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Abstract

During adaptive evolutionary processes substantial heterogeneity in selective pressure might act across local habitats in
sympatry. Examples are selection for drug resistance in malaria or herbicide resistance in weeds. In such setups standard
population-genetic assumptions (homogeneous constant selection pressures, random mating etc.) are likely to be violated.
To avoid misinferences on the strength and pattern of natural selection it is therefore necessary to adjust population-
genetic theory to meet the specifics driving adaptive processes in particular organisms. We introduce a deterministic model
in which selection acts heterogeneously on a population of haploid individuals across different patches over which the
population randomly disperses every generation. A fixed proportion of individuals mates exclusively within patches,
whereas the rest mates randomly across all patches. We study how the allele frequencies at neutral markers are affected by
the spread of a beneficial mutation at a closely linked locus (genetic hitchhiking). We provide an analytical solution for the
frequency change and the expected heterozygosity at the neutral locus after a single copy of a beneficial mutation became
fixed. We furthermore provide approximations of these solutions which allow for more obvious interpretations. In addition,
we validate the results by stochastic simulations. Our results show that the application of standard population-genetic
theory is accurate as long as differences across selective environments are moderate. However, if selective differences are
substantial, as for drug resistance in malaria, herbicide resistance in weeds, or insecticide resistance in agriculture, it is
necessary to adapt available theory to the specifics of particular organisms.
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Introduction

When an advantageous mutation arises and rapidly increases to

high frequency under strong positive selection, neutral variants on

the same chromosome (initially linked to the mutation) ‘‘hitch-

hike’’ along the mutation to high frequency. This rapid change in

neutral allele frequencies generates a characteristic pattern of

polymorphism, commonly referred to as a ‘‘selective sweep’’.

Meiotic recombination breaks the association between the

advantageous and the neutral allele (the ‘‘hitchhiker’’). Therefore,

the pattern of a selective sweep is contained within a small map

distance from the locus under selection. Signatures of selective

sweeps include the local reduction of polymorphism (expected

heterozygosity), skew of site frequency spectrum, and a unique

spatial pattern of linkage disequilibrium. As vast amounts of

genome-wide data becomes available, the characteristic patterns of

genetic hitchhiking provide a powerful tool to identify candidate

regions in the genome that were recently (or still are) under

positive directional selection. Moreover, as the quality of genetic

data improves, it might be possible to develop methods aiming to

reconstruct the underlying evolutionary dynamics by ‘‘reverse

engineering’’ hitchhiking patterns. This however requires to

extend classical theory to situations that reflect organism-specific

characteristics regarding particularities in e.g. the selective

environment, demography, or mating structure.

[1] first provided a comprehensive mathematical analysis of this

evolutionary process. Since then, remarkable advancements in the

mathematical theory of selective sweeps were made [2–5].

Theories focused on the stochastic patterns of variation, mainly

achieved through coalescent and diffusion approximations, in

order to detect and interpret selective sweeps from DNA sequence

polymorphism. Consequently, as more genomic data became

available, clear cases of selective sweeps that confirm such

theoretical predictions rapidly accumulated (reviewed in [6–8]).

Recent theoretical studies focus on the expansion of theory

beyond the ‘‘standard model’’ of genetic hitchhiking. The standard

model assumes that an advantageous mutation, arising as a single

copy on a random chromosome, increases to high frequency under

constant and homogeneous selective pressure in an ideal random-

mating population of constant size. This model, the basic scenario

of adaptive evolution that [1] considered, is simple enough to allow

the application of diffusion and coalescent approximations and

thus the prediction of stochastic patterns. However, a selective

sweep in a real population must occur under a very complex

demographic structure and under various modes of positive

selection. Application of the standard model of genetic hitchhiking

to the interpretation of actual data may thus lead to a serious
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problem. Recent studies addressed this problem by modeling

selective sweeps that occur from standing genetic variation or

recurrent beneficial mutations [9,10], under arbitrary dominance

of the beneficial allele [11], under selection on a quantitative trait

[12], in newly derived populations [13–15], in geographically

structured populations [16], and under the complex life cycle of

malaria parasites [17,18].

Homogeneity of selective pressure driving the beneficial

mutation to a high frequency is an important assumption in the

standard model of selective sweeps. Typically this is well justified

even for a population that is distributed over multiple ‘‘patches’’

with different selective environments, if individuals move rapidly

over different patches and also mate with other individuals from

other patches. In that case, the population might be modeled to be

panmictic under homogeneous selective pressure, which is given

by the selective advantage of the beneficial allele averaged over all

patches. However, as will be argued below, if mating is restricted

to between individuals within the same patch, it can alter the

effective rate of meiotic recombination and thus the strength of

genetic hitchhiking. This may be important for many species in

which mating occurs between individuals within a restricted range

(under the same selective environment) but the young offspring (or

seeds) are dispersed over a much wider range. Such species include

plants that reproduce frequently by self-fertilization and animals

that lay eggs in common breeding sites from which the young

disperses into random habitats, or agents causing vector-borne

parasitic diseases. Particularly plasmodium species, parasites that

cause human malaria, are further important examples: male and

female gametocytes produced inside a single human host enter a

mosquito’s gut during the blood meal and release gametocytes,

which immediately fuse and undergo meiosis, producing sporozo-

ites that are transferred to different hosts. Therefore, given that

hosts constitute heterogeneous selective environments (‘‘patches’’)

for parasites, an allele under selection experiences random

switches of patches over malaria transmission cycles while mating

always occurs between gametocytes from the same patch. This is

an important consideration for malaria parasites in which strong

patterns of selective sweeps due to the evolution of drug resistance

were discovered [19–22].

This study investigates the hitchhiking effect of a mutant allele

spreading over a heterogeneous environment, which is composed

of patches with different selective pressures. Averaged over all

patches, the mutant allele is advantageous over the wild type. This

model of selection with random dispersal over patches between

generations is known as the hard-selection Levene model (cf. [23],

Ch. 6). [24] originally formulated this model assuming soft

selection. While typically the Levene model is considered to study

the maintenance of multiple alleles at the balance of selective

pressures in different patches, we consider an overall advantage of

the mutant allele that ensures the rapid increase of its frequency by

directional selection. Our model also differs from the Levene

model in which mating between individuals occur within patches.

After formulating the deterministic model and deriving the

corresponding recursion equations, we study the effect of a single

locus under positive directional selection on a neutral multialelic

locus. We propose an analytical solution for the equilibrium

frequencies and the expected heterozygosity at the neutral locus

after the sweep is complete. We further derive approximations for

the equilibrium heterozygosity that are easier to interpret. In

particular we want to contrast within-patch mating and mating

after random dispersion over the whole population. Even further,

we present stochastic simulations in comparison to the analytic

results of the deterministic model.

