjugated secondary antibody and anti-rabbit HRP-
conjugated secondary antibody were obtained from Enzo
Biochem (Farmingdale, USA). Acridine orange and 3MA (3-
methyladenine) were obtained from Sigma-Aldrich (St.
Louis, USA).

2.2.CellCulture. /eCa9-22, SCC25, and CAL27 cells were
procured from America Type Culture Collection (Mana-
ssas, USA). HSC4 cells were provided by Professor Sung-
Dae Cho of the Department of Oral Pathology, School of
Dentistry, Chonbuk National University (Jeonju, Korea).
Ca9-22 and CAL27 cells were cultured in DDMEM,
/ermo Fisher Scientific (Pittsburgh, USA), while the
SCC25 cells were cultured in DMEM/F-12. HSC4 cells were
cultured in MEM with 10% FBS and 1% penicillin-strep-
tomycin at 37°C in a humidified 5% carbon dioxide (CO2)
atmosphere. CD was dissolved in DMSO at a stock solution
of 10mM and was kept at 4°C. /e CD stock solution was
diluted to marked concentrations with medium when we
required.

2.3. Cell Viability Measurement. /e cell viability of OSCC
cells was determined using an MTT assay. Cells were cul-
tured in 96-well plates and then incubated for different time
periods in the presence of various concentrations of CD
(0–100 μM). After terminating the treatment, the medium

was removed and 100 μl of MTT (500mg/mL) was added to
each well. /e cells were incubated for 3 h at 37°C to form
formazan crystals. /e formazan crystals were measured as
described in the previous study [20].

2.4. Wound Healing Assay. A wound healing assay was
performed to investigate the cell proliferation and migration
ability of OSCC cells. Cells were seeded to roughly 80–90%
confluence into six-well plates. A 1mm pipette tip was used
to formulate wounds, and debris was washed with PBS twice.
Migrated cells into the wound area were visualized under an
inverted microscope at 200x magnification (Olympus,
Tokyo, Japan).

2.5. Migration and Invasion Assay. Cell invasion assay
(transwell assay) and migration assay were conducted to
examine the capacity of cell invasion and migration, as
described previously. A transwell with an 8 μm pore poly-
carbonate membrane (Corning Costar, Cambridge, USA)
was coated with 40 μl Matrigel at 200 μg/ml and incubated
for 2 h. Next, OSCC cells were seeded and treated with 3MA,
resveratrol, and CD./e upper chamber of the transwell was
filled with serum-free medium and the lower chamber with
800 μl medium containing 10% FBS for 72 h of incubation at
37°C in a humidified 5% CO2 atmosphere. /e cells were
fixed in methanol and stained with hematoxylin for 30min
and were then counted under an inverted microscope
(Olympus, Tokyo, Japan).

2.6. Immunofluorescent Staining. OSCC cells were cultured
in DMEM with 3MA, resveratrol, and CD on a Lab-Tek™ II
Chamber Slide (Nunc; /ermo Fisher Scientific, Rochester,
USA). After 24 h, cells were stained with acridine orange
(Sigma-Aldrich, St. Louis, USA). Fluorescent images were
observed and analyzed as described in the previous study
[20].

2.7. Western Blot Assay. Cells were harvested in the form of
pellets, and then it was lysed in 150 μl RIPA buffer (300mM
NaCl, 50mM Tris-Cl (pH 7.6), 0.5% Triton X-100, 2mM
PMSF, 2 μl/ml aprotinin, and 2 μl/ml leupeptin/protease
inhibitor cocktail) and incubated at 4°C for 1 h. /e lysate
was centrifuged at 13,200 RPM for 30 minutes at 4°C.
Protein quantification, electrophoresis, and detection of
protein expression were performed in the same manner as
described in the previous study [20].

2.8. Statistical Analysis. All data represent mean ± SD
(standard deviation). Statistical analyses were conducted
using one-way analysis of variance (ANOVA) followed by
Dunnett’s multiple comparison test. A difference of p value
less than 0.05 was considered significant.

