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Abstract This paper provides a brief review and update on the Voyager observations of the inter-

action of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new

energetic particle component which is accelerated at the termination shock (TS) and leaks into the

outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by ener-

getic particles and which transfers most of the solar wind flow energy to the pickup ions (not the

thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic

rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions

are very different. At V1 the flow was small after the TS and has recently slowed to near zero,

whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1

may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which

the plasma flow speeds are near zero.
ª 2012 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

The matter between stars, the interstellar medium, varies con-

siderably from region to region in our galaxy. The Sun is inside
a very large structure called the local bubble, a region of hot
tenuous gas formed by supernova explosions tens of millions
of years ago [1–3]. Adjacent to the local bubble is a similar

but larger bubble, also formed from supernova explosions.
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Inside the local bubble are smaller, denser clouds which may
have broken off from the bubble interaction region. The Sun
is now in one of these denser, cooler clouds. The H density

of the local cloud is about 0.2 cm�3, the temperature is about
6000 K, and the cloud moves about 23 km/s with respect to the
Sun [4,5]. The magnetic field strength cannot be directly mea-

sured, but based on models is 3–5 nT [6,7].
The Sun is the source of the variable solar wind, with speeds

measured near Earth ranging from 250 to 2200 km/s, proton

densities from 0.01 to >100 cm�3, and an average magnetic
field strength of 5 nT. Since the solar wind and local interstel-
lar medium (LISM) plasmas are both magnetized, they cannot
mix, so the LISM flows around the heliosphere. The boundary

between the LISM and solar wind is the heliopause (HP), anal-
ogous to Earth’s magnetopause. Since the solar wind is super-
sonic, a shock (called the termination shock) forms upstream

of the HP. At the TS, the solar wind becomes subsonic and be-
.V. All rights reserved.
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gins to turn toward the heliotail, the stretched-out downstream
region analogous to Earth’s magnetotail. If the LISM were
supersonic, a bow shock would form in the LISM upstream

of the HP, but recent data and analysis suggest that the LISM
flow is subsonic and thus the heliosphere does not have a bow
shock [5].

Voyagers 1 and 2 were launched in 1977 and are now
exploring the interaction between the LISM and the solar
wind. They both have crossed the TS and are in the region

of shocked solar wind between the TS and the HP that is called
the heliosheath. In late 2011 V1 was 119 AU from the Sun and
V2 was 97 AU, moving outward at 3.5 and 3.1 AU/yr, respec-
tively. This paper reviews the observations made by these

spacecraft as they enter unexplored regions of space.

Pre-termination shock

The first observed influence of the LISM on the solar wind was
from the LISM neutrals.

The neutrals are unaffected by the magnetic fields and flow

into the heliosphere, where they are ionized in the solar wind
and form hot, �1 keV, pickup ions. These pickup ions domi-
nate the thermal pressure outside about 30 AU and play a ma-

jor role in pressure balance structures outside this distance [8].
Accelerating the pickup ions to 1 keV slows the solar wind; this
slowdown was first observed near 30 AU and by 80 AU the so-

lar wind had slowed by about 20% [9]. Some of the energy
from the pickup ions is transferred to the thermal protons,
causing the temperature of the solar wind to increase with dis-
tance [10].

About 2.5 years before each TS crossing, the Voyagers de-
tected a new energetic particle component with proton energies
of tens of keV to tens of MeV flowing along the magnetic field

lines [11,12]. This new particle component, called termination
shock particles, signified that the Voyagers were entering a re-
gion analogous to Earth’s foreshock, with particles accelerated

at the TS streaming into the heliosphere along the magnetic
field. For these particles to be observed, the TS distance had
to be further at the flanks than at the nose so that magnetic field

lines at the Voyagers would also pass through the TS. Thus the
TS must be blunt, or flattened, in the nose direction [13]. The
bluntness alone could not account for all the particle observa-
tions; an additional asymmetry in the heliospheric boundaries

due to the interstellar magnetic field was also required [14].

Termination shock

The realization that the supersonic solar wind must go through
a termination shock to become subsonic was first reported by
Parker [15]. The location of this shock is determined by the HP

location and the upstream plasma parameters. The HP forms
where the solar wind dynamic pressure is balanced by the total
LISM pressure; the value of the LISM pressure is not well

determined The distance to the TS, and thus the scale size of
the heliosphere, were determined when V1 crossed the TS at
94 AU in 2004 [12,13,16].

Voyager 2 trails V1 by about 20 AU. It crossed the TS in
2007 at 84 AU [17–20], 10 AU closer than V1. Calculations
of the TS motion based on changes in the solar wind dynamic
pressure suggested that TS motion was responsible for only

2–3 AU of the distance change [17]. Thus the heliosphere is
asymmetric, with the TS closer in the V2 than V1 directions.
Models of the interaction of the heliosphere with the LISM
show that an asymmetry occurs if the LISM magnetic field is

tilted from the LISM flow direction and has a magnitude of
>3 nT [3,4]. If these conditions held, the magnetic field would
drape around the heliosphere so that the magnetic field

strength builds up outside the southern part of the heliosphere,
and the increased magnetic pressure would push the bound-
aries of the southern heliosphere inward.