Methods

Overview of the Model
Assume that a haploid sexual population disperses randomly in

finitely many patches P1, . . . ,PK . Offspring is born in a common

breeding site and then migrates randomly into the K patches. Let

the ak denote the proportion of individuals that migrate into patch

Pk. Viability selection acts differently across patches. After

reaching the reproductive age adults migrate to the common

breeding site for reproduction. A proportion bk of individuals of

patch Pk mates randomly with individuals from the same patch,

whereas the remaining individuals mate randomly in the common

breeding site. The haploid offspring in the next generation

migrates again into the different patches from the common

breeding site. The proportion bk of individuals mating with other

individuals of the same patch has various interpretations. It might

reflect that individuals from different patches arrive at different

times at the common breeding site, and hence they have a higher

chance to mate with individuals from their own patch. Alterna-

tively, it might be interpreted as matings that occur on the way to

the breeding site. It might also reflect that some matings occur

within the patches before migrating to the breeding site. For

simplicity, we will refer to the proportion bk of matings, as within-

patch and to the proportion 1{bk as breeding-site matings.

Suppose that the size of the population is sufficiently large to

treat the evolutionary changes deterministically. Then, the

population in a given generation is represented by a vector p of

haplotype frequencies, which is counted after sexual reproduction

in the common breeding site. The single-generation change of p is

determined by the reproductive success within the different

patches. Mating and meiotic recombination is as described above.

This model superficially appears to be the hard-selection Levene

model (cf. [23] Chapter 6, for a diploid version), which is

equivalent to the standard haploid selection model without

migration. However, there is a crucial difference. Namely, the

Levene model assumes that mating occurs randomly within the

common breeding site, while we assume that only a proportion of

individuals of each patch mates within this site. Clearly, our model

reduces to the hard selection Levene model if bk~0 for

k[f1, . . . ,Kg. On the contrary, if bk~1 all matings occur within

the patches. We will discuss the differences of our model and the

hard-selection Levene model in more detail in the following

sections. (The Levene model was introduced originally by [24] for

soft-selection.).

Change of Haplotype Frequencies
Assume L multi-allelic loci in a genome of haploid individuals,

and let ni be the number of alleles segregating at locus i, yielding to

n~ P
L

i~1
ni haplotypes in total. These are labelled 1, . . . ,n in the

usual order. Their respective relative frequencies in the overall

population are 1, . . . ,pn, which are summarized by the haplotype-

frequency vector p~(p1, . . . ,pn).

Let akpk denote the frequency of haplotype i in patch k. Then

the (absolute) frequency of haplotype i in patch k after selection is

akpiW
(k)
i . Hence, akbkpiW

(k)
i , and ak(1{bk)piW

(k)
i are the

absolute numbers of individuals in patch Pk that mate randomly

within the patch and at the breeding site, respectively. Moreover,

ak
�WW (k)~ak

Pn
i~1

piW
(k)
i denotes the number of haplotypes in patch

k after selection. The probability that a mating between an i- and

a j-haplotype occurs in patch Pk is then given by

Hitchhiking under Heterogeneous Selection
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akbkpiW
(k)
i akbkpjW

(k)
j

a2
kb2

kW
(k)2

~
piW

(k)
i pjW

(k)
j

W
(k)2

: ð1Þ

Let the probability that mating between an i- and a j-haplotype

gives rise to a l-haplotype be R(i,j?l). Therefore, the number of

l-haplotypes that are produced in patch Pk is given by

p
�(k)
l ~

akbk

W
(k)

Xn

i,j~1

piW
(k)
i pjW

(k)
j R(i,j?l) : ð2Þ

The number of l-haplotypes that arrive unmated in the

common breeding site is

XK

k~1

piW
(k)
i ak(1{bk)~piWi , ð3Þ

where Wi~
PK

k~1

(1{bk)akW
(k)
i , and the total number of unmated

individuals at the breeding site is

W~
Xn

i~1

piWi : ð4Þ

Hence, the number of l-haplotypes produced in the breeding site is

p�l ~
1

W

Xn

i,j~1

piWipjWjR(i,j?l) : ð5Þ

From (2) and (5), the relative frequency of haplotype l in the

whole population is calculated to be

p’l~
p�l z

PK
k~1

p
�(k)
l

Pn
j~1

(p�l z
PK

k~1

p
�(k)
l )

: ð6Þ

We shall briefly summarize the classical hard-selection Levene

model:

Remark 1. In the case of the hard selection Levene model, all

individuals mate in a common pool. The relative frequency of i-haplotypes in

the mating pool is p�i ~

PK
k~1

piW
(k)
i ak

Pn
j~1

PK
k~1

pjW
(k)
j ak

~
piWiak

�WW
, where

Wj~
PK

k~1

W
(k)
j ak and �WW~

Pn
j~1

pjWj . Hence, the frequency of

l-haplotypes in the next generation is given by

p’l~
1

W
2

Xn

i,j~1

piWipjWjR(i,j?l) : ð7Þ

Results

Now we want to study genetic hitchhiking, i.e., the influence of

selection at a single locus on a linked neutral locus. For this

purpose we assume that the first locus is selected with two alleles

A1 and A2, and that the second locus is selectively neutral with

finitely many alleles B1, . . . ,BM . We number the haplotypes such

that l stands for A1Bl and lzM stands for A2Bl (1ƒlƒM ).

Moreover, we denote the recombination rate between the two loci

by r.

Dynamics at the Selected Locus
Let us denote the frequency of A1 by p and that of A2 by 1{p.

The fitnesses of a haplotype carrying the allele A1 in patch Pk is

w
(k)
1 , whereas that of haplotypes carrying A2 is w

(k)
2 . Moreover, let

wi : ~
PK

k~1

(1{bk)akw
(k)
i , so that we obtain w1~Wi and

w2~WizM for i[f1, . . . ,Mg.
By marginalization of the above dynamics it is straightforward

to derive the dynamics for p. In subsection 1 of Analysis we show

p’~
pl

plz(1{p)m
, ð8aÞ

where

l~
XK

k~1

akw
(k)
1 ð8bÞ

is mean fitness of A1 among all patches and

m~
XK

k~1

akw
(k)
2 ð8cÞ

is the mean fitness of A2 among all patches.