3. Results

3.1. Cudraxanthone D Affects Cell Viability in Human OSCC
Cell Lines. To choose proper concentrations of CD, human
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OSCC cell lines, specifically Ca9-22, CAL27, SCC25, and
HSC4 cells, were cultured with 0–100 μM CD for 24–72 h.
After treatment, cell viability was determined using an MTT
assay. As shown in Figure 1, CD was cytotoxic to OSCC cells
in a dose- and time-dependent manner. In particular, Ca9-
22 and SCC25 cells were very sensitive to CD. So, these cells
were selected and the subsequent experiments were carried
out.

3.2. Cudraxanthone D Suppresses Epithelial-Mesenchymal
Transition inCa9-22andSCC25Cells. To determine whether
CD affected OSCC cell cancer metastatic phenotype, we
conducted a wound healing assay, transwell assay, and
western blotting. Cell migration capabilities were

investigated by the wound healing assay and transwell assay
without Matrigel. /e results demonstrated that the scratch
wound area of the nontreated group was covered with
proliferating Ca9-22 and SCC25 cells by approximately 55%
while in the CD-treated group, the wound area covered only
approximately 10% and 11% compared to prescratching,
respectively (Figures 2(a) and 2(b)). In addition, we per-
formed the transwell assay to verify migration capability in
the absence of Matrigel, also known as a migration assay.
First, Ca9-22 and SCC25 cell suspensions were located in the
upper chamber with serum-starved media, while the lower
chamber was filled with normal media. After 24 h, the
nontreated group of Ca9-22 and SCC25 cells was found on
the underside of the transwell filter. However, with the CD-
treated group, there was a dramatic reduction in the
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Figure 1: /e effect of CD on cell viability in OSCC cells. OSCC cells were treated with CD (0–100 μM) for 24–72 h. (a) Ca9-22, (b) CAL27,
(c) HSC4, and (d) SCC25. Each experiment was performed in triplicate. Error bars denote mean ± SD (standard deviation). ∗p< 0.05
versus untreated cell, respectively.
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migration capability of both cells by approximately 10% and
2%, respectively (Figure 3(a)). Similar results were found
with the invasion assay, with applied Matrigel in the upper
chamber./eCD-treated group exhibited inhibited invasion
capabilities for both cells compared to the control groups
(Figure 3(b)). Moreover, we confirmed the expression of
EMT-associated proteins, such as E-cadherin, slug, and snail
as shown in Figures 3(c) and 3(d). CD significantly upre-
gulated E-cadherin, while slug expression was scarcely
changed in both cells. Variation in snail expression was
observed quite pronouncedly in Ca9-22. Collectively, these
results suggested that CD effectively suppressed the EMTof
OSCC cell lines.

3.3. Suppression of Resveratrol-Induced Autophagy by
Cudraxanthone D Affected EMT in Ca9-22. A variety of
evidence indicated that autophagy induction is associated
with tumor cell EMT in various cancers [5, 14]. Hence, in
order to analyze the underlying mechanisms of CD-
inhibited EMT, among diverse autophagy inducers,
resveratrol has attracted attention, recently [21–24]. In our
previous study, we confirmed that resveratrol induced

autophagy in OSCC cell lines [25]. So, we employed
resveratrol as an autophagy inducer and performed AO
(acridine orange) staining and western blotting. Our find-
ings demonstrated that resveratrol increased AO-positive
autophagic vacuoles, and a typical autophagy inhibitor,
3MA, decreased the number of AO-positive cells. CD also
remarkably diminished autophagic vacuoles compared to
the resveratrol-treated group (Figure 4(a)). As shown in
Figures 4(b) and 4(c), resveratrol upregulated autophagy-
related proteins (ATG5, p62, and LC3B) inhibited by 3MA.
CD also inhibited resveratrol-induced autophagy, with 3MA
and CD cotreatment more effective against resveratrol-in-
duced autophagy compared to single treatment. /e
aforementioned results suggested that CD acts as an auto-
phagy inhibitor, while 3MA and CD dual treatment effec-
tively suppressed resveratrol-induced autophagy.