The TS crossing provided other surprises as well. The TS
was a weak shock, with a compression ratio close to two. At
Voyager 2, the speed decrease started about 80 days before
the TS crossing as the speed went from 400 to 300 km/s in

three discrete steps [17]. The last step coincided with a sharp
gradient in the energetic particle pressure, with the inward
pressure gradient force large enough to produce the observed

slowdown [21]. At the V2 TS (V1 does not have a working
plasma instrument), the speed decreased from 300 to
150 km/s, the density and magnetic field increased by a factor

of 2, and the ion temperature increased by a factor of 30.
A major surprise (but see Zank et al. [22]) was that the heat-

ing of the thermal ions was much less than the decrease in the

flow energy. Thus the flow energy had to go somewhere else.
About 15% went to heating the energetic (tens of keV) ions,
but the majority seems to have gone into heating the pickup
ions [17], which are not directly observed.

The TS was the source of the low-energy particles observed
in the foreshock; the intensities of these particles peaked at the
TS [12,19]. However, the anomalous cosmic ray (ACR) inten-

sities did not peak at the TS as expected, at least not where
crossed by V1 and V2 [12,19]. ACRs are singly ionized particle
with 10–100 MeV/nuc; they were observed first near Earth and

their origin was thought to be pickup ions formed from LISM
neutrals which were then accelerated at the TS. Thus a peak in
the ACR intensity was expected at the TS. The ACR intensity

did not increase at the TS; no evidence an ACR source at the
TS was observed at either of the Voyager crossing locations.
Heliosheath

The heliosheath was thought to be, in analogy with planetary
magnetosheaths, a highly turbulent region and this expectation
has been correct [23–25]. Figs. 1 and 2 show the daily average

plasma parameters obtained by fitting the observed spectra to
convected, isotropic proton distributions. The broad envelope
of the data and the 25-day running averages that are super-

posed show consistent trends. However, the individual sets
of spectra very greatly on time scales of tens of minutes. The
magnetic field also varies by factors of 2–3 over similar time

scales [24], confirming the very dynamic and turbulent nature
of this region. Although these fluctuations are large, they con-
tain very little of the energy [25]. As V2 moves deeper into the
heliosheath, these fluctuations decrease slowly in magnitude

but remain significant.
By the end of 2011, V2 was 14 AU past the TS crossing dis-

tance of 84 AU. Models suggest that the TS has moved inward

8 AU since the TS crossing due the very low solar wind dy-
namic pressure during the recent solar minimum [26]. Thus
V2 is about 22 AU deep into the heliosheath. The expectation

was that the plasma speed would decrease across the helio-
sphere and the flow direction would turn tailward. Fig. 1



Fig. 1 Daily averages of the radial speed and flow angles RT and

RN for the solar wind in the heliosheath. The solid lines show 25-

day running averages and the dashed line in the middle panel

shows the corrected RT flow angle.

Fig. 2 Daily averages of the radial speed, density and temper-

ature in the heliosheath. The points are daily averages and the

lines show 25-day running averages.

Voyager Heliosheath Observations 231
shows that, contrary to these expectations, the average speed

at V2 has remained roughly constant at 150 km/s for over
4 years, with a brief dip in speed at 2009.7 followed by a recov-
ery in 2010.5. These observations of steady speeds are not pre-

dicted by models [27,28] and are not understood.
Although the speed is not slowing, the direction of the flow

at V2 is turning as expected.

Fig. 1 shows that the flow in the RT plane (the RTN coor-
dinate system has R radially outward, T parallel to the solar
equatorial plane and positive in the direction of solar rotation,
and N completes a right-handed system) is about 20� after the

TS crossing and increases to about 45� at the end of 2011. The
flow in the RN plane was toward the south as expected, start-
ing at about 10� after the TS, then oscillating for about a year

before it started a monotonic increase to 25� at the end of
2011. The initial deflections at the TS must be due to the TS
being at an angle to the radial flow. As discussed above, the

TS is blunt near the nose, less curved than a circle, so the flow
at the TS is deflected away from the nose of the heliosphere. As
the plasma moves across the heliosheath it continues to turn
away from the nose, as expected.

The RT angle plot shows a cutoff at about 50�. This cutoff
is an instrumental effect; when the flow direction is at too large
an angle to the instrument look direction the plasma is not de-

tected. In this case the large amount of fluctuations in the
heliosheath works to our advantage. The distributions of the
plasma properties in the heliosheath are well represented by

Gaussian distributions. The observed distributions of the
plasma parameters are fit to Gaussians to find the average
properties and standard deviations [23]. For the RT angle,
which is cut off at about 50�, we can fit the distribution below
50� with a Gaussian and determine the average flow angle. The

flow angles determined from these fits are shown by the dashed
line in Fig. 1, which shows the flow is 56� from radial in the T
direction in 2011. Note that the RT angles (and thus speed) are

greater than the RN angles throughout the heliosheath. Thus
the TS must be more blunt in the RT than RN plane. More
of the plasma goes around the sides than over the top of the

heliosheath, at least in the southern hemisphere where V2 is lo-
cated, which suggests that the heliosheath is compressed at the
southern pole [29].