Note that the dynamics (8) are independent of the bk’s. In

particular, the dynamics (8) at the selected locus are that of the

standard haploid selection model, which is identical to the hard-

selection Levene model.

Summarizing, we obtain:

Result 1. The allele A1 will become fixed in the population if and only

if

lwm:

.

Moreover, by iterating (8a) the frequency of A1 in generation t, with initial

condition p(0)~p0, is calculated to be

p(t)~
p0lt

p0ltz(1{p0)mt
: ð9Þ

Hitchhiking under Heterogeneous Selection
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Furthermore, we have

lim
t??

p(t)~ lim
t??

p0

p0z(1{p0)(
m

l
)t

~

1 if lwm ,

p0 if l~m ,

0 if lvm :

8><
>: ð10Þ

Dynamics at the Neutral Locus
Now we want to study the hitchhiking effect of the spread of an

resistant allele at a single locus on neutral variation. As before p
denotes the frequency of the resistant allele A1. We have

p~
PM
j~1

pj . Moreover, we denote the frequencies of the neutral

allele Bl with an A1-background and A2-background by

Ql~
plPM

j~1

pj

, and Rl~
pMzlPM

j~1

pMzj

, respectively.

In Analysis, subsection 2, we derive Ql in generation T to be

Ql(T)~Ql(0){
r

l
(Ql(0){Rl(0))

XT{1

t~0

Ht P
t{1

t~0
Lpt , ð11Þ

where

Lpt~1{
rHt

l
(

p0

1{p0
(

l

m
)tz1z1) ð12Þ

and

Ht~
XK

k~1

akw
(k)
1 (

(1{bk)

p0

1{p0
(

l

m
)t w1

w2
z1

z
bk

p0
1{p0

( l
m )t w

(k)
1

w
(k)
2

z1

) ð13Þ

~
w1

p0

1{p0
(

l

m
)t w1

w2
z1

z
XK

k~1

akbkw
(k)
1

p0
1{p0

( l
m )t w

(k)
1

w
(k)
2

z1

~
XK

k~0

ckw
(k)
1

p0
1{p0

( l
m )t w

(k)
1

w
(k)
2

z1

:

ð14Þ

In the last step we set ck : ~akbk for k[f1, . . . ,Kg,
c0 : ~

PK
k~1 ak(1{bk), and w

(0)
i ~wi . Hence, we defined patch

P0 as the breeding site, and ck is the proportion of the population

mating in path Pk.

Although, we could in principle derive Rl(T) analogously, we

refrain from doing so. We are only interested in the case in which

the allele A1 sweeps through the population. Hence, at

equilibrium A2 vanishes, and all neutral alleles are linked to the

allele A1. Hence, the equilibrium frequency of Bl is given by

lim
t??

Ql(t). Deriving these frequencies allows to study genetic

hitchhiking. In particular, we have

Q̂Ql~ lim
T??

Ql(Tz1)~Ql(0){(Ql(0){Rl(0))Ar , ð15aÞ

where

Ar : ~
r

l

XT{1

t~0

HtP
t{1
t~0Lpt

~
r

l

XK

k~0

akbkw
(k)
1

X?
t~0

Pt{1
t~0Lpt

p0

1{p0
(

l

m
)t w

(k)
1

w
(k)
2

z1

:
ð15bÞ

From the above it is straightforward to calculate the equilibrium

heterozygosity defined by

ĤH~
M

M{1

XM
l~1

Q̂Ql(1{Q̂Ql) : ð16Þ

The equilibrium heterozygosity depends on the initial allele-

frequency distribution at the neutral locus, because Q̂Ql does.

However, as shown in Analysis (subsection 3) the relative expected

heterozygosity defined by

H : ~
E(ĤH)

E(H0)
~

E(ĤH DH0)

H0

is independent of the initial distribution of allele-frequency

distribution. Here, E denotes the expectation (over the initial

distribution of allele-frequencies), and

H(0) : ~
M

M{1

XM
l~1

Ql(0)(1{Ql(0))

is the initial heterozygosity. We summarize

Result 2. The equilibrium frequency of the neutral allele Bl is given by

(15). The expected relative heterozygosity is calculated to be

H : ~2Ar{A2
r ð17Þ

where Ar is defined in (15b).

Remark 2. For the hard-selection Levene model, we need to set bk~0
for all k, which gives

Q̂Ql~Ql(0){r(Ql(0){Rl(0))
X?
t~0

(1{r)t

p0

1{p0

(
w1

w2

)tz1z1
, ð18Þ

which clearly is exactly the solution for standard hitchhiking.

The differences between our model and the hard-selection

Levene model become obvious from the above remark. Whereas

the dynamics at the selected model coincide for both models,

differences occur at linked neutral loci. Not surprisingly, the hard-

selection Levene model is equivalent to the standard haploid

selection model. In particular, the relative heterozgosity which

measures the hitchhiking effect (see section 3) does not coincide for

the two models. Figures 1, 2, and 3 illustrate these differences.

The analytic solution (17) is insofar not satisfying as it is iterative

and difficult to interpret. We will therefore derive approximations

that have a simpler form and are easier to interpret in terms of the

involved parameters.

Hitchhiking under Heterogeneous Selection
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Approximations
By writing pt for p, and using (8), Lpt

becomes

Lp~1{
r(plz(1{p)m)

lm
(

w1

p
w1
w2

z1{p
z
XK

k~1

akbkw
(k)
1

p
w

(k)
1

w
(k)
2

z1{p

) ð19Þ

(cf. 35, 28). Hence,

lim
p?0

Lp~1{
rm

lm
(w1z

XK

k~1

akbkw
(k)
1 )

~1{
r

l

XK

k~1

ak(1{bkzbk)w
(k)
1 ~1{r :

Moreover,

Figure 1. Heterozygosity as a function of a1. Average relative heterozygosity H(r) (left y-axis) and
l

m
(right y-axis) as a function of a1 assuming

two patches (a2~1{a). We assume either complete within-patch mating and dispersion (WD; b1~b2~1) according to the model introduced here,

or the hard-selection Levene model (L; b1~b2~0). Solid lines correspond to exact solutions according to equations (15) and (18), respectively.