We hypothesize that CD and 3MA inhibited autophagy-
affected migration and EMT in Ca9-22 cells in accordance
with previous studies. To validate the hypothesis, wound
healing assay and transwell assay (migration assay) were
performed. /e results indicated that the wound area of the
resveratrol-treated group was almost filled with migrated
cells. However, the wound area of the 3MA-pretreated and
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Figure 2: CD suppressed wound healing in OSCC cell lines. (a) Representative images and graphs of Ca9-22 cells’ wound healing area
treated with 50 μM CD for 24 h. (b) Representative images and graphs of SCC25 cells’ wound healing area treated with 50 μM CD for 24 h.
Error bars represent mean ± standard deviation (SD). ∗p< 0.05 versus 0 h respectively.
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Figure 3: Continued.
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CD-treated groups was not reduced compared to control
and resveratrol-administered groups (Figures 5(a) and 5(b)).
Similarly, cell migration was induced by resveratrol treat-
ment, and this induction was inhibited by 3MA and CD.

3MA and CD cotreatment significantly inhibited cell mi-
gration as shown in Figures 5(c) and 5(d). Next, to further
elucidate the effect of CD-inhibited autophagy in the OSCC
EMT, we analyzed the EMT-related proteins using a western
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Figure 4: CD acts as an autophagy inhibitor in resveratrol-induced autophagy in Ca9-22 cells. (a) Cells were pretreated with 3MA
(1mM) for 2 h and then 25 μM resveratrol and 50 μM CD for 24 h. After treatment, AO-stained cells were observed under a confocal
microscope. (b) Autophagy-related protein expression was confirmed by western blot. Each group was treated at the indicated
concentrations and times. (c) Relative protein expression levels were normalized to β-actin. Error bars represent mean ± standard
deviation (SD). ∗p< 0.05 versus control, respectively.
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Figure 3: CD inhibited EMT in human OSCC cell lines. Migration assay (a) and invasion assay (b) with Ca9-22 and SCC25 cells were
conducted with a transwell chamber in the absence or presence of 50 μMCD for 24 h. Protein expression of EMTmarkers (E-cadherin, slug,
and snail) was investigated after CD treatment in Ca9-22 (c) and SCC25 (d) cells. Relative protein expression levels were normalized to
β-actin. Error bars represent mean ± standard deviation (SD). ∗p< 0.05 versus control, respectively.
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blot assay. As shown in Figures 5(e) and 5(f), E-cadherin, an
epithelial marker, was downregulated by resveratrol. De-
creased E-cadherin expression was not regulated by 3MA,
but E-cadherin expression increased with application of CD.
Meanwhile, the expression levels of slug and snail, with
mesenchymal properties, increased with resveratrol. Over-
expression of slug and snail was inhibited by 3MA and CD.
Additionally, dual treatment of 3MA and CD was more
effective with respect to EMT protein expression inhibition
than treatment alone./ese data suggest that the application

of CD effectively suppressed resveratrol-induced OSCC
EMT and CD could be a novel autophagy inhibitor.