Fig. 2 shows the radial speed VR, the density N and the tem-

perature T in the heliosheath. Although the speed has remained
roughly constant as shown above, VR decreased from 130 to
100 km/s as the flow turned tailward. After the TS, the density

initially averaged about twice the 0.001 cm�3 value in the solar
wind but had large, factor of 3–4, fluctuations. By the end of
2008 the density had decreased by a factor of two and the fluctu-

ations were smaller. The cause of the density decrease is likely
partially the reduced solar wind flux coming from the Sun in
the recent solarminimum [26] andpartially a heliolatitude effect.
At solar minimum the solar wind flux decreases with heliolati-

tude, so V2 at 30� S should observe less flux than observed near
Earth at low-latitudes. However, a problemwith this hypothesis
is that these lower fluxes are associated with higher flow speeds,

which are not observed in the heliosheath. The decrease in fluc-
tuations may result from the very quiet solar wind conditions in
this solar minimum combined with V2 moving further from the

TS. The density increased by a factor of two during a 6 month
period in 2011, perhaps because of a diminishment of the
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heliolatitudinal flux gradient as solar minimum ends. The aver-
age density at the end of 2011 is similar to that observed just after
the TS crossing, but the fluctuations in daily averages are much

smaller. The temperature decreased from 150,000 Kafter the TS
to about 40,000 K in 2011. This decrease ismuch larger than that
expected from adiabatic cooling. Perhaps it reflects cooler solar

wind encountering the TS or less heating at the TS due to differ-
ences in the upstream flow parameters. The temperature in-
creased slightly in 2011 in concert with the increase in density,

but the reason is unclear.
Although the plasma instrument on V1 does not work, the

speeds in the R and T direction can be calculated from the low
energy charged particle (LECP) instrument observations of

tens of keV ion intensities using the Compton-Getting effect
[30]. The speed profile observed by V1 is very different than
that at V2. The speed after the TS was below 100 km/sand

monotonically decreased from 70 km/s in mid-2007 to 0 km/s
in early 2011 [31] and has since become negative. The T com-
ponent of the speed averaged 40 km/s until mid-2010, when it

started to decrease. Krimigis et al. [31] suggest that the de-
crease of the speed to near zero signifies that V1 has entered
a boundary region in front of the HP in which flow is parallel

to the HP. The V1 spacecraft was recently reprogrammed to
do roll maneuvers so that VN could also be determined, and
VN is also small <20 km/s [32]. Thus the V1 has entered a re-
gion with nearly stagnant flow which was not predicted. V1 has

now traveled more than 8 AU through this low-speed region.
Models show that such a region could be part of the global
spatial character of the heliosphere [33] or a time dependent

feature near the boundary of the fast and slow solar wind re-
gimes near solar minimum [34].

Since the observed speeds are very low, comparable to the

23 km/s expected in the LISM, one might wonder if V1 has al-
ready crossed the HP. The magnetic field increased by about a
factor of 2 in the stagnation region but that the direction has

not changed [32]. The field is still consistent with the Parker
spiral direction; this direction is expected to change in the
LISM, so V1 likely has not crossed the HP. The increase in
magnetic field magnitude is consistent with predictions that

the field will be compressed as it pushes up against the HP
boundary [35]. The most probably explanation for these data
is that V1 has entered a boundary layer near the HP but has

not yet crossed the HP.
The ACR intensity has increased slowly as the Voyager

spacecraft move deeper into the heliosheath [36]. At V1, the

spectra are almost power laws, indicating that V1 is near the
source region. Several suggestions have been published for
the source of the ACRs. One is that they are accelerated on
the flanks of the heliosphere where the particles can interact

with the TS longer, then move along the magnetic field lines
to the Voyager spacecraft [37]. Another hypothesis is that
ACRs are accelerated by second order Fermi acceleration by

magnetic islands or ridges near the HP [38]. A third is that
reconnection occurs as the current sheets are compressed near
the HP, leading to particle acceleration [39,40]. The Voyagers

may be able to differentiate between these possibilities as they
approach and cross the HP.

Summary

The Voyager spacecraft celebrate their 35th year in space in
August 2012 and continue exploring new regions of space.
They should continue to return data until 2025, when we ex-
pect they will be well into the interstellar medium. This paper
describes some of the new discoveries and new mysteries

resulting from recent observations. Some of the more intrigu-
ing puzzles are the source of the ACRs, the very different speed
profiles observed in the V1 and V2 directions, and the

formation of a boundary layer in front of the HP. Future
observations and modeling efforts should shed light of these
issues.
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