Dashed lines show approximate solutions according to equation (25a) combined with equations (25b) and (25c), respectively. Dots represent the

values obtained from stochastic simulations. Fitness values are shown in the boxes above the plot panels in (A) and (B). Stochastic simulations are

based on 1000 repetitions for each parameter combination and N~10,000. For the exact and approximate solutions we assumed p0~0:0001 to
compensate for the deterministic solution’s overestimation of heterozygosity due to the prolonged initial spread of the beneficial mutation in the
deterministic model.
doi:10.1371/journal.pone.0061742.g001

Figure 2. Heterozygosity as a function of r. Average relative heterozygosity H(r) as a function of r. See legend of Figure 1 for more details.
doi:10.1371/journal.pone.0061742.g002
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lim
p?1

Lp~1{
rl

lm
(
w1

w1

w2

z
XK

k~1

akbkw
(k)
1

w
(k)
1

w
(k)
2

)~1{
r

m

XK

k~1

akw
(k)
2 ~1{r :

In the section Analysis we even show that Lp§1{r, always

holds. Hence, we can appoximately set Lpt
&1{r. Therefore, we

can approximate Q̂Ql by

Q̂Ql&Ql(0){
r

l
(Ql(0){Rl(0))

XK

k~0

akbkw
(k)
1

X?
t~0

(1{r)t

p0

1{p0
(

l

m
)t w

(k)
1

w
(k)
2

z1

: ð20Þ

Note that (20) has the same structure as comparable quantities

in [18]. Hence, (20) can be further approximated with exactly the

same methods as in [18]. This leads to

Result 3. The equilibrium frequency Q̂Ql of the allele Bl is given by

(18). If p0&0, the frequency is approximately

Q̂Ql&~QQl : ~Ql(0){(Rl(0){Ql (0))

1
log (1{r)

(1z r
2(1{r)

){
p

log (1{r)
log m{ log l
0

l ( 1
log (1{r)

z 1
log (1{r){ log lz log m )

PK
k~0

akw
(k)
1 (

w
(k)
1

w
(k)
2

)
log (1{r)

log m{ log l

2
66664

3
77775:
ð21Þ

If additionally r&0, we approximately obtain

Q̂Ql&~QQl :

~Rl(0)z(Ql(0){Rl(0))
XK

k~0

ckw
(k)
1

l
(
w

(k)
1

w
(k)
2

p0)
r

log l{ log m
ð22Þ

Figure 3. Exact vs. approximate average relative heterozygosity. Average relative heterozygosity H(r) as a function of r as given by (15) and
(18), and equation (25a) combined with equation (25b). Two patches with b1~b2~1 were assumed. Moreover, fitness parameters and initial
frequencies are shown in the boxes above the plot panels in (A), (B), (C), and (D).
doi:10.1371/journal.pone.0061742.g003
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~Rl(0)z(Ql(0){Rl(0))p
r

log l{ log m
0

XK

k~0

ckw
(k)
1

l
e

r
log w

(k)
1

{ log w
(k)
2

log l{ log m :

ð23Þ

A scratch of the proof based on the results of [18] is presented in

the section Analysis (subsection 4).

The above results allows for a simple interpretation. The neutral

allele’s frequency is a weighted average over the respective

frequencies resulting from each patch (including the breeding site

P0). The weights are the proportion of individuals mating in each

patch, ck, times the relative size of the patches, i.e., the relative

frequency of individuals in the patch, w
(k)
1 =l. Moreover, within-

patch mating leads to an adjustment factor er
log w

(k)

1
{ log w

(k)

2
log l{ log m for the

neutral allele’s frequency within each patch as compared to

standard hitchhiking. This adjustment measures how deviations of

the selective regime in patch Pk from the overall selection regime

affects recombination. In particular, if
w

(k)
1

w
(k)
2

&
l

m
, we have

er
log w

(k)

1
{ log w

(k)

2
log l{ log m &er&1 for r&0. This implies that patches that

reflect the population average selective pressures can be subsumed

within the common breeding site. However, in patches charac-

terized by ‘extreme’ selective regimes, deviations might be

substantial. We can summarize:

Result 4. Let V : ~fk[f0, . . . ,Kg D D
w

(k)
1

w
(k)
2

{
l

m
Dveg (ew0), be

the set of patches that reflect the overall selective regime. If p0,r&0, the

equilibrium frequency Q̂Ql of the allele Bl is given by

Q̂Ql&Rl(0)z
Ql(0){Rl(0)

l
p

r
log l{ log m
0

(
X
k[V

ckw
(k)
1 z

X
k[Vc

ckw
(k)
1 (

w
(k)
1

w
(k)
2

p0)
r

log l{ log m) ,

ð24Þ

where Vc~f0, . . . ,Kg\V.

The equilibrium heterozygosity is obtained by combining an

adaptation of Result 2 with Result 3 and 4.

Result 5. If p0&0 and r&0 we have

H~1{w2p
2r

log l{ log m
0 , ð25aÞ

where

w~
XK

k~0

ckw
(k)
1

l
e

r
log w

(k)
1

{ log w
(k)
2

log l{ log m ð25bÞ

or

w~
X
k[V

ckw
(k)
1 z

X
k[Vc

ckw
(k)
1 (

w
(k)
1

w
(k)
2

p0)
r

log l{ log m ð25cÞ

with V defined as in Result 4. The factor w is an adjustment due to increased

inbreeding within patches caused by different survival rates resulting from

different selective regimes.

Note, that setting V~f1, . . . ,Kg yields the approximate

herterozygosity for the hard-selection Levene model. Figures 1,

2, and 3 illustrate the above result.

Stochastic Simulations
The stochastic behavior of our two-locus model is explored by

computer simulation in which the population contains a finite

number (N) of haploid individuals. We restrict our attention to

contrast the two extreme situations of complete intra-patch mating

(bk~1 for all k) and to the hard-selection Levene model (bk~0 for

all k). Furthermore, we will assume only two patches for most of

the simulations.

Given N individuals in generation t, sampling of individuals

(offspring) for generation tz1 is performed in the following

manner. First, a copy of a randomly-picked individual in

generation t is sent to patch Pk with probability ak. Then, a

number x is drawn from uniform distribution between 0 and

max
i,k

w
(k)
i . This copy is accepted (i.e. sampled) into generation tz1

if xvw
(k)
i , where i~1 (2) if it carries the mutant (wildtype) allele.

Otherwise this copy is discarded. This procedure is repeated until

all N haploids are sampled. Next, to perform recombination, Nr=2
pairs of individuals are chosen and cross-overs occur. For each

pair, the first individual is chosen randomly from the entire

population. If bk~0, the second individual is also chosen over the

entire population (Levene model). If bk~1, the second individual

is chosen from the same patch. This completes reproduction for

generation tz1. Simulations start (t~0) with one mutant and

N{1 wildtype alleles. If the mutant allele is lost, the simulation

starts again from the initial condition. The simulation stops when

the mutant allele reaches fixation in the entire population (t~t).