4. Discussion

Over the past several decades, numerous dietary plant-
extracted medicines have been used for human cancer.
Although various evidence has indicated the advantages of
many natural compounds, the OSCC five-year survival rate
has been lower (approximately less than 50%) owing to
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Figure 5: CD and 3MAdual treatment suppressed autophagy-affected cell migration and EMTin Ca9-22 cells. (a) Cells were pretreated with
3MA (1mM) for 2 h and then 25 μM resveratrol and 50 μM CD for 24 h. Wound area was observed under an inverted microscope by 200x
magnification before or after treatment. (b) Relative ratio of healing wound area compared to before treatment. (c) Cells were treated with
indicated concentrations and times, and migration capability was detected by transwell assay without Matrigel. (d) Relative ratio of
migration capability compared to control. (e) /e expression of EMTmarkers determined by western blot. (f ) Relative protein expression
levels compared to β-actin. Error bars represent mean ± standard deviation (SD). ∗p< 0.05 versus control, respectively.
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many other reasons [26–28]. Among natural compounds,
the Cudrania tricuspidata root bark isolated components,
having a xanthone skeleton, have exhibited various bi-
ological activities [19, 29, 30]. Cudraxanthone H, with a
prenylated xanthone, impacts OSCC growth inhibition and
apoptosis [16]. Also, gerontoxanthone A, cudraflavone B,
and gericudranin E obtained from the root bark of Cudrania
tricuspidata have hepatoprotective effects [31]. Otherwise,
plenty of xanthone series compounds have been used for
various studies [26, 32–35]. Yet, there is no report on CD,
which possesses a xanthone skeleton with a hydrogen-
combined hydroxyl group and mutually ortho-located hy-
droxyl groups, elements of root bark of Cudrania tricuspi-
data in humanOSCC [15]. In this study, for the first time, we
focused on antimetastatic effects and chemotherapeutic
potential of CD against OSCC.

First, we explored the cytotoxic effects of CD on four
types of OSCC. Applications of 0 to 100 μM concentrations
of CD inhibited cell growth in a dose- and time-dependent
manner. Among them, Ca9-22 and SCC25 cells were more
sensitive to CD than other cell lines. Recurrence and
mortality rates of cancer mostly were regulated by metastasis
and invasion of tumor cells, especially OSCC that chiefly
metastasizes to the lymph nodes of cervical regions, fatal
during prognosis [36–38]. Additional experiments such as
wound healing assay, transwell assay, and western blot to
detect expression levels of EMT-related protein indicated
that CD remarkably suppressed cell migration, invasion, and
EMT in Ca9-22 and SCC25 cells. To investigate the EMT
inhibition mechanisms of CD, we concentrated on auto-
phagy-regulated Ca9-22 cell EMT.

More research studies have reported that autophagy has
a close correlation with cancer cell migration and invasion
capability. A previous study suggested that compressive
stress upregulates autophagy, and this status leads to en-
hanced migration of HeLa cells [39]. Further, Gao et al.
reported that glycochenodeoxycholate supports HCC cell
invasion and migration through autophagy activation [40].
Moreover, inhibition of autophagy with chloroquine at-
tenuates metastatic ability in human non-small-cell lung
adenocarcinoma A549 cells [5]. For these reasons, we for-
mulated a hypothesis that CD-inhibited cell EMT ability is
related to autophagy in OSCC cells. As an autophagy in-
ducer, resveratrol is used on the basis of a number of earlier
studies [21, 23, 41–43]. In our previous study, we evaluated
the noncytotoxic concentration of resveratrol [25], where we
induced autophagy by 25 μM of resveratrol.

As expected, resveratrol induced AO-positive autopha-
gic vesicles and expressions of autophagy markers (ATG5,
p62, and LC3B). 3MA, known as a typical autophagy in-
hibitor, suppressed resveratrol-induced autophagic activity.
CD also inhibited resveratrol-induced autophagic actions. In
order to elucidate the mechanism between resveratrol-in-
duced autophagy and OSCC migration as well as invasion
capability, we performed wound healing assay, transwell
assay without Matrigel, and a western blot assay (EMT-
related factors) under the same conditions as in Figure 4./e
results demonstrated that autophagy induction enhanced
cell migration ability and EMT factor expressions in Ca9-22

cells. Inhibition of autophagy by 3MA decreased Ca9-22 cell
motility and EMT-related protein expression compared to
the resveratrol-treated group. Suppression of EMT by CD
wasmore effective than that by 3MA. Additionally, 3MA and
CD cotreatment dramatically inhibited EMTcompared with
a single treatment. /ese results suggested that CD could be
an EMT suppressor through autophagy inhibition.

5. Conclusion

/e present study demonstrated that the molecular mech-
anism underlying the chemotherapeutic properties is that
CD could inhibit metastatic related phenotype in human
OSCC cells by inhibiting autophagy. We are suggesting that
CD has sufficient potential for development as a new an-
ticancer drug.
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