We use the method of quantifying the short-term coalescent rate

from the individual-based simulation, as described in [25], to

determine the expected heterozygosity at a neutral locus. Briefly,

at the beginning of the simulation, all N individuals carry distinct

neutral alleles, as the neural allele of the ith individual is

represented by the ‘‘ancestral number’’ i (~1, . . . ,N). Then, let

qi(t) be the frequency of ancestral number i at time t during

simulation. As described above, qi(0)~1=N for all i. As a result of

the selective sweep, qi(t)~0 for many i, while
PN

i~1 qi(t)~1.

Assuming that new neutral mutations between time 0 and t can be

ignored, the expected heterozygosity at t~t is given by

H~H0(1{
XN

i~1

q2
i ),

(cf. [25]).

The results of the simulation model are presented in Figures 1

and 2. As expected, the heterozygosity is lower than predicted by

the deterministic model. This can be adjusted by adjusting the

initial frequency in the deterministic model (i.e., by shortening the

length of the trajectory).

Discussion

While adaptive evolution in reality follows complex patterns

(demography, heterogeneous selection pressures, spatial structure,

mating behavior, etc.), such processes can often be accurately

described within the idealized framework formed by standard

population-genetic assumptions (constant homogeneous selection

pressures, constant population size, random mating). Deviations

from standard assumptions - particularly heterogeneities in

selective pressures - are obviously important in allopatry and
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parapatry. However, even individuals living in sympatry might

experience substantial differences in selective pressures. Examples

include selection for herbicide resistance in weeds [26–28], stress

tolerance in insects and weeds in agriculture, insecticide resistance

in bed bugs [29–32], drug resistance in vector borne diseases (see

below). Whereas in these examples candidate regions under

selection might be inferred with population-genetic methods that

build up on standard theory, substantial errors could result when

attempting to reconstruct the underlying evolutionary dynamics

(e.g., estimating selection coefficients, speed of evolution, recom-

bination rates, etc.) from the selective sweep patterns. To avoid

misinferences under such scenarios, it is therefore necessary to

validate the applicability of standard population-genetic theory,

and - if appropriate - adapt existing theory, particularly since

many of the mentioned examples are matters of economic

relevance and/or global health interest.

For instance, Plasmodium parasites causing human malaria

typically experience different ‘environmental conditions’ depend-

ing on characteristics of human hosts determining selective

regimes (drug treatment, drug dosage, immune response, levels

of host-acquired or natural immunity, etc.). Parasites conferring

resistance to antimalarial drugs are advantageous only in hosts

treated with the respective drugs, whereas they are slightly

deleterious in untreated hosts due to metabolic costs. In parallel,

sexual reproduction occurs inside the mosquito vector, randomly

but exclusively between parasites that were extracted from the

same host, manifesting another deviation from standard assump-

tion. Heterogeneous selection pressures act also on a spatial scale

because drug-deployment policies and control interventions are

country specific. This is particularly relevant along the borders of

Cambodia, Laos, Myanmar, and Thailand where the containment

of emerging artemisinin resistance is of fundamental importance to

sustain successful malaria control [33]. Inferences based on

standard population-genetic assumptions might be misleading as

parasites experience highly varying selective environments and

severe inbreeding is immanent to the specifics of malaria

transmission.

More generally, parasites or pathogens that sexually reproduce

within hosts might experience radically heterogeneous selection

pressures, as immune responses may occur differently across

organs or within specific tissues. Sexual reproduction might be

common even in fungal pathogens [34]. In agriculture patches of

contrasting selective regimes are created in sympatry by human

interventions (cf. [35,36]). The use of fertilizer, manure,

herbicides, pesticides along with interventions such as plowing

and irrigation varies across farmed land. Therefore, insects or

weeds might experience radically different selective conditions

across nearby acres. A striking example of a rapid evolutionary

change under such a setting is the fast progression of glyphosate

(‘‘roundup’’) resistance in many species of weeds, economically

challenging US agriculture. Genetic understanding of glyphosate

resistance will require the detection and analyses of selective

sweeps in the plants, including those reproducing by self-

pollination and long-distance seed dispersal.

In this study we introduced a model for heterogeneous selection

in sympatry within a haploid population that randomly disperses

across patches in every generation. Viability selection acts

differently within the patches and mating occurs randomly within

or between patches. In the limiting case that mating occurs

randomly between all patches, the model reduced to the hard-

selection Levene model (cf. [23], Ch. 6), which is identical to the

standard selection model. However, if mating occurs exclusively

within demes, the deviations from the standard model can be

substantial. We showed that the dynamics at a single selected locus

are independent of the dispersal pattern. Namely, they are solely

determined by the average selection intensities across patches.

However, as soon as two or more linked loci are considered

deviations from standard-population-genetic assumptions become

apparent. Particularly, we studied how the genetic variation at a

neutral locus is affected as a beneficial mutation sweeps at a nearby

linked locus.

We were able to derive an analytic solution for the allele

frequencies at a neutral locus after the beneficial mutation became

fixed. As the analytic solution is complicated we also derived

approximations, which allow for clear and simple interpretations.

Namely they reflect the frequency change driven by the selective

pressure averaged over patches, however adjusted by a factor

determining the relative importance of the patches. As long as

differences in selection pressures are moderate the hitchhiking

effect is accurately described by standard population-genetic

theory. However, if selection pressures are extreme as it might

be the case in the above mentioned examples, heterogeneities in

selection pressures in combination with intra-patch mating leads to

stronger reductions in genetic variation than predicted by the

standard model. The reason is as follows. Radically reversing

directional selection across patches leads to mating only between

individuals carrying the allele that allows survival within the

respective selective environments, thus greatly increasing the effect

of inbreeding. Hence, meiotic recombination is less efficient to

restore genetic variation. This effect however cannot be just

summarized by an adjustment of the recombination rate. In fact

the unique mating scheme leads to a process for which selection

and recombination cannot be decoupled.

We also performed stochastic simulations to verify the results of

the deterministic model’s analytic prediction. As expected the

deterministic solutions were underestimating the reduction of

genetic variation at neutral loci. However, as usual this can be

compensated by adjusting the effective initial frequency of the

advantageous allele, which reflects the shorter allele frequency

trajectory of the advantageous allele conditional on its escape from

extinction by random genetic drift.

In general our results are informative to properly interpret

selection coefficients when these are attempted to be measures

from the patterns of selective sweeps. Unfortunately, appropriate

data is unavailable for the mentioned examples to which our

model would apply (pesticide and herbicide resistance). Neverthe-

less, as the examples are of great economic interest, and as

population genetic theory continues to advance such data

hopefully become available soon. Anyhow, the model is applicable

to malaria where attempts have been made to link estimates of

selection to the hitchhiking pattering (e.g. [19,22]).

The hitchhiking effect revealed in this study might be compared

to that of another study assuming the subdivision of population

into many small demes or patches [16,37]. They predicted the

reduced strength of hitchhiking (higher heterozygosity), in contrast

to our current result, due to population subdivision. Their model

however assumes homogeneous selective pressure over demes and

limited migration of individuals between demes. In such a case, the

delay in the propagation of advantageous allele into the entire

population provides more opportunities for recombination that

breaks the hitchhiking. Most populations in nature would violate

the assumptions of both studies (instantaneous dispersal among

demes of the current study and homogeneous selective pressure in

[16]). Further investigation is needed for the joint effect of the two

forces.
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Analysis

1 Single-locus Dynamics
Here, we derive the marginal dynamics at a single locus. Let p

denote the frequency of allele A1, i.e., p~
PM
i~1

pi. The fitness of

allele Ai in patch Pk is denoted by w
(k)
i . Hence, we have

W
(k)
i ~w

(k)
1 and Wizm(k)~w

(k)
2 for i[f1, . . . ,Mg. Moreover, let

wi : ~
PK

k~1

(1{bk)akw
(k)
i , so that we obtain w1~Wi and

w2~WizM for i[f1, . . . ,Mg.
With the above notation we can derive

�WW (k)~pw
(k)
1 z(1{p)w

(k)
2 . Thus,

p
�(k)
l ~

akbk

W
(k)

X2M

i,j~1

piW
(k)
i pjW

(k)
j R(i,j?l)

~
akbk

W
(k)
½
XM
i,j~1

w
(k)
1 2pipjR(i,j?l)

z2
XM
i~1

X2M

j~Mz1

w
(k)
1 w

(k)
2 pipjR(i,j?l)

z
X2M

i,j~Mz1

w
(k)
2 2pipjR(i,j?l)� :

Assume l[f1, . . . ,Mg. Then, by denoting the the Kronecker-d
by di,j we obtain

p
�(k)
l ~

akbk

W
(k)
½
XM
i,j~1

w
(k)
1 2pipj

di,lzdj,l

2

z2
XM
i~1

X2M

j~Mz1

w
(k)
1 w

(k)
2 pipj

di,l(1{r)zrdj,lzM

2

z
X2M

i,j~Mz1

w
(k)
2 2pipj0�

~
akbkw

(k)
1

W
(k)
½w(k)

1 pl

XM
i~1

pizw
(k)
2 ((1{r)pl

X2M

j~Mz1

pjzrplzM

XM
i~1

pi)�

~
akbkw

(k)
1

W
(k)

(w
(k)
1 plpzw

(k)
2 (pl(1{p)(1{r)zplzMpr)) :

Similarly, for l[f1, . . . ,Mg, we obtain

p
�(k)
lzM~

akbkw
(k)
2

W
(k)

(w
(k)
1 (pl(1{p)rzplzM p(1{r))zw

(k)
2 plzM (1{p)) :

Therefore,

XM
l~1

p
�(k)
l

~
akbkw

(k)
1

W
(k)

(w
(k)
1 p2zw

(k)
2 (p(1{p)(1{r)z(1{p)pr))\

~akbkw
(k)
1 p

and

X2M

l~Mz1

p
�(k)
l

~
akbkw

(k)
2

W
(k)

(w
(k)
1 (p(1{p)rz(1{p)p(1{r))zw

(k)
2 (1{p)2)

~akbkw
(k)
2 (1{p) :

Using �WW~pw1z(1{p)w2 a similar calculation as above gives,

p�l ~
1

W

X2M

i,j~1

piWipjWjR(i,j?l)

~
1

W
(
XM
i,j~1

piw1pjw1R(i,j?l)z2
XM
i~1

X2M

j~Mz1

piw1pjw2R(i,j?l)

z
X2M

i,j~Mz1

piw2pjw2R(i,j?l)) :

Hence, for l[f1, . . . ,Mg, we have

p�l ~
1

W

X2M

i,j~1

piWipjWjR(i,j?l)

~
1

W
(plw

2
1

XM
j~1

pjzplw1w2(1{r)
XM
j~1

pjzMzplzM w1w2r
XM
i~1

piz0)

~
1

W
(pplw

2
1z(1{p)plw1w2(1{r)zpplzM w1w2r) :

Similarly, for l[f1, . . . ,Mg, we have

p�lzM~
1

W
((1{p)plw1w2rzpplzMw1w2(1{r)z(1{p)plzMw2

2)
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Hence,

XM
l~1

p�l ~pw1 and
XM
l~1

p�lzM~(1{p)w2 :

Therefore, (6) simplifies to

p’l

~

p�l z
PK

k~1

p
�(k)
l

P2M

j~1

(p�l z
PK

k~1

p
�(k)
l )

~

p�l z
PK

k~1

p
�(k)
l

pw1z(1{p)w2z
PK

k~1

akbk(w
(k)
1 pzw

(k)
2 (1{p))

~

p�l z
PK

k~1

p
�(k)
l

p
PK

k~1

akw
(k)
1 z(1{p)

PK
k~1

akw
(k)
2

~

p�l z
PK

k~1

p
�(k)
l

plz(1{p)m
:

Hence, it is easily seen that

p’~
XM
l~1

pl
’~

pl

plz(1{p)m
:

2 Two-locus Dynamics
Here we derive Ql’ and Rl’. First, we need to drive p

�(k)
l and p�l

from (2) and (5), respectively. For l[f1, . . . ,Mg, straightforward

calculation (similar as in Analysis, subsection 1) yields.

p
�(k)
l ~

akbk

W
(k)

X2M

i,j~1

piW
(k)
i pjW

(k)
j R(i,j?l)

~
akbk

W
(k)

(
XM
j~1

plW
(k)
l pjW

(k)
j zr

XM
j~1

plzM W
(k)
lzM pjW

(k)
j z(1{r)

XM
j~1

pl W
(k)
l pMzjW

(k)
Mzj )

~
pl W

(k)
l akbk

W
(k)

(
X2M

j~1

pjW
(k)
j zr

XM
j~1

plzM (W
(k)
lzM pjW

(k)
j {pl W

(k)
l pMzjW

(k)
Mzj))

~plW
(k)
l akbkz

rakbk

W
(k)

XM
j~1

(plzM W
(k)
lzM pjW

(k)
j {plW

(k)
l pMzjW

(k)
Mzj)

~akbkplw
(k)
1 z

akbkrw
(k)
1 w

(k)
2

W
(k)

XM
j~1

(plzM pj{plpMzj)

~akbkplw
(k)
1 {

akbkrw
(k)
1 w

(k)
2

W
(k)

p(1{p)(Ql{Rl) :

Clearly, we have

W
(k)

~w
(k)
1 pzw

(k)
2 (1{p) :

For l[fMz1, . . . ,2Mg the calculation is similar. Summarizing

we obtain

p
�(k)
l ~

pl akbkw
(k)
1 {

rak bk w
(k)
1

w
(k)
2

W
(k) p(1{p)(Ql{Rl ) for l[f1, . . . ,Mg ,

pl akbkw
(k)
2 z

rak bk w
(k)
1

w
(k)
2

W
(k) p(1{p)(Ql{M {Rl{M ) for l[fMz1, . . . ,2Mg :

0
BB@

Exactly the same calculation as above yields

p�l ~
1

W

X2M

i,j~1

piWipjWjR(i,j?l)~plw1{
rw1w2

W
p(1{p)(Ql{Rl) :

Hence,

p�l ~
plw1{

rw1w2
W

p(1{p)(Ql{Rl ) for l[f1, . . . ,Mg ,

plw2{
rw1w2

W
p(1{p)(Ql{M{Rl{M ) for l[fMz1, . . . ,2Mg :

 
ð26Þ

Therefore, for l[f1, . . . ,Mg, we have

p�l z
XK

k~1

p
�(k)
l ~pl

XK

k~1

ak(1{bk)w1zakbkw1{rp(1{p)(Ql{Rl)

(
w1w2

W
z
XK

k~1

akbkw
(k)
1 w

(k)
2

W
(k)

)

~pll{rp(1{p)(Ql{Rl)qp

ð27Þ

where

qp~
w1w2

W
z
XK

k~1

akbkw
(k)
1 w

(k)
2

W
(k)

: ð28Þ

Similarly, for l[f1, . . . ,Mg, we have

p�lzMz
XK

k~1

p
�(k)
lzM~plzMm{rp(1{p)(Ql{Rl)qp : ð29Þ

Consequently, because 1~
XM
l~1

Rl~
XM
l~1

Ql , we have

XM
l~1

(p�l z
XK

k~1

p
�(k)
l )~pl ,
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X2M

l~Mz1

(p�l z
XK

k~1

p
�(k)
l )~(1{p)m ,

X2M

l~1

(p�l z
XK

k~1

p
�(k)
l )~plz(1{p)m~ : w : ð30Þ

In particular, by combining (6) with (29) or (27), and (30) we

obtain.

pl
’~

pl
l
w
{(Ql{Rl)

rp(1{p)qp
w

for l[f1, . . . ,Mg ,

pl
m
w
{(Ql{M{Rl{M )

rp(1{p)qp
w

for l[fMz1, . . . ,2Mg :

 
ð31Þ

Therefore, we deduce from (26) and (31).

Ql
’~

pll{rp(1{p)(Ql{Rl)qp

l
PM
j~1

pj

~Ql{
rqp

l
(1{p)(Ql{Rl) : ð32Þ

Similarly, we obtain

Rl
’~Rlz

rqp

m
p(Ql{Rl) : ð33Þ

We have

Ql
’{Rl

’~(Ql{Rl)Lp , ð34Þ

where

Lp~1{
rqp(plz(1{p)m)

lm
: ð35Þ

Iteration of (34) yields.

Ql(t){Rl(t)~(Ql(0){Rl(0)) P
t{1

t~0
Lpt ð36Þ

Hence, from iterating (32) using first (36) and then (28) and (9)

we obtain.

Ql(Tz1)~Ql(T){
rqpT

l
(1{pT )(Ql(T){Rl(T))

~Ql(0){
XT

t~0

rqpt

l
(1{pt)(Ql(t){Rl(t))

~Ql(0){(Ql(0){Rl(0))
XT

t~0

rqpt

l
(1{pt) P

t{1

t~0
Lpt

~Ql(0){(Ql(0){Rl(0))
r

l

|
XT

t~0

(
w1w2

ptw1z(1{pt)w2

z

XK

k~1

akbkw
(k)
1 w

(k)
2

ptw
(k)
1 z(1{pt)w

(k)
2

)
(1{p0)mt

p0ltz(1{p0)mt
P t{1

t~0Lpt

~Ql(0){(Ql(0){Rl(0))
r

l

.

|
XT

t~0

(
w1w2

p0ltw1z(1{p0)mtw2

z
XK

k~1

akbkw
(k)
1 w

(k)
2

p0ltw
(k)
1 z(1{p0)mtw

(k)
2

)(1{p0)mtP t{1
t~0Lpt

~Ql(0){
r

l
(Ql(0){Rl(0))

XT

t~0

(
w1w2

p0
1{p0

( l
m )tw1zw2

z
XK

k~1

akbkw
(k)
1 w

(k)
2

p0
1{p0

( l
m )tw

(k)
1 zw

(k)
2

)P t{1
t~0Lpt

~Ql(0){
r

l
(Ql(0){Rl(0))

XT

t~0

(
w1

p0
1{p0

( l
m )t w1

w2
z1

z
XK

k~1

w
(k)
1 akbk

p0

1{p0
(

l

m
)t w

(k)
1

w
(k)
2

z1

)Pt{1
t~0Lpt

~Ql(0){
r

l
(Ql(0){Rl(0))(w1

XT

t~0

Pt{1
t~0Lpt

p0

1{p0
(

l

m
)t w1

w2
z1

z
XK

k~1

akbkw
(k)
1

XT

t~0

P t{1
t~0Lpt

p0

1{p0
(

l

m
)t w

(k)
1

w
(k)
2

z1

) :

By combining (35), (28), and (9) we see that Lp t is given by (12).

Hence, the above yields (11), by substitution T by T{1.

3 Equilibrium Heterozygosity
Obviously, (15) has the form.

Q̂Ql~Ql(0){(Ql(0){Rl(0))Ar ,
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where Ar does not depend on Ql(0) or Rl(0). The equilibrium

heterozygosity is given by

ĤH~
M

M{1

XM
l~1

Q̂Ql(1{Q̂Ql) ,

because the beneficial allele becomes fixed at equilibrium.

Now, assume that initially only a single copy of the beneficial

mutation arises. Hence, we have Ql(0)~1 with probability Rl(0)
and Ql(0)~0 with probability 1{Rl(0), i.e.,

P(Ql(0)~1DR1(0), . . . ,RM (0))~Rl(0) and

P(Ql(0)~0DR1(0), . . . ,RM )~1{Rl(0). Therefore, we have.

E(ĤHjR1(0), . . . ,RM )~

E( M
M{1

PM
l~1

(Ql(0){(Ql(0){Rl(0))Ar)

(1{Ql(0)z(Ql(0){Rl(0))Ar))jR1(0), . . . ,RM (0)) ,

~
M

M{1

XM
l~1

E((Ql(0){(Ql(0){Rl(0))Ar)

(1{Ql(0)z(Ql(0){Rl(0))Ar))jR1(0), . . . ,RM (0))

~
M

M{1

XM
l~1

Rl(0)((1{Rl(0))Ar(1{(1{Rl(0))Ar)

z
XM
j~1
j=l

Rl(0)Ar(1{Rl(0)Ar))

~
M

M{1

XM
l~1

Rl(0)(1{Rl(0))Ar(1{(1{Rl(0))Ar)

z
M

M{1

XM
l~1

Rl(0)Ar(1{Rl(0)Ar)
XM
j~1
j=l

Rj(0)

~
M

M{1

XM
l~1

Rl(0)(1{Rl(0))Ar(1{(1{Rl(0))Ar)

z
M

M{1

XM
l~1

Rl(0)(1{Rl(0))Ar(1{Rl(0)Ar)

~
M

M{1

XM
l~1

Rl(0)(1{Rl(0))(2Ar{A2
r )

~
M

M{1
(2Ar{A2

r )
XM
l~1

Rl(0)(1{Rl(0)) :

Since H0~
M

M{1

PM
l~1

Rl(0)(1{Rl(0)), we have

E(ĤH DR1(0), . . . ,RM )~E(ĤH DH0)~(2Ar{A2
r )H0 :

Hence we have

E(ĤH)~E(E(ĤHjR1(0), . . . ,RM ))

~
M

M{1
(2Ar{A2

r )E(
XM
l~1

Rl(0)(1{Rl(0))) :

Since

E(H0)~E(
XM
l~1

Rl(0)(1{Rl(0)))

is the heterozygosity before the sweep, we see that the relative

heterozygosity

H : ~
E(ĤH)

E(H0)
~

E(ĤH DH0)

H0
~2Ar{A2

r

is independent of the initial allele-frequency distribution before the

sweep

4 Approximations

Let f (x,y) : ~
1

p
x
z 1{p

y

for x,y[Rz. Its Hessian matrix is

calculated to be

H~

L2f

Lx2
L2f
LyLx

L2f
LxLy

L2f

Ly2

0
B@

1
CA~

2p(1{p)

((1{p)xzpy)3

{y2 xy

xy {x2

 !
:

Clearly, we have {
2p(1{p)y2

((1{p)xzpy)3
v0 and det H~0, i.e., the

leading minors of H are non-positive. Hence, f is concave but not
strictly concave (note that f (x,x)~x=2). Hence, for positive
random variables X and Y the Jensen’s inequality for higher
dimensions yields.

E½f (X ,Y )�ƒf (E½X �,E½Y �):

Now, choose X (k)~w
(k)
1 and Y (k)~w

(k)
2 with probability akbk

for k~1, . . . ,K , X (0)~w1 and Y (0)~w2 with probabilityPK
k~1

ak(1{bk). Then the Jensen’s, inequality gives.

qp~

PK
k~1

ak(1{bk)w1w2

pw1z(1{p)w2
z
XK

k~1

akbkw
(k)
1 w

(k)
2

pw
(k)
1 z(1{p)w

(k)
2
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~

PK
k~1

ak(1{bk)

p
w2

z 1{p
w1

z
XK

k~1

akbk
p

w
(k)
2

z 1{p

w
(k)
1

ƒ

1
p
m z 1{p

l

~
lm

plz(1{p)m
:

Using this inequality yields

Lp~1{
rqp(plz(1{p)m)

lm
w1{r :

Proof of Result 3. First, we approximate Lpt
by 1{r.

Therefore, we obtain the approximation (20), which we can

rewrite as.

Q̂Ql&Ql(0){
r

l
(Ql(0){Rl(0))

XK

k~0

akw
(k)
1

X?
t~0

gk(t), ð37Þ

with

gk(t) : ~
at

ckbtz1
, ð38Þ

where

a : ~1{r, b : ~
l

m
, and ck : ~

w
(k)
1 p0

w
(k)
2 (1{p0)

: ð39Þ

As in eq. 45 in [18], we can approximate.

X?
t~0

gk(t)~
1

2

ð?
0

gk(x)dxz
1

2

ð?
1

gk(x)dx~ : Bk : ð40Þ

The integrals can be expressed in terms of the hypergeometric

function. Exactly the same derivations as in the proofs of Theorem

1 and, Remarks 1 and 2 in [18] yield the desired expressions. The

hypergeometric function can be further approximated as in the

proofs of Theorem 2 and Remark 3 in [18]. Finally, assuming

p0&0, the same approximations as in Theorems 3 and 4 in [18]

can be applied. According to eq. 95 in [18] we obtain.

Bk&
1

log a
(c

{
log a
log b

k {1){
1{a

2a log a

{
1

log a
b

c
{

log a
log b

k {
ck

log ab
(c

{
log ab
log b

k {1)

z
ck

2 log ab
(

1

ab
{1) :

ð41Þ

If p0&0, we have ck&0. We have to keep in mind that the

expressions cx
k are delicate for x&0. However, since (1{p0)x&1,

we have cx
k&dx

k , with dk~p0
w

(k)

1

w
(k)

2

. We obtain.

Bk&
1

log a
(d

{
log a
log b

k {1){
1{a

2a log a
{

1

log a
b

d
{

log a
log b

k : ð42Þ

By combining (37), (40), and (43) and a little rearrangement, we

obtain (21).

Furthermore, for small r we additionally have log a&{r, such

that.

Bk&
1

r
(1{d

r
log b
k )z

1

2(1{r)
z

1

rz log b
d

r
log b
k : ð43Þ

Clearly, for r&0, the first second and third term in the above

expression are negligible compared with the first term since 1
r

is

large. Hence, we have

Bk&
1

r
(1{d

r
log b
k ) : ð44Þ

Now, (22) follows from combination of (37), (40), and (44).
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